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Abstract

The paper discusses theoretical principles of machine learning algorithms that utilize the covering
paradigm (such that AQx and CNx families). Exploiting the set theory, the paper exhibits the way how the
correctness and generality required for decision rules induced by a covering algorithm may be satisfied.
The principle differences between a genuine theoretical approach and actual empirical algorithms are also
discussed.

Keywords: covering algorithm, inductive learning, leaming from examples, attribute, selector, complex,
decision rule, correctness, generality

1. Introduction

Machine learning is faced by various approaches and paradigms. The paper focuses on the
methodology of covering algorithms for learing-from-examples, and tries to define a general approach
to these algorithms by exploiting the set theory.

Let us be faced by a task of classification in a certain problem domain. Objects of the problem
domain are characterized by their properties called attributes and the decision should be done about a
qualitatively new property called class. The task is to define the recipe which will assign the appropriate
class value to each object from the problem domain.

More formally, each object of a given problem is described by a fixed number of attribute values

X = (xl, X2,..., xn)




The classification scenario may be formally characterized as a multivariable function f so that
S xpen x) =C
where C is one of possible class values.

However, in great majority of tasks, such a function is not available, or even cannot be analytically
expressed. The field of machine learning offers for this purpose the inductive learning algorithms which
solve this problem on the base of knowledge of already solved cases. This collection is called training set
and their elements training examples. Each example is represented by an n-tuple of attribute values and
attached by a (desired) class value. Inductive learning algorithms generate the decision rules or trees which
may be directly exploited for decision making [2], [6], [11].

This paper is trying to investigate general foundations to covering learning algorithms [4], [7], [9]
by exploiting the set theory. Therefore, the algorithm presented here depicts the theoretical aspects of the
covering paradigm only, and has not been comprehensively ever implemented. It is also emphasized that
the fundamental requirements for decision rules or trees induced are their correctness and generality
(Section 3).

Section 2 introduces necessary definitions, including a formal description of the covering paradigm.
Section 4 focuses on the methodology of the covering algorithms from the viewpoint of the set theory, and
the last Section compares our theoretical algorithm with existing empirical learning algorithms utilizing
the covering paradigm, namely the family of AQx and CNx algorithms.

2. Definitions

Attribute a; specifies the jth property of each object which may be of numerical or symbolic type.
Strictly speaking, a is a discrete or continuous function which gives the value of jth attribute for each
object from the problem domain. Domain of a symbolic attribute g is the list of all exclusive values of
the attribute a; appearing in the training set. Domain of a numerzcal attribute g; is the list of intervals of
the entire range of attribute a; (whene the intervals are formed by a d1scretlzanon process). The domain
of a; will be depicted as Aj, Af, o AD

Class C specifies the property which should be revealed for each object. The domain of class
values is defined by discrete values C,, C,, ..., Cy .

Training set E is the set of chosen examples of the problem domain with known class values.
Accordingly define

E={xlx=(,x.,x)~C,}

where x; is a value of attribute g; for all j=1,...,n and C, is one of class values, r € [1, R] . The symbol ~
introduces the desired class of the example.

Selector S} is a logical function with values true or false defined on E
S;(x) = true : ifx; = A} for symbolic g;

if x; € A; for numerical g;
= false : otherwise




Complex Cmplx is a logical function defined on E expressed as a conjunction of selectors with
exclusive attributes, i.c.

Cmplx= A S, where j, € [1,n), i, € [1,1()]
P

As a special case for p=0, an empty conjunction depicts a true complex, which gives the value true for
each x from the problem domain.

Rule condition Cond is a logical function defined on E as a disjunction of complexes with
exclusive attributes, i.e.

Cond = V Cmplx* , where k e [1,n]
k

As a special case for k=0, an empty disjunction depicts a false condition, i.e. Cond(x)=false for each x
from the problem domain.

Note. Since selectors and complexes are special forms of conditions, all definitions below related
to conditions are also valid for the other forms.

Decision Rule is a construct of the form

if Cond(x)=true then class = C,
where Cond is a rule condition, x an unseen object to be classified, and C, a class value.

Mapping M is a function defined on the set of conditions which assigns a set of examples covered
by Cond to the condition Cond, i.e.

M(Cond) = {x € E| Cond(x) = true}

Note. Two properties of the mapping M trivially follow from the set theory. Let Condl, Cond2
be conditions defined on E, then

M(Condl v Cond2) = M(Condl) U M(Cond2) ¢))

M(Condl & Cond2) = M(Condl) n M(Cond?2) 2

Correct training set E is a set E which does not involve any contradictory examples. In other
words, each two examples with identical attribute values also have the identical class value.

Note. If Cond is a condition and —~Cond its negation, both defined on a correct set E, then
M(Cond) and M(-~Cond) are disjoint and complementary sets on E, i.e.

M(Cond) W M(—Cond) = E €))

M(Cond) N M(=Cond) = 0 @
Consequently, every condition Cond defined on a correct set E splits the set E into two disjoint and
complementary subsets.

Covering paradigm utilized by several machine learning algorithms may be generally formalized
by the following procedure COVERING(E) where E is the given training set:




procedure COVERING(E)
ListOfRules .= NIL
until E = 0 do
1. Find a rule condition Cond according to a certain technique
2. E’ .= M(Cond)
E =E\FE
3. Add the rule
if Cond then class = C,
to the end of ListOfRules where C, is the desired class of examples in E’
enddo
return ListOfRules

All the learning algorithms utilizing this paradigm differ namely in the step 1. Some algorithms induce rule
conditions which may cover examples from more than one class; in this case, the class C, in the step 3
is the majority class of examples in E’ .

3. Consistence and completeness

From now on, let us consider a correct training set E and choose the class value C, . Furthermore,
let the set of all examples from E with assigned class value C, be named E* , the set of all other examples
from E as E”, i.e.

E'={xeElx~C,}
E =E\E'

These sets are disjoint and complementary on E, i.e. the following holds

E'VE =E %)
EENnE =0 ©

Def. 1. Condition Cond defined on E is consistent on E* if
(x € E’) = (Cond(x) = false) @)

Note that this implication is equivalent to
(Cond(x) = true) = (x € EY) ®

Consequences derived directly from the definitions of E*, E~ and the function M for a consistent
Cond are:

E c M(~Cond) follows from (7), ©)
M(Cond) c E* from (8), (10
M(Cond) NE =0 from (6) and (10). €3

Def. 2. Condition Cond defined on E is complete on E* if
(x € E*) = (Cond(x) = true) (12)




Consequence for a condition complete on E*:
E* ¢ M(Cond) (13)

Theorem 1. The condition Cond is complete and consistent on E* if and only if
E* = M(Cond) (14)

Proof. Equivalence (14) follows directly from (10) and (13). Q.E.D.

This theorem gives an equality sign between E* and M(Cond) for a complete and consistent
condition. Note also that this equivalence gives the condition of correctness of generated rules, because
E* is the set of all examples of the chosen class C, and M(Cond) the set of all examples covered by the
condition Cond . Thus, a consistent and complete condition Cond will just cover all positive examples and
no negative one.

Theorem 2. Let Cmplx,, Cmplx,, ..., Cmplxy be consistent complexes on E* . Then disjunction
K

Cond =V Cmplx,
k=1

is a consistent condition on E* .

Proof by induction:
1. Let Cmplx,, Cmplx, be consistent on E* . Following (11) it is known that
M(Cmplx)) NnE =0 and M(Cmplx,) NE =0
It is also evident from the set theory that
(M(Cmplx;) W M(Cmplx,)) NE =0
and (1) says
M(Cmplx, v Cmplx,) = M(Cmplx,) U M(Cmplx,)
Hence,
M(Cmplx; v Cmplx)) NE=0
and it means, following (11), that (Cmplx, v Cmplx,) is consistent on E*.

2. Let the theorem be valid for k consistent complexes, 2<k<K . One has to prove its validity for k+1
complexes.

Disjunction of k+1 complexes may be written as

kel k
V Cmpix, = \| Cmplx, V Cmplx, |

m=1 m=1

k

The first part V Cmplx,, is consistent following the induction assumption, the latter element Cmplx,,
m=1

is consistent thanks to the theorem assumption. The proof for two consistent complexes has been already

done. Q.E.D.




Note. The first theorem gives the necessary and sufficient condition for correctness of a condition
on E. The second theorem offers the philosophy of creating a rule condition by the per partes fashion.
More precisely, a rule condition can be sequentially constructed as a disjunction of partial conditions.

4. Method

The previous section proposes to form a rule condition Cond sequentially as a disjunction of partial
conditions Cond, consistent on E* 5o that the final rule condition Cond is complete on E*. The correspond-
ing sets M(Cond,) cover the subsets of E* and their union

M(Cond) = U M(Cond)
p
covers the entire set E* if and only if the final rule condition Cond is complete and consistent on E*
(according to Theorem 2). Hence, the first requirement about correctness of a decision rule is satisfied.

The second requirement, i.e. the generality of the induced rules, will be satisfied by sequential
constructing the sets of complexes (from the most general to more specialized ones) and selecting the
consistent complexes from the above sets.

Let us now describe the progress of the covering algorithm for one class (say C,) and correct
training set E.
Step 1.

First, we construct the set SEL' of the most general complexes that are characterized by one-
selector complexes that are satisfied by at least one example x from E*:

SEL' = { 8%, j=1,..n, i=1,..J() | 3x € E*, Si(x)=true} (16)

Step 2.

In the general sweep, we process the set SEL* of k-selector complexes. We extract from SEL* these
complexes, which are consistent on E*. To recognize them, it is advisable to realize the mutual relations
of E*, E-, and M(Cmplx) for each Cmplx € SEL* . We already know (6) and

M(Cmplx) NE* #0
for each Cmplx e SEL¥, which follows from (16).
Hence, the consistency of Cmplx is checked by means of intersection of M(Cmplx) and E™ :

« If M(Cmplx) " E" =0 then Cmplx is consistent on E*,
» if M(Cmplx) n E" # 0 then Cmplx is not consistent on E*,

The current sweep is said to be successful if at least one consistent complex Cmplx from current
SEL* exists. It is unsuccessful if no consistent complex Cmplx e SEL* exists.
(i) Unsuccessful sweep

No consistent complex in the current set SEL* exists, consequently it is necessary to create the set
of "stronger" complexes to choose a consistent rule from. This process is called specialization and each
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specialization step consists of the cartesian product of the current SEL* by the original SEL' according to
the different attributes.

