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ABSTRACT

The classical problem of testing whether a set of
observations comes from a population with specified distribution
function F(x) has received a fair share of attention in the
literature. As early as 1933, Kolmogorov introduced a "distribution-
free" statistic based on the empirical process e and has derived the
asymptotic distribution of this test statistic. Since then a lot of
work has been done on this subject.

However, some goodness—of-fit problems arising in practice do not
usuélly specify the parameters of F(x). Our main concern then is to
test the hypothesis that a random sample was drawn from a parametric
family of distribution functions. One way of testing this composite
hypothesis is to adapt the empirical process where the parameter 8 is
approximated in terms of the random observations. As will be shown in
Chapter II, the limiting distribution of test statistics based on the
estimated empirical process depends on the underlying distribution
function F(x).

Recent works of Burke and Gombay (1988) and Durbin (1976 ana
1961) proposed distribution—-free procedures to test this composite
hypothesis. These are the bootstrap method, half-sample and random

substitution method.
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It is the purpose of this thesis to show that the asymptotic
behaviour of the estimated empirical process based upon the above
‘procedures is the same as the asymptotic behaviour of the empirical
process under the specified case. The same is true for the
Kolmogorov—-Smirnov, Anderson—-Darling, and Cramér-von Mises type of
statistics.

Numerical results from a computer study are tabulated in
Chapter IV to examine these results and see how the results for sample

sizes of 50,\100, 150 and 200 compare with the asymptotic values.
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CHAPTER I

TESTS BASED ON THE EMPIRICAL PROCESS
WHEN PARAMETERS ARE SPECIFIED

1.1  INTRODUCTION

The problem treated in this chapter is that of testing the
hypothesis that n independent, identically distributed random
variables have a specified continuous distribution function 'F(x). In
statistical language, this goodness—of-fit problem is to test the

simple hypothesis

(1.1.1) HO: F(x) = Fo(x).

For example, the population may be specified by the hypothesis to be
normal with mean 2 and variance 4, where the corresponding cumulative

distribution function

F(x) = ._1.__

2077 4,

8

x _(y-2)?
J e © dy.

The most common method to test the validity of the null
hypothesis is the x? test which was originally proposed by Karl
Pearson in 1900. It provided one of the earliest methods of
statistical inference. By this method, the empirical histogram is

compared to the hypothetical histogram. In this thesis, we will only



consider those tests which compare the empirical distribution function
Fn(x) with the hypothetical distribution function F(x).

Let Xl’XZ"'°’Xn be a random sample from a continuous

cumulative distribution function F(x). We define the empirical
distribution function of the sample by

I(X‘j < x)

= , —0  x £ o,

(1.1.2) F (x) =

M YE-]

J=1

where I(A) denotes the indicatbr function of the event A. An

equivalent definition of Fn(x) in terms of the ordered statistics

<X

Xy =Xy = =Xy

of the random sample Xl,Xz,...,Xn is given as

JO if X(l) > x

(1.1.3)  E_(x) = kK oyr x

ln (k) < x < X(k+l)’ k=1,...,n"1

1 if X

IA

X.

Asymptotic behaviour of test statistics based on the empirical
distribution function will be our main concern. These are the famous

Kolmogorov—Smirnov (K-S) statistic

D = sup |[F_(x) - F(x)]
n —00{ x<® n 0 ’

the Cramér—-von Mises (C-vM) statistic

00

2
w2 = j [Fn(x) - Fo(x)] dF o (x),

)



and the Anderson-Darling (A-D) statistic

“ 2
e [Fn(x) - FO(X)] d Fy(x)
» P, GO (I, ()

Under the null hypothesis, these statistics are asymptotically
distribution—free. From a goodness—of—-fit point of view, this is a
very desirable property.

As will be shown‘in Section 6, the limiting distribution of the
above mentioned statistics will be based on the Brownian motion and
Brownian Bridge processes. These Gaussian processes are discussed in

the next section.

1.2 BROWﬁIAN MOTION AND OTHER GAUSSTIAN PROCESSES

The physical phenomenon of the Browniaﬁ motion was discovered by
the English botanist Brown in 1827. A mathematical description of this
process was firét derived from the laws of physics by Einstein in 1905.
Since then the subject has made consider;ble progress.

The simplest model for a one-dimensional Brownian motion or
Wiener process can be given in terms of'the random walk model. Assumé
that the particle is moving on the real line and starting from the
origin, it can only move one step to the right or to the left. Theée
steps are aséumed independent. If Xi represents the outcome of the

th

i step of the particle with possible values 1 or -1, then Xl’XZ"’°

are identically and independently distributed random variables



(i.i.d.r.v.) with P(X=1) = P(X=-1) = %ﬂ A typical realization of this
stochastic process {Xt’ t e T} would be 1, 1, -1, 1, —1, -1, 1. This

is shown in Figure 1.1 where the ordinate for t=n is the value of Xn.

-
-
-
-

~3-

(time)

Figure 1.1

A Simple Example of a Stochastic Process

After n steps, this particle will be located at Sn = Xl + X2 oot Xn.
Thus the created path Sl’ SZ"“ imitates the Brownian motion quite
well if the time unit and steps are short enough. In a more realistic

model of a Brownian motion, the particle moves in a continuous time

scale and continuous state space.

Definition 1.1

A stochastic process {W(t,w) = W(t); 0 £t £1} where w € R,

{”, A, P} 1is a probability space, is called a Brownian motion if




(1)  P(W(0) = 0) = 1,

IA

(ii) WwW(t) ~ N(O,t), 0 <t =<1,
(iii) W(tl) - W(to), W(tz) - W(tl),...,W(tn) - W(tn_l)
are independent for 0 £ tO < tl £ e £ tn <1,
(iv) the sample path function W(t,w) is continuous in t.
A direct consequence of properties (ii) and (iii) is that
[W(tl),...,W(tn)] is multivariate normal with mean 0 and covariance

function

E W(t) Wit*) =t At

where t A t' = min(t,t'). The existence of this process on the space

C[0,1] of Definition 1.4 was derived by Billingsley (1968, Section 9).

Definition 1.2

A stochastic process {B(t); 0 £ t < 1} is called a tied—down

Brownian process or Brownian Bridge if

(1) the joint distribution of B(tl), B(tz),...,B(tn)

(0 < t1 € -0 < Fn <£l;n=1, 2,...) is Gaussiaﬂ

with E B(t) = 0, ;
(ii) the covariance function of B(t) is E B(t)B(t') = fAt'—tt',
(iii) the sample path function of B(t,w) is continuous in t

with probability 1.

(iv) B(0) = B(l) = 0 a.s.



The existence of such process is a simple consequence of Lemma
1.4.1 in Cs6rgg and Révész (1981). Here, the Brownian Bridge can be
represented as
B(t) = W(t) ~t W(1l), O0=<t<x<]1,
where {W(t)} is a Brownian motion. An important property of the
Brownian Bridge is that it behaves like a Wiener path W conditioned by

the requirement W(l) = 0. To show this comsider 0 < t, < t, < 1.

