Good news! The PRISM website is available for submissions. The planned data migration to the Scholaris server has been successfully completed. We’d love to hear your feedback at openservices@ucalgary.libanswers.com
 

Impact of Instruction Re-Ordering on the Correctness of Shared-Memory Programs

Abstract

Sequential consistency is an intuitive consistency model that simpli_es reasoning about concurrent multiprocessor programs. Most implementations of high-performance multiprocessors, however, utilize mechanisms that allow instructions to execute out of order, resulting in consistency models that are weaker than sequential consistency and further complicating the job of programmers. This paper investigates all possible combinations of re-ordering of read and write instructions and their effects on the correctness of programs that are designed for sequential consistency. It shows that with certain combinations of re-orderings, any program that accesses shared memory through only reads and writes and that is correct assuming sequential consistency, can be transformed to a new program that does not use any explicit synchronization, and that remains correct in spite of the instruction re-ordering. With other combinations of re-ordering, such transformations do not exist, and even solutions to the mutual exclusion problem are impossible without resorting to explicit synchronization.

Description

Citation