The kth specialization step creates the set of (k+1)-selector complexes with exclusive attributes
SEL*' = SEL*x SEL' = (s' & ... & S')
1 k+l
Where ji,...jg, € (1, 1l, j,#j, for all p, ¢ € [1, k+1] . Note that every SEL**" involves more specialized
complexes than SEL,

Hence, every unsuccessful sweep is followed by a specialization step and vice versa till a consistent
complex is found, i.e. the process after specialization returns to Step 2. The process of specialization is
finite, it terminates after at least n steps, where n is the number of attributes. Every complex from SEL"
determines only one individual example, so after n specialization steps the set E* has to be empty.

(ii) Successful sweep

There exist one or more consistent complexes Cmplx® extracted from the current SEL*. The partial
condition of the pth successful sweep may be expressed as

Cond, = V Cmplx*
and the set of covered examples by this partial condition is
M(Cond) = U M(Cmpix®)

The following holds for a consistent Cond,, (from Theorem 2):
M(Cond)) < E*

Now, two situations are to be distinguished:
(A)  The set M(Cond,) is a proper part of E*:
M(Cond,) c E*

All covered examples can be removed from the training set and the process may continue from Step 1 with
the reduced training set (here := depicts the *assignment’ statement):

E = E\MR,)

(B) The set M(Condp) is identical to the current E* :
M(Cond,) = E*

Thus, all positive examples were already covered, the process of generating partial conditions is completed,
and the final rule condition Cond may be expressed in the form

Cond =V Condp (over all successful sweeps)
V4

M(Cond) = U M(Cond)) = original E*
P

Final rule condition Cond in the form of disjunction of consistent partial conditions is not only
consistent but also complete on the original E* and the process of induction may terminate.
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1) Our theoretical algorithm is restricted to a single class, but its extension to a multiclass tasks does
not cause any difficulty, because the algorithm may be sequentially invoked for all class values.

2) Both CN2 [1], [3] and CN4 [5] are able to generate the rules for more classes in two modes:
ordered and unordered.

< When the order of rules as they were extracted from the SEL sets stays unchanged, the rules create the
cascade for testing, i.e. when the first rule does not match, the second is tested, and so on. This type
of rules is generated by the ordered mode.

« When the generated rules are to be independent, the unordered mode is selected. The order of rules as
they were induced need not be kept.

Note that the way how our algorithm is presented, together with its extension proposed in 1), corresponds
to the unordered mode.

Note also that the unordered mode is generally faced by solving a collision consisting in that more
rules (of different classes) are satisfied when classifying an unseen object. None of the above algorithms
including the theoretical one solves the above collision in a proper way. Theoretical and practical hints for
solving the above problem are discussed in [12], [13], [15].

3) To prevent the explosion of computation time and memory, the exhaustive construction of all SEL
sets in all sweeps is replaced by the star methodology both in the AQ family [8], [10] and CN2 family.
It assumes to keep only a finite number of the most promising complexes in the star set instead of all in
each sweep and to derive the next SEL set only from them.

The above approach requires to have an evaluation function for complexes which may be entropy
function, Laplace estimate, m-probability function, relative frequency, and others.

4) The specialization process (the do - while loop) in the theoretical algorithm generates all complexes
in an exhaustive fashion and accepts all consistent ones. On the other hand, the CN2 algorithm extracts
from the STAR only one complex, the best one according to the evaluation function and significance
threshold. The AQx family, particularly AQ11, firstly selects a ’seed’ among positive examples and
afterwards invokes the specialization routine in order to get consistent complexes. Thus, all complexes in
STAR cover the selected seed.

5) The CNx family is capable of handling noisy data by applying statistical techniques, analogous to
those used for tree pruning in TDIDT, in order to select the most predictive and reliable complexes. CNx
relaxes the constraint of both consistency and completeness, i.e. some training examples need not be
classified perfectly and some of them need not be covered by induced concept description at all.

6) To reflect the real-world tasks the strategies for processing unknown attribute values are to be
incorporated into these systems, too. [14] explains various such strategies in CN4.

References

(1] Boswell, R.: Manual for CN2 Version 4.1. Techn.Rep. TI/P2154/RAB/4/1.3, The Turing Institute,
1990




[2]
(3]

(4]
(5]

(6]

(7]
(8]
9
(10]

(11]
(12]

(13]
(14]

[15]

Clark, P.: Functional specification of CN and AQ. Techn.Rep. TI/P2154 /PC/4/1.2, The Turing
Institute, 1989

Clark, P. and Boswell, R.: Rule Induction with CN2: Some Recent Improvements. In: EWSL’91,
151-163, Porto, 1991

Clark, P. and Niblett, T.: The CN2 Induction Algorithm. Machine Learning, 3, 261-183, 1989
Kotkov4, S. and Bruha, I.: CN4: An Extension of CN2 Covering Algorithm. Techn. Rep. 549, ICS
ASCR, Praha, 1993

Kotkov4, S. and Bruha, 1.: A Support for Decision-Making in Medicine by Covering Learning
Algorithm CN4. In: ECML-93, Workshop Real-World Applications of Machine Leaming, 1-10,
Vienna, 1993

Michalski, R.S.: On the Quasi-minimal Solution of the General Covering Problem. In: Proc. 5th
International Symposium on Information Processing, Vol. 13, 125-127, Bled, 1969

Michalski, R.S.: Pattern Recognition as Rule-Guided Inductive Inference. IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. PAMI-2, No.4, 1980

Michalski, R.S.: Theory and Methodology of Machine Learning. In: Machine Leaming - An
Artificial Intelligence Approach, Palo Alto, Tioga, 1983

Reinke, R.E. and Michalski, R.S.: Incremental Learning of Concept Description: A Method and
Experimental Results. In: Machine Intelligence 11, Oxford, 1989

Quinlan, J.R.: Induction of Decision Trees. Machine Leamning 1, 8§1-106, 1986

Bruha, 1. and Kotkovd, S.: Quality of Decision Rules: Empirical and Statistical Approaches.
Informatica, 17, 233-243, 1993

Bruha, I.: Combining Rule Qualities in a Covering Learning Algorithm. In. ECML-94, Workshop
Machine Leamning and Statistics, 1994

Bruha, 1., Kotkovd, S., and Franek, F.: Unknown Attribute Value Processing in Covering Learning
Algorithm CN4. Submitted to: IEEE Trans. Pattern Analysis and Machine Intelligence, 1993
Kononenko, I.: Combining decisions of multiple rules. In: B. du Boulay and V. Sgurev (eds.):
Artificial Intelligence V: Methodology, Systems, Applications. Elsevier Science Publ., 1992




Logical Foundations of Machine Learning

Petr Jirkt! and Ivan Bruha?

1 Faculty of Informatics and Statistics,
Prague University of Economics
Czech Republic
E-mail: jirku@use.cz
? McMaster University, Hamilton, Ontario,
Canada
E-mail: bruha@mcmaster.ca

Abstract

In this paper we present fundamental con-
cepts of machine learning from examples
treated in a uniform way from a logical point
of view. We show how a choice of language
(knowledge representation tool) and an un-
derlying logic influence our understanding of
learning. A comparison with reasoning pro-
cess, especially with non-monotonic reason-
ing, is also discussed.

1 Introduction

We deal with a formal definition of learning
on abstract sets of formulas. Our goal in this
paper is to treat learning from the abstract
logical view—point. We will point out com-
mon properties of various concepts of learn-
ing which are widely studied in artificial intel-
ligence but which still have no generally ac-
cepted definitions.

In this paper we understand learning as a pro-
cess of improving knowledge on the base of
examples of a learned concept. We suppose
that we have a background knowledge B and
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at least one set of examples F.! The goal
is to enrich the background knowledge B by
constructing a set of formulas H such that
each example can be (logically) derived from
the set BU H. Learning process thus can be
viewed as a black box that accepts examples
of a target concept as its input and produces
a description of the learned concept. Also,
it should be clear that there are at least two
parameters which are of great importance for
adequate understanding of the idea of learn-
ing from examples. They are

e specification of a language (a knowledge
representation tool)

e specification of the notion of derivability
(a consequence operation)

The aim of this paper is to demonstrate how
logic and knowledge representation tools can
influence learning process. We focus on learn-
ing from examples and at the beginning we
will not pose any condition on the structure
of formulas nor the structure of a language
used for representing knowledge. Most of ba-
sic definitions presented in the next section
work not only with learning from examples.

2 Basic definit ions

We start with a nonempty (usually countable,
but possibly finite) set F of well-formed for-
mulas of a given language L. Any operation

!Later we will conventionally use two sets of ex-
amples: E* of positive examples, E~ of negative
examples.




Cn:P(F)— P(F)
will be called a consequence operation on F
if it is reflexive, monotonous, and transitive.?
Any such operation can be understood as an
underlying logic.

We say that a set of formulas T' C F is a the-
ory if it is deductively closed w.r.t. the conse-
quence operation Cn, i.e. if T = Cn(T). Let
B # § be a theory which will play the role of
background knowledge. Let F be a nonempty
set of ezamples such that E = EYUE~, where
the set £~ is possibly empty. It is, of course,
reasonable to suppose that the sets of posi-

tive and negative examples are disjoint, i.e.
EtnE-=0.

This definition is natural for an ideal teacher,
but it is more realistic to suppose that large
training sets £ may involve conflict examples.
Up to now, this fact was only a little captured
in machine learning literature.3

In general, we can define learning from exzam-
ples as a task to construct a set of formulas
H C F such that

e BNH=90

e E* CCn(BUH)

e E-NCn(BUH)=0.
A set of formulas H will be called a hypothe-
sis.

Comment. This is the most general, or better
to say, the most abstract definition of learning
from examples. Its advantage is in the fact

Here the symbol P(F) is used for the power set
of F' as usual. Properties of reflexivity, monotonicity,
and transitivity can be then expressed as follows:
For every X, Y C F :

1. X C Cn(X)
2. If X CY then Cn(X) C Cn(Y)
3. Cn(Cn(X)) C Cn(X).

*For a logic which deals with conflict examples (si-
multaneously positive and negative) see e.g. [7].
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that it is fully independent on the language
used and also on the underlying logic. Thus,
e.g., the language for representing knowledge
can consist of Horn clauses, first-order for-
mulas, etc. But the important aspect of our
approach is the uniformity of knowledge rep-
resentation tools, i.e. the language is sup-
posed to be the same for expressing back-
ground knowledge, hypotheses as well as ex-
amples.