1 2
From Definition 1.1 (ii) and (iii), we know that W(ti) - w(ti—l) is
normally distributed with mean 0 and variance ti - ti—l and that

W(tl), W(tz) - W(tl), W(l) - W(tz) are independent. Hence, their

Jjoint density is

t.)? t,)-W(t,))? 1)-w(t,)}2
“%r(l) +[W(z) (1)] +[W() (2)]

. tl tz—tl l—t2

(1.2.1)

(2m) 2 () (t,t)) (1)) /2

Using some simple transformatioﬁs, we obtain the same density for
W(tl), W(tz), W(l). We note that the density of W(l) is

1l

SV A

(2a)
Thus the conditional joint density of W(tl) and W(tz) given W(l) =0

is

. 2 tl tz—Fl l—tz

1/2
2n (tl(tz-tl)(l—tz))



tZW(tl)2 —ZW(tl)W(tz) . (1—t1)W(t2)2

1
2 tl(tz—tl) tz—tl (tz—tl)(l—tz)

1/2
2m (ty(ty=t;) (1-t,))

It can easily be verified that this is the joint density of two normal
variables with variances tl(l—tl) and t2(1~t2) and covariance
tl(l—tz). Similarly, the joint density of any finite set of W(t)’s
given W(l) = 0 is normal with covariance function in Definition

1.2 (ii). Since the distribution of a normal process in C is
determined by its finite—dimensional distribution this implies that the

distribution of {B(t)} is the same as that of {W(t)} given W(1l) = 0.

Definition 1.3

A Kiefer process K, defined on [0,1] x (0,®), is a separable

Gaussian process with mean E K(t,n) = 0 and covariance function

E K(tl,nl) K(tz,nz) = n1:A n, {(tl A t2) - tltz}.
For fixed n > 0,

n /2 K(t,n) =, B(t),
where ==, stands for the equality of all finite—dimensional
distributions and B(t) is a Brownian Bridge on [0,1]. As the name
suggests, this process was first studied by Kiefer (1972).

The above stochastic processes are Gaussian since all its finite

dimensional distributions are normal. An important property of the



Gaussian process is that it is determined stochastically by its mean

and its covariance function (Durbin, 1973b).

1.3 PRELIMINARIES

In the next two sections, we will be following the line of
thinking of Durbin (1973b) and Billingsley (1968) in showing the weak

convergence of the empirical process
(1.3.1) an(x) = J/n [Fn(x) - Fo(x)], x € R.

Along these lines, we set the following definitions:

Definition 1.4

The space C[0,1] is the space of continuous functions in the
interval [0,1], where ¢, the class of Borel sets in C, is generated by

the uniform metric

c(x,y) = sup |[x(t) - y(t)|], for x, ye€C.
- 0<t<1

Definition 1.5

The space D[0,1] is the space of functions on [0,1] that are

right continuous and have left-hand limits, that is,

lim x(s) exists and x{(t+) = x(t),
sit

(i) for 0=t <1, x{(t+)

(ii) for 0 <C t <1, x(t-)

lim x(s) exists.
stt



On D, we use the Skorohod metric

d(x,y) = inf [sup Ix(t) - y(A(t))] + sup |t - /\(t)l}
A€A 10<t<] 0<t<1l

where x, y €D and A is the class of all strictly increasing

functions on [0,1] such that A(0) = 0 and A(l) = 1.

Definition 1.6

Weak convergence in space D is used in the following sense.

The stochastic process

i)
, () Lo (5t}
if
(1) the finite - dimensional distribution of {Xn(t)} converges

weakly to {X(t)}. That is,

[Xn(tl), Xn(tz),...,xn(tk)] 2, [X(tl),...,X(tk)].

(ii) {Xn(t)} is tight.

IX (t)1 is tight if J'P ! is tight, where P_ is the distribution of
U'n*""J \'nf n
Xn' Paraphrasing Theorem 15.5 of Billingsley (1968), tightness follows
if
(i) for each positive 1 there exists an a such that
Pn{X: 1X(0)| > a} £ n, nx1,
(ii) for each positive e and 7, there exist a &, 0<6<1,

and an integer Ny such that



__10...

P J'X: wx(é) > el <7, n2>n

nl [~ 0’

where wx(é) is the modulus of continuity defined by

wx(é) =  sup |X(s) - X(©)}, 0 <6< 1.
[s—t|<6

In this case, if P is the weak limit of a subsequence {Pﬁ} of {Pn};
then P(C) = 1, that is, the sample paths of the limiting process are

continuous almost surely.

1.4 THE EMPIRICAL DISTRIBUTION FUNCTION

The empirical distribution function, as defined in (1.1.2) and
(1.1.3), is sometimes called the sample distribution function. It is
easy to verify that for fixed x, Fn(x) is the relative frequency of

successes in a Bernoulli sequence of trials with

(1.4.1) E F_ (x) = F(x)
and
(1.4.2) var F_(x) = F(X)(I;F(x))

By the classical strong law of large numbers, for fixed x,
F_(x) 2:5 Fx) .

Hence, Fn(x) is an unbiased and strongly consistent estimator of F(x).
As n — ©, F(x) can be uniquely determined with probability one.

This idea was embodied in the following
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Theorem 1.1 (Cantelli 1917 and Glivenko 1933)

sup IFn(x) - F(x)| 2:54,9 .
—0{ x{®

1.5 ASYMPTOTIC DISTRIBUTION OF THE EMPIRICAL DISTRIBUTION FUNCTION

Consider the ordered sample X(l) < X(Z) £ v L X(n) from a
continuous distribution F(x). To test the null hypothesis (1.1.1), we
let

t,., = F . (X,.,).
(3) = Fol¥(5))
Under HO, 0 =< t(l) < ¢+ £ t(n) <1 is an ordered sample of n.

independent observations from a uniform distribution U(0,1). Let

B () =

LI o

Viewing {Fﬁ(t), 0<t=x 1} as a stochastic process, we want to show
that its distribution is the same as the Poisson process {Pn(t)} with
the condition Pn(l) = 1.

From basic probability we know that the distribution of

t(l)’ t(Z)""’t(n) is

(1.5.1) dP = n! dtldt2 s dtn, 0= tl < tz < ree tn <1.

This distribution can be realized as the distribution of occurrence
times in a Poisson process given that n events occur in [0,1].
Let {Pn(t)} be the Poisson process with occurrence rate n and
. 1. . .
= <t < -
Jjumps of = for 0<£t=<1, i.e., n[Pn(tz) Pn(tl)] has Poisson

distribution with mean
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(1.5.2) n[tz—tl] for 0 < t1 < t2 <1,

Pn(O) = 0 and increments are independent.

Consider a set‘of time points 0 < t1 {vee K tn < 1 and choose

dti small enough such that [ti, ti + dti) are nonoverlapping. The
probability of no event in [O,tl), one event in [tl, tl + dtl), none in

[t1 + dtl, tz), one in [tz, t2 + dtz) -++ none in [tn + dtn, 1] is

~nt, -ndt —n(t,-t,-dt;) -n(l-t -dt ) . o[ n ]

e 1 e 1 ndt. -e ceondt_-e '3 dt.
1 n s=1 i

n
=ne P dt, --- dt_+ o[ b dt.}.
1 n =1 i

This follows from (1.5.2). The probability of n events in [0,1] is

-n n
e n

n!