On the other hand, too great generality of
this concept of learning allows trivial solu-
tions such as H = E+. In order to avoid
such solutions we will formulate later several
additional conditions. For example, we will
search only for hypotheses which are repre-
sented by sets of formulas that are maximal
(most general in some sense) but relevant to
the concept learned. For defining these no-
tions precisely, we have to enrich the structure
of the language used for knowledge represen-
tation because these things heavily depend on
the expressive power (combinatorial complex-
ity) of the language used and, in the case of
first-order languages, also on the number of
predicates. We discuss these requirements in
more details in the next chapter. At this mo-
ment we can only say that the space of hy-
potheses can be naturally ordered by the set
inclusion. The more formulas a hypothesis
includes, the more specific it is. The reader
can imagine all formulas in a hypothesis H
to be connected via logical conjuction and
then instead of speaking about the set inclu-
sion to speak about subformulas (or about the
length of formulas). But this structure of lan-
guage is not enough, so we also suppose that
there is a partial ordering < on the set F of
all well-formed formulas describing their rela-
tions w.r.t. generality. We say that a formula
1 is a generalization of o if p < 1.4

*For example a universal formula f(X) is more
general than a ground formula f(a). Another source
for generalization is partial order on extensions of
predicates (attributes) as e.g. tringle < polygon <
planimetric formation. Here, two attributes are ored-




2.1 Fundamental properties of the
abstract notion of learning

Several properties of abstract learning proce-
dure have been studied e. g. by Muggleton in
[13]. In this paragraph we recapitulate them
in a slightly modified but general form for ab-
stract sets of formulas and we present addi-
tional list of fundamental properties which are
still language independent.

First of all, it is reasonable to suppose that
the property of nontriviality, which states
that E* N B = §, holds.® This condition
states that no positive example can be log-
ically derived from the background knowl-
edge. Note, since the background knowl-
edge B is a theory, the property of notriv-
iality can be equivalently written as E* N
Cn(B) = 0. If E- # 0, then the condition
which states that negative examples must not
be in contradiction with background knowl-
edge can be expressed in general as follows:
Cn(E-UB)#£F.
So, we will call it the consistency property.®

Again, it is clear that consistency property
is relative to a given consequence operation
which specifies a “theorem prover”. More-
over, the consistency condition can be ex-
pressed even for languages without negation.

We say that a hypothesis H covers a set of
formulas G if G C Cn(BU H).

Using this terminology, we can say that learn-
ing from ezamples (w.r.t. B) is a task to find
a hypothesis H which covers all positive ex-
amples and does not cover any negative ex-
ample. A hypothesis H which covers all pos-
itive examples is often called complete; if it
does not cover any negative example, then it
is called consistent (w.r.t. E). A complete

ered according to their domains of possible values.
5This condition is often called necessity or prior
necessity condition. See e.g. [13].
®In [13] this condition is called strong or posterior
consistency condition.
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consistent hypothesis will be called admissi-
ble (wr.t. E).” It is not difficult to show
that there are learning tasks which cannot be
solved by an admissible hypothesis.

The following lemma claims that if we enlarge

the number of examples in such a way that

positive examples are logical consequences of
a hypothesis H and negative examples can-
not be logically derived from B U H, then,
the new examples need not be taken into ac-
count since they do not contribute any sub-
stantial information. Lemma. For all addmis-
sible hypotheses the compositionality princi-
ple holds®, i. e. let H be an addmissible
hypothesis for E and the set E; be a set of
additional examples such that E; U E # 0.
Then, in the case that E; C Cn(H) and
ET NnCn(BUH) = 0, the hypothesis H is
also addmissible for £ U F,. It follows im-
mediately from the fact that Cn(BU H) =
Cn(Cn(B)U Cn(H)).

The family # of all admissible hypotheses for
F is a subset of P(F), ie. H € P(P(F))
such that each hypothesis H € H covers all
positive and excludes all negative examples
from E. If we look at the family # as to be
a state space, then hypotheses correspond to
states and (inductive) inference rules corre-
spond to operations.® However, in practical
applications, even if complete consistent so-
lution exists, it is often difficult to find an ap-
propriate hypothesis H. Then it is necessary
to investigate some approximations. This is
typical for empirical methods of learning. We
discuss approximation approach in the next
paragraph.

We call a hypothesis H; more specific than
H, (w.r.t. E)if the set of positive examples
covered by H, is a subset of positive examples
covered by H,. Analogously we can define the

relation “.. more general than ...”.

"In [11] it is called discriminant.
8Ct. [5].
®In [19] this space is called version space.




Learning then can be defined as a search for
the most specific hypothesis H such that for
all £ € H a formula ¢ is a generalisation of
some example ¢ € Et, ie. ¢ < £. However,
the question can be posed whether or not the
most specific hypothesis exists. It will, of
course, depend on the expressive power of the
language used.

2.2 Approximate to

learning

approach

Till now, we did not introduce explicitely
the notion of the teacher whose role is cru-
cial in learning by examples. We assume
that a teacher formulates a learning task and
presents examples to the learner. However,
the learner cannot know the teacher’s knowl-
edge completely. The learner searches for
the best hypothesis on the base of usually
small set of examples and the teacher provides
tests that demonstrate how good or bad the
learned hypothesis is. Sometimes, the teacher
gives his examples to the learner step by step,
then we speak about sequentialor incremental
learning.

The fact that there is a teacher who gives
examples to the learner can be formally ex-
pressed as a distinguished knowledge K C
F (an ideal hypothesis) which is known
only to the teacher. The teacher then can
check whether or not learner’s hypothesis
fits with K. We can conclude this sec-
tion with saying that learning by examples
can be formally characterized as a mapping
L:P(F)x P(F)— P(P(F))
such that for every B C F and for every
E C F it constructs a family of hypotheses
‘H satisfying a quality criterion as defined ear-
lier represents a searching procedure working
in the space of hypotheses. We call such map-
ping a knowledge constructor®

In the context of concept learning it would be
more natural to call it concept constructor.
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3 Knowledge representation
tools

In this section we present languages (knowl-
edge representation tools) most frequently
used in the area of learning from examples.
The list is not, of course, exhaustive. We start
with the most simplest (but most frequently
studied) language, i. e. attribute—value pairs
and decision trees and then we proceed rep-
resentation tolls with more expressive power
and consequently with greater combinatorial
complexity of formulas.

3.1 Traditional tools

In general we distinguish two major kinds of
description languages for “traditional” learn-
ing systems: attribute description and struc-
tural (relational) description.

e Attribute description

An attribute description language for repre-
senting examples consists of attributes, their
domains, and a symbol, say ?, for unknown
value (equivalent to a variable). An exam-
ple is represented by so—called attribute list,
which is a list (an ordered set) of attribute-
value pairs.

Each attribute has its domain of possible val-
ues. Depending on the organization of the
attribute’s domain, three basic types of at-
tributes are distinguished: nominal, linear,
and structured. This categorization depends,
of course, on the task to be learned. The value
domain of a nominal attribute consists of in-
dependent symbols, i.e., no structure is as-
sumed in its domain. The value set of a linear
attribute is an ordered set, usually a numer-
ical one. The value domain of a structured
attribute has a tree-oriented graph structure,
called a hierarchical tree.




Unfortunately, the attribute approach is not a
“tidy” description language since it does not
provide the uniform representation for exam-
ples and hypotheses. Most machine learning
systems utilizing the attribute approach rep-
resent a hypothesis by a decision tree. This
tree is a simple recursive structure with these
characteristics: (i) each leaf of the tree is as-
sociated with a class, and (ii) each node corre-
sponds to an attribute and its branches corre-
spond to a set of mutually exclusive possible
values of this attribute.

The family TDIDT are the most famous and
widely used machine learning algorithms that
exploit the attribute approach. They con-
struct a decision tree in a recursive way from
its root to its leaves, partitioning the origi-
nal training set to smaller and smaller sub-
sets (so—called top-down divide-and-conquer
strategy). If all examples of a current subset
belong to a single class, then a leaf is con-
structed and labelled by this class. Other-
wise, a most informative attribute is selected
and the current set of examples is divided into
the subsets so that examples in a subset ex-
hibit the same value of the selected attribute.

o Structural (relational) description

Structural descriptions portray examples in
terms of their components, their relations,
and their attribute values. Among them,
a hierarchical decomposition of an example
till their elementary (indivisible) components
is usually exhibited, too. A structural de-
scription language description consists of re-
lational and attribute functors, components,
and attribute values. A selector (more or less
equivalent to an atomic formula) is either a re-
lational selector (a relational functor followed
by components that expresses a relationship
between these components, or a truthvalue
statement) or an attribute selector (an at-
tribute functor with/without its argument-
component, followed by an attribute value).
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In majority machine learning empirical appli-
cations, a conjunction of selectors (more or
less equivalent to a semantic net) is called a
complex [11]. The advantage of the struc-
tural approach consists in that both exam-
ples and elements (formulas) of hypotheses
can be repre sented by complexes of selec-
tors (as defined above). A hypothesis is thus
characterized by a disjunction of complexes.
The reason a concept hypothesis is generally
represented by a disjunction of complexes fol-
lows from the usual way of complexes’ con-
struction: a learning algorithm infers consis-
tent complexes that need not be complete.
Therefore, a set of consistent complexes has
to be generally inferred so that their disjunc-
tion covers all positive examples.

The AQ family of machine learning algo-
rithms massively exploits this structural de-
scription, namely a modification of the first—
order logic, called Annotation Predicate Cal-
culus, was developed. In their environment,
a complex involved in a concept description
(hypothesis) is identical to that for examples
with two extensions:

1. The right-hand size of any attribute se-
lector can comprise an internal disjunction of
its values or an interval of its values. To sum
up, an attribute selector has a form A = R,
where A is an attribute functor, R is either a
value, or an internal disjunction, or an inter-
val. For the sake of simplicity we can think
of the selectors with the operators <, >, <, >
as if they were defined in terms of an interval
where one interval’s boundary would be the
maximum (minimum) value of the attribute’s
domain.

2. A complex may also comprise negations of
selectors, both attribute and relational ones.

Besides the AQx family there exist other al-
gorithms that exploit the idea of complexes.
Among them, the family of CNx algorithms
seems to be the most famous and widely
applied. All these machine learning algo-




rithms utilize the covering paradigm. Its idea
matches the philosophy of representation of
hypotheses as sets of formulas (disjunction of
complexes). A covering algorithm tries to in-
duce a complex that covers as much as possi-
ble positive examples and is also significant
and predictive (from a certain viewpoint).
Unless all positive examples are covered, the
covering algorithm tries to cover the remain-
ing examples in the same way, thus inducing
a disjunction of complexes.

The partial order > above formulas in both
approaches considers a formula with a vari-
able as the most general one. As for at-
tributes (attributes selectors), there are ad-
ditional steps for generalization, depending
on the type of attribute. A generalization of
a nominal attribute-value pair is represented
by an unknown value for the attribute. A
generalization of a linear attribute—value pair
is an interval of attribute’s values, and fur-
ther generalization is again characterized by
an unknown value. As we mentioned ear-
lier, an attribute-value pair of a structured
attribute may be generalized by replacing its
value (e.g., triangle) by a more general value
in the hierarchical tree (e.g., polygon).

Since production rules are widely-used and
well-understood vehicles for representing
knowledge (especially in expert systems), it
is advisable to convert the above representa-
tions of hypotheses to a set of such rules. A
disjunction of complexes can be easily trans-
formed to decision rules by forming an in-
dividual rule for each complex of the origi-
nal concept description thanks to the equiv-
alence between complexes and conditions of
the rules. A decision tree can be also eas-
ily transformed to a set of decision rules by
describing each path through the tree from
its root to each leaf by a conjunction of at-
tribute selectors; this conjunction forms the
condition of the rule and the class associated
with the leaf symbolizes the right-hand side
of the decision rule.

ii-6

3.2 Inductive logic programming
tools

Logic programms are very suitable for being
understood as a representation language for
machine learning. Especially Horn clauses are
the best investigated knowledge representa-
tion tool in the area of logic programming [9],
[13]. At present, the most machine learning
systems are implemented via logic programs.
But it also well knowln that there are strong
limitations of Horn clauses formalism when
we are thinking about negation (in Horn logic
negation is implemented only as failure).

o Disjunctive logic programs

Recently, very important generalizations of
Horn logic have been studied [12]. It concerns
mainly disjunctive logic programs that allows
disjunctions of atoms (and/or even negative
atoms) in the heads of clauses. However, in
trhe contrast to the Horn logic there can be
different semantics for such theories according
to different rules for interpretation of nega-
tion. In fact, it is necessary to distinguish
negation-by-default from logical negation.

In this context several generalizations of
closed world assumptions were studied [12].

3.3 Other tools

Approaches based on non—classical logics.
Allmost all approaches in which uncertainties
are used to express a weight of membership in
a class can be mentioned here. There is a lot
of papers taking this topic. Let us mention
at least the work of Dubois, Lang and Prade
[4]. They shoved that possibilistic approach
to logic programs with uncertainties is com-
patible with Robinson resolution principle.

We start with two mappings: Nec: F —<
0,1 > and Pos : F —< 0,1 > such that




Pos(L) =0 and Nec(T)= 1 where L is log-
ically false formula (empty clause) and T is
logically true formula.

For each two formulas ¢, ¥ the following equa-
tions holds

Pos(p V 1) = maz(Pos(p), Pos(v)).
Nec(p) =1 — Pos(—yp).

Observations:

Pos(pA—p) =10

Pos(pV —p)=1

maz(Pos(varphi), Pos(—~p)) = 1
min(Nec(p), Nec(—p)) = 0

Nec(p A ) = min(Nec(p), Nec(y)))
If Nec(p) > 0, then Nec(—¢p)) =0

It means that two opposite formulas cannot
be understood as being simultaneously true.
When ¢ is a true formula, then Nec(p) = 1,
or equivalently, Pos(¢) = 1. However, the
only knowledge of Pos(¢) = 1 is not satisfac-
tory condition for ¢ to be true.

Let us introduce the following two inference
rules

Modus ponens

Nec(p=1)=ua
Nec(p) =b

a > Nec(®) > min(a, b)
Modus tollens

Nec(p=>)=a
Nec(—yp)=1b

a > Nec(—9) > min(a,b)

These rules are correct with respect to uncer-
tainties understood as measures of necessity.

Resolution principle (the simplest form):

VY
P VX

YV x
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and its generalization for formulas with un-
certainties:

Nec(pV)=a
Nec(—pVx)=b

Nec(v V x) = min(a, b)

(For @ = b = 1 it corresponds to the classi-
cal two~valued resolution rule.) Thus, we can
conclude that any function N : F —< 0,1 >
satisfying the following three conditions

o N(L)=0,

e N(T)=1,

o N(pA %) = min(N(g), N($))
is compatible with both the resolution princi-
ple generalized for uncertainties and the refu-

tation method for deriving formulas. Exam-
ples of N are:

1. Lukasiewicz logic with connectives
AV, =,0,8. For N(p) =a, N(¢p) =b:
N(-~p)—1-a

N(pA ) = min(a,)

N(pV §) = mas(a,)
N(p=¢)=min(l,1 —a+b)
N(p©O9) = maz(0,a+b—1)
N(e @) = min(1l,a+b)

Derivation rule is

N(p)=a,N(e=14)=b

N(¢) =maz(0,a+b-1)

2. B. L. Richards’s fuzzy Prolog with connec-
tions =, A, V, Ap, Vy

N(pA, ¥)=axb
N(pVpo¥)=a+b—axb

Another interesting example of using non-
classical logic is the system KEX (Knowledge
Explorer) [2] and the method of combination
data analysis [1] where many—-values connec-
tives of Lukasiewicz logic are used. That logic




is interesting because it is the only logically
complete many- valued logic.

4 Reasoning

Rule-based reasoning is a very important
tools even in the context of learning. Till now,
we involved only such consequence operations
which are classical in the strict logical sense.
However, logical deduction is too strong with
respect of learning, especially the property of
monotonicity of logical deduction is not real-
istic since in learning systems inductive infer-
ence rules are mostly used to construct new
items of knowledge. Thus we will pay more
attention to other reasoning systems which
are mention in literature as non-monotonic
systems or non—monotonic logics. But first, in
the next paragraph, we recapitulate the most
general and the most important properties of
classical deductive systems.

4.1 Logical inference

As we mentioned in Section 2, any de-
duction (consequence operation) is reflexive,
monotonous, and transitive operation on the
power set of well-formed formulas. Such rela-
tion between formulas was the central topic of
formal logical studies in this century. In the
most general form the studies of logical con-
sequence operations started by Alfred Tarski
and continued till now. See e.g. [8].

One of the important properties of logical
consequnce is its compactness in the follow-
ing sense:

For all X C F the following condition holds
Cn(X) = Uy,cx Cn(Yi),

where Y; are all finite subsets of X. It is

easy to check, that if Cn is a compact conse-

quence operation, then it is also monotonic.

Thus, the four conditions, which such opera-

tions should have, are not independent. We
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will use this fact in the next paragraph when
we introduce operations which are not mono-
tonic. Since compactness means that proofs
are finite sequences of formulas, the mono-
tonicity combined with compactness in this
strong sense is redundant.!!

A typical deductive consequence operation is
syntactically determined by an initial set of
formulas (often called azioms) and a finite set
of inference rules. The Cn(X)is then defined
as the smallest superset of X that includes
axioms and is closed to all inference rules.!?

Given such a consequence operation, we can
call a set X deductively closed if Cn(X) = X.
A set X is called consistent (w.r.t. Cn)if
Cn(X) # F. Maximal deductively closed
dets of formulas are complete. It can be shown
that the notions of consequence operation, de-
ductively closed, and complete sets of formu-
las are mutually definable. See e.g. [8].

Many people believe that logical inferences
are necessary to any rational reconstruction of
knowledge. However, in artificial intelligence
(especially in machine learning) we often need
to make inferences which are not strictly de-
ductive, i.e. the operation assigning to each
set of formulas their consequences cannot be
monotonous. It is typical e.g. in the case of
commonsense reasoning which is important in
learning process. The reason is that a new
item of knowledge can invalidate chungs of
information accepted earlier.

" This is true, but the redundancy disappear by
weakening the definition of compactness; this can be
done simply by substituting an equation symbol by a
subset symbol.

21t is a matter of excercise to check that not only
syntactic definition of logical consequence operation
fits the three properties of Cn, i. e. reflexivity, nono-
tonicity, and transitivity. The reader can check that
if we define an operation on semantic models as usu-
ally (i.e. aformula ¢ € Cn(X) iff every model of X is
also a model of ¢), we obtain a consequence operation
again.




4.2 Non-monotonic inference

There are various ways how to define a partic-
ular non-monotonic consequence operation.
(In order to distinguish it from monotonic
one, we will call it inference operation Inf).
Such inference operation can be e.g. defined
via an monotonic logical consequence oper-
ation Cn strengthened by a set of assump-
tions assigned to every set of formulas, i.e.
Inf(X)=Cn(X U Ass(X)).
Another possibility is to embed the whole log-
ical structure into a large language. Inference
operations then can be defined on that ex-
tended language [17]. However, in the case
when we assign to each set of formulas some
explicit assumptions the following situations
should be distinguished:

e When the assignement is a constant func-
tion, i.e. for every X Ass(X) = X, we
do not obtain anything new sinc8e for
any consequence operation Cn a map-
ping f(X) = Cn(XUX,) is again mono-
tonic and so, a logical consequence oper-
ation.

When the assignement Ass is monotonic,
the resulting inference operation is again
monotonic (and transitive). So, we ob-
tain a little stronger logical deduction
system.

It has been stated in [6] that an inference
operation satisfying reflexivity!®, cumulative
transitivity and cumulative monotony*4is the
weakest reasonable (rational) non-monotonic
sytem. However the term weakest is not sup-
ported by any rigorous ordering. We can de-
fine a meaningfull ordering on a class of log-
ical consequence operations, but in the case

13Reflexivity means that for every X:
Inf(X)).

" Cumulative transitivity means that X cCYCcC
Inf(X) implies Inf(Y) C Inf(X) while cumula-
tive monotony means X C Y C Inf(X) implies
Inf(X) C Inf(Y).

(X <
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of of non—-monotonic inference operations the
situation is not so simple since the large set
of formulas is not necessarily associated with
a larger set of inferences. The future investi-
gations should have this orientation.

4.3 Learning and reasoning — two
sides of the same coin

(From our discussion about learning and rea-
soning can be seen that learning and reason-
ing can be understood as two aspects of the
same thing. As it follows from Section 2,
learning can be characterized as a following
task

e Given a bacground knowledge B and
(some) examples E, find a hypothesis H
such that E* C Cn(BU H).

On the other hand, as it follows from Section
4, reasoning can be characterized as a follow-
ing task

o Given a background knowledge B and a
hypothesis (defaults) H, find a mazimal
(or all mazimal) consistent set C C F of
possibly defeasible conclusions, i.e. C C
Cn(BUH).

In a learning task a knowledge (B, E) is given
(undoubted, not— questioned, fixed) and a hy-
pothesis is searched which explains our fixed
knowledge in some well defined sense. Since
the search is usually guided by rules which are
often not truth preserving but rather falsity
preserving we have to be prepared to modify
our hypothesis in the case of a new fixed item
of knowledge comes.




5 Conclusions and further re-
search

We presented a uniform approach to both ma-
chine learning and reasoning processes. Fur-
ther research should concern greater expres-
sive power of representation language$ as e.g.
second—order languages, and learning from in-
complete examples together with reasoning
from incomplete knowledge.