Thus the conditional probability of an event in [ti, ti + dti) for

i=1,...,n, given n events in (0,1] is
_ n
n!le "n° dty--+dt_+ o I dt,
dp = 1 i=1
~n _n
e n
n
(1.5.3) = n! dtl s dtn + o0 iil dti , 0 < tl eee < tn < 1.

As max(dti) ~—+ 0, we see that the densities (1.5.1) and (1.5.3) are
the same for 0 < t, < -+ t < 1. Since the events t,.,, = t,.,,
1 n (1) (J)

(1 # J§), t<1) = 0, t(n) =1 in (1.5.1) have zero probability, the two

distributions are the same for 0 < t1 < t2 e < tn <1, i.e., the
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distribution of the occurrence times of {Pn(t)} in [0,1] given
Pn(l) = 1 is the same as that of the uniform order statistics. Since
the mappings from the vector [tl,...,tn]' to the space D of
functions on [0,1] are the same for both Fé(t) and Pn(t), it féllows
that the distribution of the stochastic process {Fé(t)} is the same
as that of the process {Pn(t)} ‘given Pn(l) = 1.

To study the asymptotic behaviour of Fé(t), we normalize to give

the empirical process

(1.5.4) al(t) = vn .[Fr'l(t)—t}, 0<t=1,
where E aﬁ(t) = 0 and the covariance function is
(1.5.5) E aﬁ(t) aé(t') =t At - tt*.

These moments follow from (1.4.1) and (1.4.2). The pointwise behaviour

of & is quite simple. For fixed x € R,

a_(x) 2, N0, F(x) (1-F(x))

or for fixed t € [0,1],

al(t) 2, N0, t(1-t)).

We take note that the sample paths of {dﬁ(t)} are elements of
space D[0,1] of Definition 1.5. To find the limiting distribution of
a&(t), we want to find a normal process in the space D[0,1] that

coincides with the mean and covariance function of aé(t) as shown in

(1.5.5). From Definition 1.2, the Brownian Bridge satisfies these
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conditions. However, since its domain is in spacé C{0,1], we need to
extend its domain to the space D[0,1].

Following Billingsley (1968, Section 16), let P(W(t) € A)
= Pr (W(t) € ANC), for each A € 2, where the latter.probability is
being calculated from the distribution of W(t) on‘(C, €). The same
is true for {B(t)} because the Brownian Bridge is defined in terms of

W(t). Since C is a member of the class 2, we have
P(W(t) € C) = Pr(B(t) € C) = 1.

This means that the stochastic process {W(t)} and {B(t)} in D
have continuous sample paths with probability 1.
Using the multivariate version of the Central Limit Theorem, we

have

(a (ty) s e @l (£)) =20 (B(E)), 0. 05B(E)),

K < 1. This suggests that the

finite—dimensional distribution of {aﬂ(t)} converges weakly to those

for any fixed sequence 0 < tl <...%2t

of {B(t)}.

1.6 ASYMPTOTIC THEORY OF SOME FUNCTIONALS OF THE EMPIRICAL PROCESS

From Billingsley (1968, Section 5), an important result of the
weak convergence theory is that if g is a measurable function in D
which is continuous almost everywhere in metric d and with respect to

the distribution of {B(t)} and if

CAOIENIO)
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then

glaz )] L gBe)).

Due to the results in Section 1.5, it seems natural to replace
the {aé(t)} process by the {B(t)} process as n — ®, and
consequently, the function of {aﬁ(t)} will converge in distribution

to the function of {B(t)}. The same is true for an(x). In

particular,
- _ D
JoD = sup Jea (x)| — sup |[B(t)],
—0( K< 0<t<1
1
(1.6.1) w2 = [ a () d F(x) i‘{ B(t)? dt,
=00
0
® 1
a (x)? dF(x) . 2
and A? = L 2,1 BCE) g,
n F(x)(1-F(x)) t(1-t)
-0

0

However, from Definition 1.6, the weak convergence of the
finite-dimensional distribution of {aﬁ(t)} to {B(t)} does not imply
convergence in D. The "tightness" of {aﬁ(t)} has to be shown. To
do away with this tedious proof, we quote the result with the best

rates for approximating {ag(t)} by a sequence of Brownian Bridges.

We have

Theorem 1.2 (Komlds, Major and Tusnady 1975)

If the underlying probability space is rich enough (that is, an
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independent sequence of Wiener processes, which is independent of the

1

originally given i.i.d. sequence {%51’ can be constructed on the
assumed probability space), one can define a Brownian Bridge
J'Bn(t), 0=<t= 1} for each n and a Kiefer process {K(t,y);

1
0<t=<1l, 0 <y < »} such that

) a.s. [ ~1/2
Lo lo (x) - B_(F(x))| 25z o[n log n]

and

sup lnl/z an(x) - K (F(x),n)| = 0[log2 n].

—00{x<®

Since Bn(F(x)) =, Bm(F(x)) ==, B(F(x)), the above theorem
implies that
a (x) Lo B(R(x)).
Thus

gl (1)) Lo g(BE())),

where g 1is a continuous function.

To prove the results in (1.6.1) it is sufficient to show that the

functions
(1)  g(x(t)) = sup |[x(t)|
0<t<]
(1.6.2)
1
(i1) &(x(t)) = I x(t)? dt
0

are continuous in d for all x(t) € D.
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Now if d(x,x') < e¢, there is a A € A such that

sup [x(t) - x'{A(t)}| + sup [t - A(t)| < 2 €
0<txl 0<t<1

so that
sup [x(t) — x'{A(t)}] < 2 e.
0<tx<l

We note that

sup [x(t)| £ sup [x' {A(t)}] + sup [x(t) - x'{A(t)}]
0<t<1 0<t<1 0<t<l

1A

sup [x'(t)| + 2 €.
0<t<1

Similarly, one can show that

sup |x(t)| 2 sup [x'(t)] ~ 2 €,
0<t<l 0<t<1

whence sup [x(t)]| 1is continuous in metric d.
0<t<1

As to the proof of (1.6.2) (ii), we let z(t) = x(t)? and show
1
that J z(t) dt as a function of 2z(t) is continuous in d. Now for

0
any sequence of functions z converging to z in d there exist
functions Am such that lim zm(Am(t)) = z(t) uniformly in t and
M-

lim Am(f) = t uniformly in t (Billingsley 1968, page 112). Since
m—0

every element of D is bounded and has at most a countable number of

discontinuities it is Riemann integrable. Take Riemann subdivisions
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1
0 < tl oo tp <1 for J z(t) dt and 0 < Am(tl) (ool Am(tp) <1

0

1
for j zm(t) dt. As m — ®, the upper and lower sums for the latter

0
integral converge to those for the former. It follows that

1 1
J zm(t) dt — J z(t) dt.
0 0
1

Hence j z(t) dt is continuous in d.