References

[1] Ivének, J. — Stejskal, B.: Automatic acquisi-
tion of knowledge base from data without ex-
pert: ESOD (Expert System from Observational
Data). In: Proc. COMPSTAT’88. Physica—
Verlag, Heidelberg, 1988, 175-180.

[2] Berka, P.. KEX (Knowledge Explorer). SOF-
SEM’93, 1993.

[3] Bruha, I.: Machine Learning: Empirical Meth-
ods. Seminar SOFSEM °91, 7- -51.

[4] Dubois, D. - Lang, J. - Prade, H.: Theo-
rem Proving under Uncertainty — A Possibil-
ity Theory-Based Approach. IJCAI ’87, Milano,
Ttaly, 984 986.

[5

—

Flach, P. A.: Towards a logical theory of in-
ductive learning. Proceedings of the conferrence
Inductive Logic Programming, Porto, 1991.

[6] Gabbay, D.: Theoretical foundations for non—
monotonic reasoning in expert systems. Re-
search Report 84/11, Dept. of Computing, Im-
perial College, London 1985.

[7) Gomolinska, A.: On Logic of Acceptance and
Rejection. In Proc. Non-Classical Logics in
Computer Science, 1993.

[8] Jirkd, P.: Consequence and inference oper-
ations. LiTH-IDA-R- 90-23 Research Report,
Dept. Comp. Inf. Sci., Linkoping University,
1990.

[9] Lavrag, N. - Dzeroski, S.: Inductive logic Pro-
gramming. Techniques and applkications. Ellis
Horwood 1994.

[10] Lloyd, J. W.: Foundations of Logic Program-

ming. Springer-Verlag, Berlin — Heidelberg —
New York — Tokyo, 1985.

ii -10

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

Michalski, R. S. — Carbonell, J. G. - Mitchell, T.
M.: Machine Learning. An Artificial Intelligence
Approach. Tioga Publ. Comp., Palo Alto, 1983.

Minker, J. - Ruiz, C.: On Extended Disjunctive
Logic Programs. In Komorowski, J. - Ra$, Z.
W. (eds.): Methodologies for Intelligent Systems.
7th Int. Symposium ISMIS’93, Springer—Verlag,
1993, 1-19.

Muggleton, S.: Inductive Logic Programming:

derivations, successes and shortcommings. In:
Machine Learning: EMCL-93. LNAI 667,
Springer—Verlag 1993, 21-37.

Nilsson, N. J.: Principles of Artificial Intelli-
gence. Tioga Publ. Comp., 1980.

Quinlan, R.: Learning logical definitions from
relations. Machine Learning, (5) 1990, 239-266.

de Raedt, L.: Interactive concept-learning. PhD
thesis, Dept. of Computer Science, Katholic Uni-
versity, Leuven, 1991, 213 p.

Reiter, R.: A logic for default reasoning. Artifi-
cial Intelligence (13) 1980, 81-132. Languages,

Shwaytser, H.: A Necessity Condition for Learn-
ing from Positive Examples. Machine Learning
(5) 1990, 101-113.

Thayse, A. (ed.): From Natural Language Pro-
cessing to Logic for Expert Systems (A Logic
Based Approach to Artificial Intelligence). John
Wiley & Sons, Chichester - New York — Bris-
bane — Toronto — Singapore, 1991.




Density Plots Of Hidden Value Unit Activations

Reveal Interpretable Bands And Microbands
Michael R.W. Dawson, Istvan S.N. Berkeley, David A. Medler & Don P. Schopflocher

Biological Computation Project
Uinversity of Alberta

Parallel distributed processing (PDP) models
have been developed for a diverse range of phenom-
ena, as a survey of almost any journal related to cog-
nitive science will show. As a result, it has been sug-
gested that connectionism represents a potential
paradigm shift for the computational study of intelli-
gence (e.g., Schneider, 1987). Unfortunately, there is
growing concern that possible PDP contributions to
cognitive science will be severely limited by the fact
that trained networks are extremely difficult to inter-
pret (e.g., Dawson & Shamanski, 1994; Dawson,
Shamanski & Medler, 1993; McCloskey, 1991;
Robinson, 1992). This paper addresses this issue by
describing some surprising behaviour of hidden units
in a new connectionist architecture. This behaviour
markedly facilitates our ability to interpret the struc-
ture of PDP networks.

The Value Unit Architecture

Recently, a variant of Rumelhart, Hinton
and Williams’ (1986) generalized delta rule was de-
veloped to train value unit networks, which represent
an extension of the generic PDP architecture (Daw-
son & Schopflocher, 1992). Value units are charac-
terized by a nonmonotonic activation function (a par-
ticular form of the Gaussian), rather than a sigmoid
activation function (like the logistic) that character-
izes generic processing units (which we call integra-
tion devices). As a result, a value unit will only gen-
erate strong activations to a relatively narrow range
of net inputs (see also Ballard, 1986). This function
carves what Hartman and Keeler (1989) call a Gaus-
sian-shaped "hyperbar” through a pattern space, and
as a result can also be differentiated from radial basis
function networks (e.g., Moody & Darken, 1989)
whose units carve Gaussian-shaped "hypercones"
through pattern spaces, and whose units use a dis-
tance measure for net input instead of the more typi-
cal dot product (for a detailed distinction between
value unit and RBF networks see Dawson &
Schopflocher, 1992, pp. 27-30).

Value unit networks have been shown to
have a number of advantages over more traditional
multilayer perceptrons including faster learning of
linearly nonseparable classes, better generalization,
and better ability to be "scaled up" from toy problems
(e.g., Dawson & Schopflocher, 1992; Dawson,

This research was supported by NSERC Research Grant 2038 and
NSERC Equipment Grant 138704, both awarded to MRWD.
Many thanks to Bill Bechtel for providing us with his training set.
Address correspondence to mike@psych.ualberta.ca, or Dr.
Michael R.W. Dawson, Biological Computation Project, Depart-
ment of Psychology, University of Alberta, Edmonton, Alberta,
Canada T6G 2E9. Phone: (403)-492-5175. Fax: (403)-492-1768.
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Schopflocher, Kidd & Shamanski, 1992; Dawson,
Shamanski & Medler, 1993; Medler & Dawson,
1994; Shamanski, Dawson & Berkeley, 1994). In the
next section, we describe a newly discovered charac-
teristic of value units that indicates that value unit
networks may also be very straightforward to inter-

Figure 1.
The activation function of a value unit carves a
Gaussian-contoured hyperbar through
a pattern space. In this example, the pattern
space is two-dimensional

pret.
Characterizing Hidden Units With Density Plots

Consider using a relatively large number of
patterns to train a PDP network. After training, one
could present each pattern to the network, and record
the activity that each pattern produced in each hidden
unit. Then one could use this information to create a
Jjittered density plot for each hidden unit. In such a
plot, the horizontal position of each plotted point rep-
resents the activation produced by one of the training
patterns, and a random vertical jittering is introduced
to prevent points from overlapping (Chambers,
Cleveland, Kleiner & Tukey, 1983, pp. 19-21). The
purpose of the density plot is to provide some indica-
tion of the distribution of activities in the unit pro-
duced by the training set.

As described in detail below, we have re-
cently observed that the density plots for hidden val-
ue units have a number of properties that allow the
internal structure of a value unit network to be inter-
preted. First, while density plots of value unit activa-
tions typically reveal distinct bands, it is frequently
the case that more than two bands are evident. Sec-
ond, each of these bands appears to support a coher-
ent interpretation: each pattern that falls into a band is
characterized by a specific feature or set of features.
Third, on closer examination many of the bands in
the density plots reveal a hierarchical structure of mi-
crobands that can also be interpreted.




Problem Type Example of Valid Problem| Descriptive Notation
For Example

Modus Ponens (MP) If Athen B SI(VI): "A"

A S1(V2): "B"

_ Connective: "IF... THEN"

Therefore B S2: "A"

C: "B

Modus Tollens (MT) If AthenC S1(V1): "A"

Not C S1(V2): "C"

Therefore not A

Connective: "IF,. THEN"
S2: "C"; negated

C: "A"; negated
Alternative Syllogism (AS) DorA S1(VI): "D"
Type I Not D S1(V2): "A"
Connective: "OR"
Therefore A S2: "D"; negated
C:"A"
Alternative Syllogism (AS) BorC S1(V1): "B"
Type II Not C S1(v2): "C"
Connective: "OR"
Therefore B S2: "C"; negated
C:"B"
Disjunctive Syllogism (DS) Not both C and D S1(V1): "C"
Type 1 C S1(V2). "D"
Connective: "NOT BOTH...AND"
Therefore not D S2."C"
C: "D"; negated
Disjunctive Syllogism (DS) Not both A and D S1(V1): "A"
Type II D S1(v2): "D"
[, Connective: "NOT BOTH...AND"
Therefore not A S2:"D"
C: "A"; negated

Table 1.

Valid examples of each of the types of logic problems used in the training set, as well as of the descriptive no-
tation that we use for the training set. When presented a problem, a network was trained to identify its type
(MP, MT, AS, or DS) and to judge whether or not the problem was valid.

To illustrate these properties we trained a
network of integration devices and a network of value
units to solve a logical inference problem originally
studied by Bechtel and Abrahamsen (1991, pp. 163-
171). The problem set consists of six different types
of arguments. The task of a trained network is, when
presented with an argument, to identify its type and to
classify it as being either valid or invalid. We elected
to study this particular problem because it is psycho-
logically relevant, it is sufficiently rich to make net-
work interpretation challenging, and it is composed
of a reasonably large number of stimulus patterns.
However, it is important to point out that the banding
that we illustrate below has also been found in value
unit networks trained on a variety of other problems.

Method
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Training Set

We trained our networks using Bechtel and
Abrahamsen’s (1991) original stimulus set, which
they kindly provided to us. Each pattern in the train-
ing set was a logical argument consisting of two sen-
tences and a conclusion. The first sentence was com-
posed of a connective and two variables; the second
sentence and the conclusion were each composed of a
single variable. Each of the four variables in an argu-
ment could be negated or not negated. The problem
set consisted of four classes of problem (modus po-
nens, modus tollens, alternative syllogism, and dis-
junctive syllogism); there were two different versions
of each AS and DS syllogism type. Table 1 illus-
trates examples of valid arguments for each problem
type, and also introduces the descriptive notation that




we adopted to aid network interpretation.

Each argument was represented as a binary
pattern of activity in a set of 14 input units using the
representational scheme adopted by Bechtel and
Abrahamsen (1991). Different examples of each ar-
gument type were constructed by selecting two
variables from a set of four (A,B,C,D) and by allow-
ing variables to be negated. For each type of argu-
ment, 48 different valid instances (the conclusion fol-
lows from the two sentences) and 48 different invalid
instances (the conclusion does not follow from the
two sentences) were used, creating a total training set
of 576 patterns.