0
We take note that this argument does not apply to the function

1
: 2
g(x(t)) = J My at
0

since the function (t(l—t))—l is not continuous a£ t=0 or l.. As
suggested by Durbin (1973b, page 31), one could consider the
convergence of the statistic obtained by integrating over the range
(6, 1-68) and then let 6§ — 0.

A significant application of the above results is in testing the
null hypothesis in (1.1.1). In practice, if measure n Dn is

adapted, the null hypothesis is rejected for those samples for which

JoD_ = sup Ian(x)! > c,
—o{x{®
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where c¢ 1is calculated from

a = Pr( sup |[B(t)]| 2 c),
0<t<1 _

for a specified «, say .01 or .05.

1.7 NUMERICAL TABULATION OF THE DISTRIBUTION OF THE K-S, C—vM AND
A-D TEST STATISTICS

Kolmogorov (1933) introduced the statistic

D = sup |[F (x) - F(x)|
T iy B ’

and showed that it has the following properties which make it useful
for judging how "close" Fn(x) is to F(x):
(i) the probability distribution of Dn depends on n but is
independent of F(x),
(ii) for large n, the probability distribution of Dn is given

by the relationship

*® - 92,2
(1.7.1) lim Prob{/i D_< z} =1-2 2 (-1)J 1 7252 _ 105,
n-»° J=1

In his original paper, Kolmogorov derived a system of recursion
formulas which make it possible to compute for any finite n the

probabilities

Prob{Dn < %}, for ¢ =1,2,...n.
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Birnbaum (1952) gave a numerical tabulation of the distribution of K-8
statistic for finite sample size. Massey (1950) also tabulated
Prob{Dn < g} for selected values of ¢ and n. He obtained a system
of recursive formulas, equivalent to Kolmogorov’s, as well as a
procedure for replacing them by a system of difference equations.

The function L(z) has been tabulated by Smirnov (1948). A new
proof of (1.7.1) has been given by Feller (1948) and a heuristic
outline of a proof by Doob (1949). Doob’s derivation was based on the
evaluation of the probability that a sample path of {W(t)} crosses one
or both of two straight—line boundaries.

Cramér (1928) proposed as a measure of the discrepancy between

Fn(x) and Fo(x) the statistic

o0

J [Fn(x) - Fo(x)]2 dx.

B

This was generalized by von Mises (1931) to the form

2

J g0 [F,00 - Fy0] ax,

—Q0

where g(x) is a suitably chosen weight function. Smirnov (1936)

modified this to

n J Y’[Fo(x)][Fn(x) - Fo(x)]z d Fy(x)
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so as to give a distribution—free statistic. When ¥ = 1, we call this

the Cramér-von Mises statistic and write it as

0

2 2
#2 = n [Fn(x) - Fo(x)] d Fy(x).

—~00

-1
When ?[Fo(x)] = [Fo(x)(l—FO(x))] , we have the Anderson-Darling

statistic

. J“ [Fn<x)—1ro(x)]2 4 Py
)

Little is known about the exact distribution of C-vM statistic.
Marshall (1958) has given explicit expressions for the distribution
functions of Wi, W; and Wg and Stephens and Maag (1968) have given
formulae for the extreme lower—-tail probabilities for W;.

We know that for large n, the distribution of the C-vM statistic
is approximately the séme as the distribution of

1
w2 = J B(t)? dt.
0

The characteristic function of #W? is

o -1/
(1.7.2) ®(8) = I [1 _ 2i8 ]
,j=1 j21r2

[ 2T }1/2

sin /218
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This was inverted by Smirnov (1936) to give

(2j)%n?

R -1 1f -5 2 5
(1.7.3) Prob(#? < x) =1 - =z (-1)Y J y {-‘J—y:] e ° dy.
j=1 sin Jy
(24-1)%w>

A different inversion of (1.7.2) was given as a rapidly-
converging series by Anderson—Darling (1952) and was used by them to
tabulate the distribution function of W3.

Similarly, the A-D statistic converges in distribution to

1

_ | B(Y)?
Az - J‘ Wl"‘_ty d‘t¢

0
This has characteristic function

-2nwid 172

cos {'a' /T+816]
2

Anderson and Darling (1954) gave a rapidly converging series for the

$,(8) =

inverse of ¢A(8) and tabulated a short table of significance points.
Stephens (1970) has provided good approximatiohs to the

percentage points of the above statistics in an egtremely compact form.

In his paper, for each test statistic T, a simple modification T* is

given, and T* is compared with the given percentage points.



CHAPTER II

WEAK CONVERGENCE OF THE EMPIRICAL PROCESS
WHEN PARAMETERS ARE ESTIMATED

2.1  INTRODUCTION

Consider a random sample Xl’XZ""’Xn from a family of

distribution functions

¥ = {F(x,8): x € R, § € 8c RP}.

s ot 0 | |
Let anf be a sequence of estimators of 8 = 81, 82, ceey Bp , @
vector of parameters, based on the random sample.

In this chapter, we shall consider the asymptotic behaviour of

the estimated empirical process
(2.1.1) o (x) = /A [Fn(x) - F(x,en)], x € R,

under the null hypothesis (2.1.2) and under a sequence of alternative
hypotheses (2.6.2). As will be shown in Seétion 3, this limiting
distribution converges to a Gaussian process that depends not only on
F(x) but also 60, the true theoretical value of 6. Consequently,
. procedures based on ;n(x) would not be asymptotically distribution—
free (Durbin, 1973b).

The results, as well as an extension of the methodology used in

this chapter, are employed in Chapter III to obtain some distribution—

- 923 -
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free procedures for testing the composite hypothesis

(2.1.2) HO: F e ¥7.

A typical example might be the hypothesis that the data came from a

normal distribution with unknown mean and variance.

2.2 PRELIMINARIES

The following exposition is based on the recently developed
strong approximation methodology of Kiefer (1972), Csﬁrgg—Révész (1975) -
and Komlés-Major—Tusnady (1975). The type of estimation of the
parameters @ € RP of F(x,8) follows from Durbin (1973a).

Under the null hypothesis (2.1.2), we wish to show that the
estimated empirical process ;n(x) can be approximated asymptotically

by the Gaussian process
(2.2.1) G (x) = Bn[F(x,BO)] - J 2(x,8,) dBn[F(x,BO)][VBF(X,BO)]',

where Bn is a sequence of Brownian Bridges.
The following notation will be used:

(1) The transpose of a vector v will be denoted by v'.

(ii) The norm Hl-ll on RP is defined by Hyl,...,y Il = max Iyil.
_ 1<i<p
(iii) Vg F(x,GO) denotes the gradient vector of partial

derivatives,
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[5F(X,8) aF(x,8) GF(x,B)]
] 3 ey ToATT
6 36, G0p
‘evaluated at 8 = 60 € RP.

(iv) For a vector-valued function £ = [&2,,...,2_ |, let | 2
1 P

denote the vector [J Ql’ J 22,...,J Qp].

(v) All integrals are evaluated from - +to o,

We will assume the following conditions on the estimator

sequence.

e n Q(X.,BO)
Al. Jn [8 - 8 = 3 —4 2 e , Where @ is the true
n 0 . — In 0
Jj=1 Jn

unknown value of 8; 2(-, 80) is a measurable
p—dimensional vector-valued function and €14 -24 0 as
n —— ®,

A2.  E R(X;,8,) = 0.

A3. M(8

= E Q'(XJ,BO) Z(XJ,B is a finite nonnegative

o o
definite matrix.

Ad. The vector Vs F(x,8) is uniformly continuous in x and
8 € A, where A 1is the closure of the given neighbourhood
of 80.

A5. Each component of the vector function Q(x,ao) is of

bounded variation on each finite interval.



_26_

Lemma 2.1

Suppose that the vector function Q(X,BO) satisfies conditions A3 and

A5. Then, as n — o,
(2‘2.2) Ln = j f,(x,&o) d[dn(x) - Bn[F(XQeo)]} —L 0:

where an(x) is the empirical process and Bn is a sequence of

Brownian Bridges.

‘Proof:

Let

(2.2.3) T(x) = [Tl(x)’.‘.’TP(X)]’

where Tj(x) is the total variation of the jth component QJ(-,BO) of
Z(x,BO) on the interval [-x,x], j = 1,...,p. Choose a sequence of

positive numbers u tending so slowly to infinity such that

(2.2.4) uT(u yu 288 o
n Ja

With this w o consider

L = J 2(x,8,) d a_(x) - J 2(x,80) d Bn[F(x,GO)]'

Ix{>u

[x|>u
n n

+ J z(x,ao) d[ah(x) - Bn[F(X,BO)]]

<
|x|_un



.__2'7__

(2.2.5)

]
=
|
[
+
ol

Now, we can write L3n as

J 2(x,8,) d a_(x) - J e(x,8,) d Bn[F(x,eo)].

< <
.lxl_un |x|_un

Since Q(X,GO) is of bounded variation, using integration by parts we

have
Un
an(x) Q(X,BO) - [ an(x) d Z(x,BO)
¥y lxlSun‘
u :
- Bn[F(x,BO)] 2(x,8,) + J Bn[F(x,Bo)] d 2(x,8,)
X lx]Sun
Un
= [[an(x) - Bn[F(x,GO)]] Q(x,eo)}
x=—u_
- J L;n(x) - Bn[F(x,BO)]] d Z(X,BO).
le_<_un
Therefore,

Mg I < 1 j [a,00 - B [Px,69)]] 2 281

<
le_un '

+ ”[[an(x) -8, [rx80)]] z(x,ao)]un I

X=-u
n
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Using Theorem 1.2, (2.2.3) and (2.2.4), we have

—_— flog nl
(2.2.6) ILg I =%.s. 0y =) HTCu )it — 0.
cons i (J) (J) .th
Next, consider Lln and LG , the j components of Lln
respectively, j = 1,...,p. Since
Ea_(x) = B Bn[}?(x,ao)] = 0,
we have
(J) _ (J) _
(2.2.7) E L1n = E LG = 0.
Thus
(J)]2 - [ (J)]2 - 2
E[Lln =E LG = QJ(X,BO) d F(x,BO)
|x|>un_

2
- J Qj(x,eo) d F(x,BO) - J Qj(x,BO) d F(x,GO)

x<{—u xou
n n

But by (2.2.7), we have

J Zj(x,eo) d F(x,@o) is bounded.

|x|>un

Hence, by Chebyshev inequality, with ¢ > 0, we have

pl

{i

1IN\ Bia v

2
I+ L, I > 2 el < =
In 2n | e? j=1
[x|>u
n

and L

2

2
J Zj(x,eo) d F(X,BO).

2n
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(2.2.8) As u o, this bound tends to 0 by condition A3.

Finally, using the results in (2.2.6) and (2.2.8), we obtain (2.2.2).

2.3 CONVERGENCE OF THE ESTIMATED EMPTRICAL PROCESS

1" 1"
Theorem 2.1 (Burke, Csorgo, M., Csorgo, S., Révész (1979))
31

Suppose that the sequence Vnf satisfies conditions Al to A5 then

(2.3.1) sup |a(x) - G (x)] == 0,
—00{ 3¢ n n

where an(x) and Gn(x) are defined in (2.1.1) and (2.2.1)

respectively.

Proof:

Let us consider

”~

a (%)

A 7,00 - B

Ja [Fn(x) - F(x,eo)] -/ [F(X,Sn) - F(x,eo)].

Applying the one—term Taylor expansion of F with respect to 60, we

obtain

2l

(2.3.2) Qn(x) = /n [Fn(x) - F(x,eo)] _ A [en—ao] : [ve F(x,B:)]I,
where
(2.3.3) ue: - 6,1l < uEn - 8,l.

The right-hand side of (2.3.2) is equal to
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~

a (x) - /& [en—ao] [Ve f(x,ez)]'

Y

Bn[F(x,BO)] - J/n [en—eo]~[v3 F(x,ﬂo)]'

~

& (x) - Bn[F(x,eo)] + oo [en—eo]{ve F(x,8,) = v, F(x,ei)]'

"+

~

- Bn[F(x,ao)] - Ja [en—eo]-[ve F(x,eo)]' ey (x) * g (),

where

ezn(x) ah(x) - Bn[F(x,BO)] and

'~

' €q (%) = J/n [an—eo][ve F(x,84) - v, F(x,B:)]'.

If we can show that

(2.3.4) (i) Jn [En—eo] _ J e(x,8,) d Bn[F(x,BO)]“ 2.,
(2.3.5) (ii) sup [ezn(x)l —34 o,

—00{x{®
(2.3.6) (iii) sup ey (%) 2,0,

~0x{®

then we get the desired result in (2.3.1). We note that

Mo

i @(xj,Bo) = j Q(X,BO) d Fn(x),

Bl

where d Fn(x) = when x = Xi' Using condition Al, we have
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'~

J/n [Bn—Go] = [ Q(X,HO) d /n Fn(x) + &1

By condition A2, this is equal to

r

e(x,eo) d /n [Fn(x) - F(x,BO)] tern

= 2(8,60) d an(x) + €1n

r

= Q(X,BO) dBn[F(x,BO)]+J z(x,ﬁo) d{an(x)—Bn[F(x,Bn)]]+eln

( |
= | 20x,8y) B [F(x,00)] + 1+ ey .

Y,

Since €1n —Eq 0 and Ln —E+ 0 by Lemma 2.1, (2.3.4) follows.

The result in (2.3.5) is a direct consequence of Theorem 1.2

which says that

sup Ian(x)—Bn[F(x,ao)]l a-5+ 9 [lof n]‘
—o0{ k<™ Jn

Lastly, to show (2.3.6), we take note that n [Bn—ﬁo] is
asymptotically a normal vector because of conditions Al, A2 and A3.