Network Architectures

A network of integration devices and a net-
work of value units were both trained on the problem
set described above. Both types of networks used 14
input units to encode training patterns. Both net-
works also had three output units. Two of the output
units were used to represent one of four argument
types (modus ponens, modus tollens, alternative syl-
logism, disjunctive syllogism); the third was used to
indicate argument validity.

The two networks that we trained also used
different numbers of hidden units. Our integration
device network used a single layer of 15 hidden units,
in contrast to Bechtel and Abrahamsen’s (1991) orig-
inal network which used two layers of 10 hidden
units each. Our value unit network had a single layer
of 10 hidden units (in general, because of the non-
monotonic nature of the value unit’s activation func-
tion, fewer hidden units are required to solve prob-
lems than are required by the standard architecture).

Training Procedures

The network of integration devices was
trained with the generalized delta rule (Rumelhart,
Hinton & Williams, 1986), using a learning rate of
0.03 and a momentum of 0.9. The initial weights and
biases in the network were randomly set in the range
from -0.3 to 0.3. Connection weights and biases were
updated after the presentation of each pattern; order
of pattern presentation was randomized every epoch.
The network was trained until a "hit" was recorded
for every output unit for every pattern in the training
set. We operationalized a hit as being an activation
of 0.9 or greater when the desired output was 1, and
as being an activation of 0.1 or less when the desired
output was 0. The network for which we report den-
sity plots below converged in 1153 epochs.

The network of value units was trained with
the Dawson and Schopflocher (1992) extension of the
generalized delta rule, using a learning rate of 0.03
and a momentum of 0.0. Network weights and biases
(ie., the mean of the Gaussian function) were ran-
domly set in the same range as the integration device
network. However, biases were not altered during
learning. While holding biases constant tends to slow
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learning down in value unit networks, it also increas-
es the number of connection weights that fall near ze-
ro; in general, holding biases constant does not lead
to learning in generic networks (Dawson,
Schopflocher, Kidd & Shamanski, 1992). Once
again, network connections were updated after every
pattern presentation, and pattern presentation was
randomized every epoch. Using the same hit criteri-
on as was used for the integration device network,
convergence was achieved in 5793 epochs. (This
network was slower than the other because its biases
were held constant. Banding still results, and learn-
ing speed increases, if biases are modified during
learning.)

Results

After networks were trained to convergence,
the stimulus set was presented once again, and the ac-

Figure 2
A typical jittered density plot for a hidden unit in
the standard network. Note the absence of
banding.

tivity produced in each hidden unit was recorded.
This information was then used to create jittered den-
sity plots for each hidden unit.

Figure 2 illustrates a typical density plot ob-
tained for hidden units in the integration device net-
work. The most common pattern in these plots was
two dense regions of activity near activation of 0 and
1, with a even distribution of activity "smeared"
across the rest of the plot (hidden units 0, 2, 3, 4, 9,
10, and 13). The next most common pattern was a
single dense region of activity near O activation ac-
companied by a uniform smear across the rest of the
plot (hidden units 1, 5, 6, 12, and 14). The plot for
hidden unit 8 was simply a uniform smear across the
entire plot, with no evident bands. Only hidden unit
7 demonstrated any distinct banding, with narrow
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Figure 3
A typical jittered density plot for a hidden unit in
the value unit network trained on the logic
problem. Note the distinct banding. Bands were
observed in nine of the ten density plots of hidden
value unit activations.




bands at 0 and 1 activations, and a sparse, broad band
ranging from an activation of 0.2 to an activation of

Figure 3 depicts an example density plot for
hidden units of the value unit network, and stands in
sharp contrast to Figure 2 because of its banding. In-
deed, all but one of the hidden units (hidden unit 1)
produced density plots that were markedly banded.
In fact, most of the density plots for hidden value
units had three or more definite bands (hidden units
0,2,4,5,7, and 8).

Why Do Value Units Produce Bands?

Why did bands appear in the value unit net-
work, and not appear in the other network? Unlike
the standard units that employ a sigmoid-shaped acti-
vation function, value units -- because of the bell-
shape of their activation function -- will only respond
to a narrow range of net inputs. This places con-
straints on the patterns of connectivity that a value
unit network can use to solve a pattern classification
problem. As a result, value units frequently produce
balanced connection weights that fan into the same
hidden unit. When this occurs, one connection
weight will have the value x and will be balanced by
another connection weight that has the value -x.

This balancing of connection weights ap-
pears to be responsible for banding. When balancing
of weights occurs, one can activate many different
patterns of input activity that produce the same net
input, and fall into the same band of hidden unit ac-
tivity, because the balancing cancels different input
signals out. We have typically found that units that
demonstrate very nice banding are characterized by a
great deal of connection weight balancing, while
units that do not demonstrate banding do not exhibit
this balancing. This raises the important possibility
that other PDP architectures that use tuned activation
functions, such as RBF networks (e.g., Moody &
Darken, 1989), may also exhibit banding when den-
sity plots of hidden unit activities are constructed.

Identifying Definite Features

To investigate value unit banding further,
for each hidden unit we identified the members of
the training set that comprised each band in its den-
sity plot. Then, we attempted to identify common at-
tributes of patterns belonging to the same band. The-
se common attributes, which we call definite features,
were identified by computing Pearson product mo-
ment correlations among the 14 binary features for
the patterns that fell into a particular band. A definite
unary feature was defined as an input bit that had a
constant value for all patterns within the band. A
definite binary feature was defined as a perfect nega-
tive or perfect positive correlation between pairs of
binary features, the former representing the fact that
two bits were always opposite in value, the latter rep-
resenting the fact that two bits were always equal in
value. Remarkably, most of the bands in all of the
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density plots produced definite features defined using
these objective, quantitative definitions. Further-
more, because each input bit was associated with a
known interpretation, each of the bands that revealed
definite features had a very basic and elegant inter-
pretation.

For example, consider the density plot for
Hidden unit 8 in Figure 3, which is composed of
three different bands. All of the patterns that fall into
Band A in the figure (activation = 0.03) contain the
connective OR. All of the patterns that fall into Band
B (activation from 0.10 to 0.13) contain the connec-
tive IF..THEN. All of the patterns that fall into Band
C (activation from 0.80 to 0.85) contain the connec-
tive NOT BOTH...AND. In general, then, this unit is
a connective detector, and adopts three distinct levels
of activity to signal that one of three different con-
nective types has been detected. Table 2 provides the
interpretations of the bands for each of the hidden
units.

Microbanding

In addition to the density plots being orga-
nized into interpretable bands, many of the bands are
themselves organized into interpretable microbands.
In general, this organization is hierarchical. All of
the patterns that fall into a band share a global fea-
ture. Patterns that fall into a microband within a band
have this global feature, but also possess distinctive
features that are not shared by other patterns that fall
into the same band, but fall into a different mi-
croband.

For example, consider Band C of hidden
value unit 5. This band contains 96 patterns, has a
range of activity levels from 0.95 to 0.99 with a me-
dian activity level of 0.97. From Table 2, it can be
seen that all patterns that fall into this band have the
following definite features: (1) S1(V1) is the same
letter as C, but is opposite in sign to C; (2) S1(V2) is
opposite in sign to S2; and (3) the connective is not
NOT BOTH...AND. However, this band can itself be
divided into two microbands, each of which possess-
es these three features as well as additional specific
features.

The first microband of Band C is defined by
those patterns that produce activity in hidden unit 5
that ranges from 0.95 to 0.97. These patterns are all
alternative syllogisms, possessing the connective OR,
and in which S1(V1) is the same sign as the conclu-
sion. The second microband of Band C is defined by
those patterns that produce activity in hidden unit 5
that ranges from 0.98 to 0.99. These patterns are all
modus tollens problems in which the connective is
IF.. THEN and in which S1(V1) is not required to
have the same sign as C.

Using Bands To Predict Network Behaviour

The preceding analyses have shown that the




Unit Band Number of Median Interpretation of Definite
Number Label Patterns Activity Features Found In Band

B 72 0.77 S1(V1) is the same letter as S2
S1(V2) is the same letter as C
The connective is not IF.. THEN

C 48 0.99 S1(V1) is the same letter as S2
S1(V1) is opposite in sign to S2
S1(V2) is the same letter as C
S1(V2) is opposite in sign to C
The connective is IF.. THEN

B 96 0.46 S1(V1) is the same letter as S2

SI1(V1) is the same sign as S2

S1(V2) is the same letter as C

The connective is not NOT BOTH...AND

C 24 0.99 S1(V1) is the same letter as S2
S1(V1) and S2 are not negated
S1(V2) is the same letter as C

S1(V2) is opposite in sign to C

The connective is NOT BOTH...AND

B 12 0.81 S1(V1) is negated

S1(V1) is the same letter as C
S2 and C are not negated

3 S1(V2) is the same letter as S2
The connective is OR

C 86 0.99 S1(V1) is the same letter as C
S1(V2) is the same letter as S2

B 48 0.56 S1(V1) is the same letter and sign as C
S1(V2) is the same letter and sign as S2
The connective is IF...THEN

4 C 48 0.81 S1(V1) is the same letter and sign as C
S1(V2) is the same letter as S2

S1(V2) is opposite in sign to S2

The connective is NOT BOTH...AND

D 48 0.99 S1(V1) is the same letter and sign as C
S1(V2) is the same letter as S2

S1(V2) is opposite in sign to S2

The connective is OR

B 24 0.51 S1(V1) is the same letter as C

S1(V1) is opposite in sign to C
S1(V2) is the same letter as S2
S1(V2) and S2 are not negated

5 The connective is NOT BOTH...AND

C 96 0.97 S1(V1) is the same letter as C

S1(V2) is the same letter as S2

S1(V2) is opposite in sign to S2

The connective is not NOT BOTH...AND

A 384 0.00 The connective is not OR

B 192 1.00 The connective is OR

A 96 0.06 S2 is negated
The connective is NOT BOTH...AND

7 B 384 0.54 The connective is not NOT BOTH... AND

C 96 0.99 S2 is positive
The connective is NOT BOTH...AND

A 192 0.03 The connective is OR

8 B 192 0.11 The connective is IF... THEN

C 192 0.82 The connective is NOT BOTH...AND

9 B 64 0.95 No definite features

Table 2.
Interpretation of the bands identified in hidden value unit density plots. Note that
band A in units 0, 1, 2, 3, 4, 5, and 9 all had a median value of 0.00 and were not
associated with any definite features. These bands are not included in this table.
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activations of hidden value units are typically orga-
nized into discrete bands which are in turn associated
with interpretable definite features. However, an im-
portant question remains: do these bands play any
role in explaining how the network solves the prob-
lem? For example, it is possible that these bands are
merely epiphenomenal, and that in order to account
for network performance one must ignore the bands
and still rely on specific activity values produced by
patterns.