Thus

(2.3.7) o] 2o

From (2.3.3), (2.3.7) and A4, we have
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P
sup legn(x)l — 0.
—00 k<™

Q.E.D.
As in Burke et.al. (1979) paper, if the convergence of €10 is
almost—sure, then the convergence of Theorem 2.1 is also almost—sure
provided conditions Al* - AS* hold. These additional assumptions are

as follows:

Al*. The vector Vg F(x,eo) is uniformly bounded in x and the

vector Vg F(x,8) is uniformly bounded in % and 8 € 4,

where A is defined as in A4.

X 112 (-1
2. vinfs tog 10g e[ o000, o] - ¢
s 0 0
sd0
112 4 1.-1
and lim [(1—5) log log ~——] . Q[F (s,8,), 8 ] = 0,
1-s 0 0
stTl
-1 P 1
where T (s,BO) = 1nf1x. F(x,BO) > sI.
' -1
gL(F “(s,8,), 8,)
2 3 0’ 70 1
A3 . s{ v 7 " < ¢, 0 < s < 5
-1
GL(F (S’BO)’ 90)“ 1
and (1-s) TS I < c, 5 <s <1,
for some positive constant c, where the vector of partial
derivatives of the components of Q[Fnl(s,eo), 80] with
F(F ' (s,8,), 8,)
respect to s, o , exists for all
s € (0,1).
If €1y =a.s 0{h(n)}, where h(n) > 0, h{(n) — 0, and the above

conditions hold, the authors have established that the rate of

convergence of Theorem 2.1 is
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sup ld (%) - G ()| == OImax(h(n) n—e)1 for some e > 0.
—ooggim D n als. | i f

2.4 MOMENTS OF G(x)

In the previous chapter, we know that a sequence of Brownian

Bridges converges to a Brownian Bridge, that is,

D

B — B.
n

This implies that

¢ 2, q,
n

where G 1is represented as

(2.4.1)  6(x) = B[F(x,60)] - J 2(x,80) d B[F(x,80)]. [vy Fex,80)]
This Gaussian process G(x) has mean 0 and covariance function
(2.4.2) B G(x)G(y) = F(x,8,) 4 F(y,8,) - F(x,8,) F(y,8,)
- 300 [y B8 | - 35 [v, Fixigp]’
+ [7y B8] - M) - [vg Fvip)]
where M(8;) is defined in A3 and

J(x) = JX z(z,eo) d F(z,BO).

—~0

The mean obviously follows from the mean of the Brownian Bridge.
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To prove (2.4.2), let us consider

G(x)

B[F(X,BO)] - " Q(X,BO) d B[F(X,BO)]-[VG F(x,BO)]'

G(y)

B{F(y,eo)] | 2(y,8,) d B[F(y,eo)]'[ve F(y,ao)]'.
Now,

a()6() = B[F(v,80) |B[Fx,00)] - B[F(y,eo)]J 2(2,80) 4 B[F(z,60)]

':Ve F(x,ao)]' - B[F(x,ﬂo)] J 2(z,8,) d B[F(z,ﬂo)]

':Ve F(y,eo)]' + J 2(z,8,) d B[F(z,eo)] . [Ve F(x.ﬂo)]

~
[}

| 2(z,8,) 4 B[F(z,eo)] : [ve F(y,eo)] .

Let
G(x)G(y) = Ly = Ly = Ly + L.
Thus
(2.4.3) E G(x)&(y) = EL, - EL, - EL, + EL4.
Consider the first term in (2.4.3).
5L, = B B[R(v,80)] B[F(x,60)]
(2.4.4) = F(x,eo) A F(y,so) - F(x,BO) F(y,BO).

This follows from the covariance function of the Brownian Bridge.
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As to the second term of (2.4.3), we have

L, = B B[F(y,0,)] j 2(2,80) 4 B[F(z,60)] - [v, P(x,0p)]’

= r 2(z,6,) d E B[F(y,eo)] B[F(Z,BO)] . [Vs F(x,eo)]'

- Je(zg) a[F(v,80) 4 F(z,80)F(y,80)FCz,60)] - [7pFCx,00)]'

= ~ 2(z,6,) d[F(y,eO) A F(z,eo)]-[ p F(x,so)]'

- J 2(z,8,) d[F(y,80)°F(Z’Bo)]’[ 8 F(X’GO)].

J Q(z,BO) d F(min (y,z),80)~[ve F(X,BO)].

- F(,8,) J 2(z,8,) d F(z,eo)-[v8 F(x,so)] :
Since J Z(X,BO) d F(X,BO) = 0, we have

EL, = I 2(z,85) d F(min (y,Z),BO)'[VB F(X,GO)]'

r

- | | 2 ogdrming,2),00)+ J Q(z,eo)dF(min(y,z),Bo)]'[VBF(X,BO)]

| Z<y 2>y

[ '
= | | 2(z,80)dF(z,80)+ J Q(z,BO)dF(y,BO)}~[VGF(X,BO)] .

| 2<y z2>y

d F(y,Bo)

But —5 - 0, hence
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EL

1

y
. J Q(z,eo)dF(z,BO)-[ve F(x,eo)]'

—00

(2.4.5)

Iy - [ve F(k,eo)]'.

Using the same argument as in the proof of ELZ’ we have

X

EL, [ Q(z,BO)dF(z,BO)‘[ve F(y,eo)]'

—00

(2.4.86) I(x) - [vs F(y,BO)]';

Now, let us consider the last term of (2.4.3).

EL, EJQ(Z,BO)dB[F(z,GO)]~[VBF(X,OO)]'~J 2(z,8,) dB[F(z,BO)]

-[VBF(y,eo)]'

[7gr(x,80)] EJZ'(Z,GO)dB[F(z,BO)]°J e(2,8,) aB[F(z,00)]

-[vBF(y,eO)]'.

Since

EJZ(Z,GO)dB[F(z,GO)] = JZ(Z,BO) dEB[F(z,eO)] = 0,

this means that

(2.4.7) B J 2'(2,90)dB{F(z,BO)]'J Q(z,eo)‘dB[F(z,Bo)]
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= [ [ 2'(z,8,) 2(z',8,) d E B[F(z,ao)] B[F(z',ﬂo)]

r r

= | | e (z8p) 2(z,6y) d [F(z,eo) A F(z',BO)]

J LS

- IJ 2’(z,60) d F(z,BO)j 1J Q(z‘,BO) d F(z',BO)}

(2.4.8) = j Q'(z,BO) Z(z,so) dF(z,BO)—{J Q'(z,&o) dF(z,eo)}

1

. {J Q(z',eo) dF(z‘,BO)] .

But J Q(z',eo) d F(z',BO) = 0, thus the second term in (2.4.8) goes

to 0. Hence (2.4.7) is equal to

J 2'(z,60) Q(z,BO) dF(z,GO)

= E 1'(z,80) Q(z,eo)
(2.4.9) = M(BO)'
This implies that
(2.4.10) EL, = [ve F(x,&o)} L M(8y) - [ve F(y,eo)]'.

Combining the results in (2.4.4), (2.4.5), (2.4.8) and (2.4.10), we

finally get the covariance function in (2.4.2).

2.5 THE MAXIMUM LIKELTHOOD ESTIMATOR CASE

The sequence of maximum likelihood estimator often satisfy Al

with
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(2.5.1) 2(x,8,) = v, log £(x,8,) I *(8,),

e

where f 1is the density function of F and I—l(BO) is the inverse

of the Fisher information matrix
(2.5.2)  1(8,) = E[ve log f(xi,eo)] : [va log f(xi,eo)].

Under these sequence of estimators, we can show that the covariance

function of G(x) is
BG(x)G(y) = F(x,8,) 4 F(y,80) — F(x,8,) F(y,0,)
- [ve F(g,eo)] e, - [ve F(y,eo)]'.

To show this, we look at (2.4.2) and obtain

Jy 2(z,8,) dF(z,80)°[vé F(x,ao)]'

—0

39 [vg Fx,80)]

y
vy log £(z,8,) I"l(eo) dF(z,aO)-[v8 F(x,eo)]'

[
ey

5

1
Sy
&«

v, log £(z,8,) dF(z,BO)-I_l(GO)-[VB F(x,ao)]'

$

._.1 ]
) dz- 1 (90)'[Ve F(x,eo)]

] Jy [ve f(z,eo)]f(z,eo)
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Yy
Vg j f(z,BO) dz'I_l(BO)-[ve F(x,eo)]

—00

[Ve F(y,BO)] I'l(eo) [ve F(x,eo)]'

it

(2.5.3) fve F(x,BO)] 1 e, [ve F(y,ao)]

Similarly,

(2.5.4) J(x) [ve F(y,eo)]' - [ve F(x,&o)] 1 te,) [ve F(y,eo)]',

while [Ve F(x,BO)- . M(BO) . EVG F(y,BO)] is equal to

{ve F(x,BO): E 2(2,6,) (2,8, [ve F(y,eo)]'

= [ve F(x,eo): E{I_l(eo) fve log f(z,eo)]'[ve log f(z,eo)]l”lceo)}
: [ve F(y,eo)]'.
By (2.5.2), this is equal to

1

[Ve F(x,BO)]~I_1(80)-I(80)‘I_ (84) - [Ve F(y,ﬂo)]'

(2.5.5) - [ve F(x,GO)] 1My - [ve F(y,BO)] .

Combining the results in (2.4.2), (2.5.3), (2.5.4) and (2.5.5) we have

EG(x)G(y) = F(x,8,) 4 F(y,68) - F(x,8,)F(y,8,)
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- [Ve F(x,eo)] e, [ve F(y,so)]' - [vaF(x,BO)]I_l(BO)
[va F(y,eo)]'+[v8 F(x,eo)]l'l(eo) [veF(y,eo)]'
(2.5.6) = F(X,BO) A F(y’eo)—F(Xaeo)F(Y960)

- [Ve F(x,eo)]'I_l(eo)[veF(y,eo)]'.

2.6  APPROXIMATIONS UNDER A SEQUENCE OF ALTERNATIVES

In this section, the above results are extended to cover the
asymptotic approximation of ;h(x) under a sequence of alternative
hypotheses.

Suppose that the distribution function of the i.i.d.r.v. is
F(x;B8,8), where B is a pl—dimensional vector of parameters which is
assumed to be known and 8 is a p2~dimensional vector of unknown
parameters yhich is estimated by 1gn}’ based on Xl’XZ"f"Xn’
Consider the null hypothesis

(2.6.1) L Hy (8,8) = (By,8,) = &

where 80 stands for the theoretical true value of 6. The sequence
of alternatives {Hh} is defined as follows:

Let {ﬁn} be a sequence of p1~dimensional (nonrandom) vectors
satisfying the condition

B =By + v /2
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where v is a given constant vector. Let 4 denote the closure of a

1
given neighbourhood of ﬁo and let m = min{k: ﬁn € Al’ for all
n2k> 21.
J
Then consider
(2.6.2) Hn: (B8,8) = (pn,eo), for n =m,mtl,...

Under the sequence of alternatives {Hn} of (2.6.2), we wish to

show that the estimated empirical process
(0 = /i B0 - B B.8)], xR,
can be estimated by the Gaussian process
1] ) )
(2.6.3) Z_(x) =G (x) - v A [ve F(x; po,ao)] + w[vﬁ F(x; ﬁo,eo)] ,

with

6,00 = B [Px; 80,00)] - {J 2(x; g8y 4B [FGx; ﬁo,ao)]}~

[vg Foxs 8gi6)]
and A as defined below in (i).

We can easily verify that the mean of Zn(x) is
] )
BZ (x) =1 A [ve F(x; ﬁo,eo)] + v[vﬁ F(x; ﬁo,so)]

and its covariance is the same as in (2.4.2), with the.obvious changes

in notation.
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Again we list all the assumptions under Hn.

. = = 1 2
(i) Jn [Bn 80] = = .f Z[Xj,ﬁo,so] + ¥ A' + €8n’ where A
Jn j=1
is a given finite matrix of order Py X P> £ is a
measurable pz—dimensional vector-valued function, and
P

& — 0.

8n

(ii) B z[xj,po,eo] =0 for n2m

* s . 1 ' -— » .
(iii) E 2 [Xj,ﬁo,eo] Q[Xj,ﬁo,eo] = M[ﬁn,ﬂo], a finite
nonnegative definite matrix for each n 2 m which
converges to a finite nonnegative matrix = M[ﬁo,ﬂo] as

n —— ®,
(2.6.4)

(iv) The vector V F[x;ﬁ,eo] is uniformly continuous in x

B
and B € Al’ and the vector VBF[X;BO,G] is uniformly
continuous in x and 6 € A2’ where A2 is the
closure of a given neighbourhood of 60.

(v) Each component of Q[x,po,eo] is of bounded variation

on each finite interval.

REMARK. Additional conditions are set to obtain the almost—sure

approximation of dn(x) (Burke, et.al., 1979).
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As in Lemma 2.1, we claim that if the vector function Q[x,ﬂo,eo]
satisfies conditions (2.6.4) (iii) and (v) then as n — o,

(2.6.5) I 2(x, By8,) d[an(x) - Bn[F(x; po,eo)]] 2, 0.

We state the result.

Theorem 2.2 (Burke, et.al., 1979)

Suppose that conditions (2.6.4) hold and let

€, = sup Ja (x) - Z (x)].
9n —oixiw D n

g )

Then under the sequence of alternatives o

9n

Proof:

By adding and subtracting, we have under Hn

& (%) = /& [Fn(X)-— F(xi Bgs8)]
= i [0 - FGs 8,,00)] v [ROx; 8,,80)-F0xi 8y18)]
- & [P0 By8.) = T 8,00)]
(2.6.6) = Qq (%) + Qy (x) ~ Qg (x).
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For the first term in (2.6.6) we have

Q) = VA [F(x) - B 4,,00)]
= B, F(x; B80)+{Va [F 0070 8,,00)]-8, FGxs 5,,00))
= B, F(xi Bp8g)+vA [FL(0-F0xs A,00)]-8, POxs 8,000}
+ {Bn F(x; B,,85) — B F(x; 50,90)}.
(2.6.7) = B, B Bpig) * oy, [Fxi 8,,89)] + e10n00-

By Theorem 1.2

. - J -1/2 l
(2.6.8) -wizgw |e3n [F(x, pn,eo)]| = .. Oln log nj.