In order to address this issue, we described
the patterns presented to the network in terms of the
bands of activity that they produced for each hidden
unit, instead of describing the patterns in terms of
their input features. We found that if one only knows
the median activity of each hidden unit band that a
particular pattern belongs too, then one can still make
very accurate predictions about network outputs.

For example, when described in terms of ac-
tivity bands, every valid modus ponens problem pro-
duced a single pattern of hidden unit activity in the
network: [0-A, 1-A, 2-B, 3-A, 4-A, 5-A, 6-A, 7-B, 8-
B, 9-A ], where 0- A means "produced activity in
Band A of hidden unit 0. Using Table 2, we can re-
place each of these bands with its median level of ac-
tivity, and represent this activity pattern as the vector
[0, 0, 0.46, 0, 0, 0, 0, 0.54, 0.11, 0]. The vector of
weights from the 10 hidden units to output unit O is
[0.71, 0, -1.24, 0, -0.70, 0.72, 0.55, -0.48, -2.18, -
0.03]. The dot product of this weight vector with the
hidden unit activity vector produces a net input of -
1.0964, which in turn will produce an activity of
0.005 in output unit O because it has mu = 0.23 in its
Gaussian equation. The vector of weights from the
10 hidden units to output unit 1 is [0.62, -0.01, -1.06,
0.00, -0.86, 0.89, -0.33, 0.24, 2.32, 0.01]. The dot
product of this weight vector with the activity vector
produces a net input of -0.1028, which in turn will
produce an activity of 0.998 in output unit 1 because
it has mu =-0.13. Finally, the vector of weights from
the 10 hidden units to output unit 2 is [2.14, 4.14, -
0.89, 1.29, 1.66, -1.70, -0.40, 0.91, 0.08, 1.21]. The
dot product of this weight vector with the activity
vector produces a net input of 0.0908, which in turn
will produce an activity of 1.000 in output unit 2 be-
cause it has mu = 0.10.

To summarize this example, knowing only
the medians of the bands of activity that valid modus
ponens problems fall into, we predict that the net-
work’s response to any of these problems will be
[0.005, 0.998, 1.00]; the desired network outputs [0,
1, 1]. Similar accounts can be provided for banded
patterns of hidden unit activity provided by other val-
id problem types. In short, our knowledge of the hid-
den unit activity bands provides an excellent predic-
tor of network output for these problems, indicating
that the bands play an important role in explaining
network behaviour, and that they are not merely
epiphenomenal.

The "Rules In The Network’s Head"
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Another advantage of representing patterns
as the set of hidden unit activity bands to which they
belong is that these patterns can be viewed as a "rule”
that the network uses to make judgements about dif-
ferent types of logic problems. This is because this
pattern represents a set of features which, when com-
bined, dictate the network’s response to the pattern.
Importantly, by identifying the "logical rules” in the
"network’s head” we can raise interesting empirical
questions about how humans might learn to deal with
these logic problems.

Table 3 presents the traditional rules of in-
ference (in our notation) of all of the valid problem
types, as well as the bands of activity produced in the
network by these problems. By providing the inter-
pretation for each of these bands from Table 2, one
can construct the rules that the network uses for this
task (see Table 3). There are several important points
that arise from studying this table. First, the network
has a very small number of rules for identifying valid
problem types: it has one rule for modus ponens, one
rule for modus tollens, two rules for alternative syllo-
gisms, and three rules for disjunctive syllogisms.
Second, some of the rules in the network are equiva-
lent to the traditional rules of inference used in natu-
ral deduction systems (cf Bergmann, & Moor, & Nel-
son, 1990). The network has learned the traditional
rules of inference for modus ponens, modus tollens,
and one version of alternative syllogism. Third, the
network learned a number of rules of inference which
are significantly different from the traditional ones.
One of the rules for alternative syllogisms and one of
the rules for disjunctive syllogisms are what might be
termed "default” rules. Default rules work by identi-
fying the main connective, and require that no other
definite features are present. The other two rules for
disjunctive syllogisms are similar to the traditional
rules, but require in addition that S2 is not negated.

This last point is important for the psycho-
logical relevance of this type of model. It has long
been known that the formal rules of inference do not
always provide good accounts of how humans solve
logic problems (e.g., Johnson-Laird, 1983). Instead,
humans appear to deal with these problems by build-
ing ad hoc mental models that generally lead to cor-
rect solutions, though the models themselves have lit-
tle resemblance to logical formalisms. Some of the
rules learned by the network have this ad hoc appear-
ance. For example, one of the rules for a valid alter-
native syllogism (the default rule) can be described as
"If the connective is OR, and no other features that I
know about are present, then it must be a valid AS".
It is easy to imagine that this kind of rule might be
used by a student who is learning about this type of
problem, but is still unsure about its formal character-
ization.

In point of fact, the results in Table 3 raise
some interesting empirical questions that could be ad-
dressed by a cognitive psychologist. If human sub-
jects were to learn to solve these logical questions,




Problem Formal Definition Of Rule Hidden Unit Bands Description Of Network Rule Notes About Network Rules
Type For Valid Problem Type Produced Obtained From By Interpreting
By Problem Type Hidden Unit Bands Produced Byl
Problem Type
Valid SI(V1) =82 0-A, 1-A, 2-B, 3-A, 4-A, | S1(V1) =82 The network rule is the same as the|
Modus Ponens | S1(V2)=C 5-A,6-A,7-B, 8-B,9-A | S1(V2)=C formal rule, except that the
(MP) Sign S1(V1) = Sign S2 Sign S1(V1) = Sign S2 network does not attend to the
Sign S1(V2) =Sign C Connective: IF...THEN signs of S1(V2) and C [which is
Connective: IF... THEN unneccesary in the training set].
Valid NRHELe 0-A, 1-A, 2-A, 3-C, 4-A, | S1(V])=C The network rule is the same as the|
Modus Tollens S1(V2) =82 5-C,6-A,7-B, 8-B,9-A | S1(V2) =82 Sformal rule, except that the
(MT) Sign S1(V1) < Sign C Sign S1(V2) < Sign S2 network does not attend to the
Sign S1(V2) <> Sign S2 Connective: IF... THEN signs of SI(V1) and C [which is
Connective: IF... THEN unneccesary in the training set].
Valid S1(V1) =82 0-A, 1-A, 2-A, 3-C, 4-A, | Connective: OR This is a "default" rule. Provided
Alternative S}(VZ) =C ) 5-A, 6-B, 7-B, 8-A, 9-A that the connective is OR and no
Syllogism Sign S1(V1) <> Sign S2 other definite features are true of
(AS) Sign S1(V2) = Sign C the pattern, then the problem must

(There are two
versions of AS

Connective: OR

be avalid AS

k Ot £ SIV)=C 0-A, 1-A, 2-A, 3-A,4-D, |SI(V)=C Here the network employs exactly
in the training | 51(v2) = 52 5-C,6-B,7-B, 8-A,9-A | S1(V2) =82 the classical rule.
set) Sign S1(V1) = Sign C Sign S1(V1) = Sign C
Sign S1(V2) <> Sign S2 Sign S1(V2) <> Sign S2
Connective: OR Connective: OR
Valid S|V =C 0-A, 1-A, 2-A, 3-A, 4-A, | S2 is negated Another default rule. Provided
Disiunctive S1(V2) =82 5-A, 6-A,7-A, 8-C,9-A | Connective: NOT BOTH...AND | that S2 is negated, the connective
Sollogism | Sign S1(V2) = Sign 52 is NOT BOTH...AND, and no other
Y (Dg) Sign S1(V2) <Sign C definite features are present, then
S1(V1) and S2 are not negated the problem must be a valid DS.
(There are two Connective: NOT BOTH...AND
versions (')f _DS 0-A, 1-A, 2-A, 3-A, 4-A, [ S1(V])=C This network rule is the same as
in the training 5-B, 6-A,7-C, 8-C,9-A | S1(V2) =82 the second formal rule for DS
set) Sign S1(V2) = Sign S2 apart from the additional
S1(V1) = $2 Sign S1(V2) <>Sign C stipulation that S2 and S1(V2) are
S1(V2)=C S1(V1) and S2 are not negated not negated.
S@gn S1(V2) = Sign S2 Connective: NOT BOTH...AND
Sign S1(V2) <>Sign C 0-A, 1-A, 2-C, 3-A, 4-A, [S1(VD)=$2 This network rule is the same as
(S:I(VI) z.lnd‘ Srqzoa{.eé‘gt.l.':gﬁed 5-A,6-A,7-C,8-C,9-A |S1(V2)=C the first formal rule for DS apart
onnective: --AND Sign S1(V2) = Sign §2 from the additional stipulation that
Sign S1(V2) <>Sign C 82 and S1(V2) are not negated,

S1(V1) and S2 are not negated
Connective: NOT BOTH...AND

Table 3.

Interpretation of the rules that the value unit network has discovered for the identification of valid instances of each
problem type. Note that the network uses 7 different rules, while only 6 formally defined rules are required in
principle. Legend: S1(V1) and S1(V2) are the first and second variables in sentence 1 of the logical argument;

S2 is the variable in sentence 2; C is the variable in the conclusion; Sign refers to whether a variable is negated or not

would they tend to develop ad hoc mental models for
the AS and DS problems, but not to do so for MP and
MT? Would human subjects treat DS problems with
negated S2 differently than DS problems with non-
negated S2? Would human subjects develop a rela-
tively small number of rules, paying attention to the
same features as the model? Note that the fact that
these questions can be raised depends on two things.
The first is that unlike symbolic models of logic (e.g.,
Rips, 1983) in which the logical rules are pro-
grammed in, the connectionist network has to learn
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negated; <> indicates '"not equal".

how to solve the problems, raising the possibility that
surprising new rules will be discovered. The second

is that the discovery of these

rules in the network de-

pends upon our ability to interpret its structure.

Relation To Other Interpretive Techniques

While some researchers have questioned the
usefulness of connectionist models because they are
difficult to interpret (e.g., McCloskey, 1991; Robin-
son, 1992), this does not mean that connectionists




themselves do not attempt to analyze the internal
structure of their networks. In this section, we briefly
consider the relationship between some other meth-
ods of network interpretation and our approach to in-
terpreting hidden value unit activity bands.

Some researchers have successfully inter-
preted network structure by examining the relative
sizes of connection weights that feed into a network
(e.g., Hinton, 1986). This approach has the advan-
tage of being very simple to do, because it typically
involves depicting connection weights in some picto-
rial fashion that is easy to interpret (e.g., a Hinton di-
agram). However, this method is not without limita-
tions. For example, in order to interpret a unit’s func-
tion by looking at the connection weights that feed
into it, one must know what feature is associated with
the connection. Unfortunately, such labels might be
difficult to assign in networks with multiple layers of
hidden units. This is because one may not know with
certainty what features are encoded in the connec-
tions between adjacent layers of hidden units, for the-
se features in turn depend upon interpretations of oth-
er hidden units (see also Hanson & Burr, 1990, sec-
tion 5.7). In general, these kinds of problems will al-
ways arise when interpretations are based upon the
analysis of network structure (i.e., the "network
space") instead of the analysis of stimulus features
(i.e., the pattern space).

We believe that the interpretation of hidden
value unit activity bands has advantages over the ex-
amination of connection weights. First, it is just as
simple to accomplish, as it only requires one to graph
density plots of hidden unit activities in order to iden-
tify bands. Second, it is less subjective: once bands
are identified, definite features are discovered by
computing correlations among pattern features.
Third, the analysis of bands is always done in pattern
space, looking for features shared by patterns that
produce the same band of activity in a hidden unit.
As a result, the interpretation of bands can still be ac-
complished in networks that have more than one lay-
er of hidden units.

Other researchers have approached the prob-
lem of network interpretation by applying multivari-
ate statistics to connection weights or to hidden unit
activations (for a review see Hanson & Burr, 1990).
While these techniques are very powerful, they are
not without their drawbacks. First, they assume lin-
ear relationships among variables; in general such re-
lationships are not true of PDP networks. Second,
many of the design decisions required to, say, factor
analyze some aspect of a trained network are as com-
plex as the design decisions used to construct the
original network. In particular, when doing factor
analysis one has to decide how many factors to ex-
tract, what kinds of factors to extract, whether to ro-
tate the factor structure, and (if desired) what kind of
rotation to perform (for an introduction to such is-
sues, see Cattell, 1978). Third, because of the com-
plexity of the design decisions underlying the multi-
variate analysis, there is no guarantee that the fea-
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tures that are revealed by this analysis are actually
valid (e.g., Eysenck, 1967). Different researchers
who, for example, choose different criteria for factor
rotation, would propose completely different interpre-
tations of the same network.

In comparison, our approach to interpreting
bands of hidden value unit activations appears to
have several advantages over traditional multivariate
analytical techniques. First, the bands are determined
after hidden unit activations have been calculated,
and as a result incorporate the nonlinear transforma-
tion of the net input provided by the hidden unit.
Second, the bands that are interpreted are provided by
the network itself, and are not an artifact of additional
assumptions required by an analytic technique. In
our approach, the network itself provides a natural
clustering or factoring of the input patterns which we
then analyze.

Can Bands Be Found In Other Architectures?

The previous section suggests that the inter-
pretation of hidden unit activity bands may have cer-
tain advantages over other techniques for analysing
network structure. It is therefore important to consid-
er whether these bands might appear when examining
the activities of hidden units in other PDP architec-
tures.

While we did not find bands for hidden units
in the standard network trained on the logic problem,
this is not an in principle limitation of units that em-
ploy a sigmoid-shaped activation function. First, a
circuit in which two units with sigmoid activation
functions serve as input units to a third is logically
equivalent to a single value unit (Dawson &
Schopflocher, 1992). Thus, in a standard network in
which two layers of hidden units are used we would
not be surprised to find interpretable bands emerging
in the second layer of hidden units. Second, the
emergence of bands in our architecture appears to be
a consequence of the activation function’s tuned na-
ture, which places constraints on the patterns of con-
nectivity that solve pattern recognition problems. We
would expect that other architectures that use tuned
activation functions, such as RBF networks (e.g.,
Moody & Darken, 1989), would also reveal inter-
pretable bands of hidden unit activity.

Our current research is attempting to deter-
mine the necessary conditions for the production of
banding in value unit density plots. For example,
while we have observed these bands in networks
solving other pattern classification problems involv-
ing binary inputs (e.g., majority problems, parity
problems, other versions of the logic problem), bands
were not observed in a network that was trained to
differentiate Alzheimers patients from control subjec-
ts on the basis of single positron emission computed
tomography (SPECT) measures (Dawson et al.,
1994). However, in this case the inputs were contin-
uous. It is possible that banding of density plots may
only occur when a value unit network is trained to




discover mappings from binary inputs to binary out-
puts.

In summary, we do not believe that the val-
ue unit architecture is the only one that will produce
interpretable bands. Our hope is that researchers in-
terested in other architectures will be able to find this
kind of structure in their networks, and as a result be
able to provide detailed interpretations of how their
networks function.

Conclusion

Mozer and Smolensky (1989, p.3) have not-
ed that "one thing that connectionist networks have in
common with brains is that if you open them up and
peer inside, all you can see is a big pile of goo". In-
deed, some researchers believe that this is an in prin-
ciple limitation of PDP networks that is due to their
nonlinear activation functions and their development
of distributed representations: "We may have to ac-
cept the inexplicable nature of mature networks"
(Robinson, 1992, p. 655).

In contrast to this view, the results that were
presented above suggest that the value unit architec-
ture can produce highly interpretable structures with-
out requiring the application of multivariate statistics.
Simple density plots of hidden value unit activations
revealed distinct bands that were assigned coherent
interpretations. This indicates that the value unit ar-
chitecture may be extremely valuable to researchers
in cognitive science who are not content to view their
networks as unassailable black boxes.
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Introduction

Recently, Dawson and Schopflocher (1992)
developed a variant of Rumelhart, Hinton, and
Williams’ (1986) generalized delta rule to train value
unit networks, which represent an extension of what
Anderson and Rosenfeld (1988) call the generic par-
allel distributed processing (PDP) architecture. Value
units are characterized by a nonmonotonic activation
function (a particular form of the Gaussian), rather
than a sigmoid activation function (like the logistic)
that characterizes generic processing units (see Figure
1). As aresult, a value unit will only generate strong
activations to a relatively narrow range of net inputs
(see also Ballard, 1986). The value unit architecture,
whose units carve Gaussian-shaped "hyperbars”
through pattern spaces (e.g., Hartman & Keeler,
1991), can also be differentiated from radial basis
function networks (e.g., Moody & Darken, 1989),
whose units carve Gaussian-shaped "hypercones”
through pattern spaces.

In order to test the utility of their learning
rule for value units, Dawson and Schopflocher (1992)
made direct comparisons between it and the standard
version of the generalized delta rule for generic units
(which they called integration devices, using Bal-
lard’s 1986 terminology). They examined a variety of
small problems (XOR, symmetry, encoder, parity),
and found that there were definite advantages for the
value unit architecture. In general, value unit net-
works learned to solve these problems much faster,
and failed to converge significantly less frequently,
than did networks of integration devices (see also
Dawson, Schopflocher, Kidd, & Shamanski, 1992;
Dawson, Shamanski, & Medler, 1993).

Unfortunately, this comparison did not ma-
nipulate a critically important variable: problem com-
plexity, defined in terms of linear separability. Spe-
cifically, all of the problems examined by Dawson
and Schopflocher (1992) were linearly nonseparable.
As a result, their results could lead to the mistaken
conclusion that the value unit architecture is always

Figure 1.
The sigmoid-shaped activation function of an integration device (left) defines a single hyperplane that carves
a pattern space into two. The Gaussian-shaped activation function of a value unit (right) defines two parallel
hyperplanes that carve a narrow bar through the pattern space.
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better than the generic architecture, when in fact it
may only be better for linearly nonseparable prob-
lems. Furthermore, it is extremely important to in-
vestigate how linear separability affects network per-
formance if one is interested in using connectionist
models to contribute to cognitive science (cf. Dawson




& Shamanski, 1994). This is because psychological
experiments have shown that human subjects often
do not find that linearly separable concepts are more
easily learned than linearly nonseparable concepts
(e.g., Medin & Schaffer, 1978; Medin & Schwanen-
flugel, 1981). Indeed, under some conditions linearly
separable problems can actually be harder for human
subjects to learn (e.g., Wattenmaker, Dewey, Mur-
phy, & Medin, 1986). As a result, if a researcher
knew beforehand that one PDP architecture differed
from another by being very good at learning linearly
nonseparable problems, but not being as good at
learning linearly separable problems, then this infor-
mation could be crucial in choosing an appropriate
architecture for cognitive modeling.

Predicting An Interaction From Pattern Space
Partitioning

Figure 1 shows that integration devices and
value units can be differentiated from one another in
terms of the "receptive fields” that they carve in a
pattern space. In general, an integration device sepa-
rates the patterns that turn it on from those that turn it
off by positioning a single hyperplane through the
pattern space. In contrast, a value unit positions two
parallel hyperplanes through the pattern space, and
only turns on to those patterns that fall between these
two hyperplanes. Even though previous results have
shown that the value unit architecture can outper-
form the generic architecture on linearly nonsepara-
ble problems (e.g., Dawson & Schopflocher, 1992),
this difference in pattern space partitioning leads to
the prediction that the generic architecture should
outperform the value unit architecture on linearly
separable problems.

Integration

Device
4 @

Value Unit
4 @

For example, consider the linearly separable
majority problem. To solve this problem, a network
must learn to activate its output unit when more than
half of its input units have been activated. Figure 2
shows that a small (2 input unit) version of the major-
ity problem can be solved by an integration device
with no hidden units. For this problem, the activation
function of the output unit carves a single line
through the pattern space that separates the pattern
with a majority of its bits on from the other patterns.
A value unit network given this same problem would
also able to partition the pattern space correctly by
carving two lines that differentiate this one pattern
from the others (see Figure 2).

However, when the dimension of the pattern
space is increased, a difference between the two ar-
chitectures appears to emerge. As Figure 2 also
shows, a generic network with no hidden units can
still solve a larger (3 input unit) version of the major-
ity problem by carving a single plane through this
larger pattern space, because of the problem’s linear
separability. In contrast, this is not true of the value
unit network. Because the "ON" region of its recep-
tive field has limited width (see Figure 1), it is too
narrow to capture all of the "majority-on" patterns in
the larger pattern space. To compensate, another unit
(providing an adjacent "ON" region) is required to
correctly solve the problem.

EXPERIMENT I: SPEED

The argument illustrated in Figure 2 sug-
gests that linearly separable problems, particularly
those set in a high-dimensional pattern space, will be
more complicated (i.e., require more hidden units) for
a network of value units than for a network of inte-

Value Unit 1

Figure 2.

Small versions of linearly separable problems, such as 2-bit majority, can be solved by integration device and
value unit networks that do not require hidden units (left). However, as the size of the problem is increased,
additional value units will be required to solve the problem (right). This will not be true for integration de-

vice networks.
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