"
From the modulus of continuity of the Brownian motion (Csorgo and

Révész, 1979, Chapter I),

(2.6.9) supley, ()] =, _ O{n_

for any &6 satisfying 0 < & < %.

For the second term, apply the one-term Taylor expansion of F with

respect to ﬁo to obtain

G (%) = /i [P(x £,,80) = Flx Ag,60)]

7 [8,80) 75 P 8589)]

(2.6.10) «[vﬁ F(x; p:,eo)]' +

U (eato] o] o 7o oo0)]'y
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1/2

where "ﬁ:—ﬁoﬂ < |ln "/ “+||. Thus the second term in (2.6.10) — 0 as

n —+ ®©, reducing (2.6.10) to
. ] , * _ . 1
v]og TG By,80)] " + v, FOu Bheg) - v, PO ag,60)]
(2.6.11) = v[vﬁ F(x; ﬁo,ﬂo)] + elln(x).
By condition (2.6.4) (iv) and the fact that ”ﬁ:—ﬁou — 0,

(2.6.12) sup lelln(x)[ — 0.

—0x<{®

For the third term, we can repeat the proof of Theorem 2.1 to get

Qgo(x) = ¥i [FCxi 80,80 = F(xs Ag60)]

(2.6.13)

Jn [en - 80] [ve F(x; ﬁo,eﬁ)}

where HBi—GOH < Hen—GOH. As in the proof of (2.3.4), using conditions

(2.6.4) (i) and (ii), we have
J/n [sn - 90] = j 2(x; BO,BO) d v/n [Fn(x)—F(x; ﬁo,ao)] + YAl +oeg .
Thus (2.6.13) can be written as

(2.6.14) {J 2(x; Byr8,) d B F(x; By,8,) + v A-1 [ve F(x; po,so)]'

J
Al

] 20 ety [a, 008, P0x; ﬁO,BO)]} [7g x5 8g,60)]

+ €5 .
8n
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By (2.6.5) and the fact that €80 —5» 0 we have

(2.6.15) an(x) = L[Q(x; ,80,60) dBnF(x; ,BO,BO)H A'J.[Va F(x; ,80,80)}
Combining all the results in (2.6.6) to (2.6.15), we finally have

sup |a_(x) - Z_(x)] — 0.
—00 K™



CHAPTER III

DISTRIBUTION—-FREE PROCEDURES

3.1  INTRODUCTION

For testing the composite hypothesis
(3.1.1) Hy Fe¥={F(x68:xek 6 sSck),

it was shown in the previous chapter that tests based on the estimated
empirical process ;n(x) are inadequate; they are not distribution—
free.. It is the objective of this chapter to examine some procedures
that will overcome this difficulty. We wish to obtain a version of the
empirical process, whose limiting distribution in the composite
hypothesis case is tﬁe same as that of the usual form of the

empirical process in the specified hypothesis

Section 2 refers to the bootstrap method proposed by Burke and
Gombay (1988). In this method, a bootstrap sample of size n is

obtained from the random sample X ,Xn of F(x). This is used

1’X2’°"
to obtain an estimate of the unknown sequence of parameters
60 = (81,...8p).

In Sections 6 and 7 we will examine the half-sample and random

substitution device suggested by Durbin (1976) and (1961). 1In the

- 47 -
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first technique, as initiated by Rao (1972), the unknown parameter‘
vector is estimated from a randomly chosen half-sample of data ana the
empirical distribution function is constructed as if the estimates were
the true value. In the other method the unknown parameter vector is
estimated from an external sample with known distribution function.

Using the above mentioned procedures, the estimated empirical
process is approximated by a sequence of Gaussian processes. In the
maximum likelihood case, it converges to a Brownian Bridge.

A significant implication of this result is that the K-S, C-vM,

and A-D type of statistics converge respectively to the following:

/n Bn = sup Jn [F_ (x) = F(x, 8 2 2, sup |B(t)]|
-0 x<{® 0<t<1
© 1
/\2 _ A 2 ~ f\D 2 d
w2 = n [Fn(x) - F(x,en)] dF(x,8 ) Lo | B(t)? dt
(3.1.2) 0
~ J [Fn(x)— F(x, eg)]z e : ; _.J B(t)?2 i,
B, P [1-FGe) ] tHI-H
0

where len}, the sequence of estimators of 6, is obtained using the

above procedures and B is a Brownian Bridge. These statistics could

now be applied to test the hypothesis in (3.1.1):

3.2 . THE BOOTSTRAP METHOD
A general method called "bootstrap"” was first introduced by Efron

(1979) to solve a variety of estimation problems. For example, the
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estimation of the sampling distribution of the random variable R(X,F)
on the basis of the observed data X. This procedure is based

on randomization. The bootstrap algorithm is as follows:

(i) Draw a random sample Xl’XZ""’Xn from a population with

distribution function F(x).

{(ii) Construct the sample probability distribution F, putting

1 .
mass — at each point Xl’XZ""’Xn'

(iii) Given the sample, the bootstrap sample XT,X;,...,X; is

obtained by sampling with replacement m elements of the

set { 1""’Xn}' Hence
[ ¥ * *
PIX1 < X9 X2 < x2""’Xm < Xmlxl""’xn[ = 'H Fn(xi).

i=1
(iv) Approximate the sampling distribution of R(X,F) by the

bootstrap distribution of R* = R(g*,F).

For our purposes, consider a random sample Xl,Xz,...,Xn from a
distribution function F(x). Given this sample, oﬁtain the bootstrap
sample XT,X;,...,Xz. Let gn be the maximum likelihood estimator of
8. Let Em be the bootstrapped version of En based on the .
bootstrapped sample XT,X;,...,X:. Qur main goal is to show that when

n = m, the estimated empirical process
(3.2.1) %, (x) = /A [Fn(x) - F(x,em)]

converges weakly to a Brownian Bridge, that is,
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- 2
(3.2.2) a0 2o B[rex80)].

~

To attain this goal, we need to show that « o can be approximated
bl

asymptotically by the Gaussian process

r

(3.2.3) 6, . (x) = Bn[F(x,GO)]— 2(x,8,) d Bn[F(x,BO)]-[VB F(x,eo)]'

Ve 2(x,8,) d B;[F(x,eo)]-[ve F(x,eo)]'.

Obviously, the mean function of Gn n(x) is 0. TIts covariance
)

function is
(3.2.4) E Gn,n(x) Gn,n(Y) = F(X,BO) A F(y,&o) - F(X,BO) F(y,BO).

Remarkably, this is the covariance function of a Brownian Bridge.
Since a Gaussian process is uniquely determined by its covariance

function, we conclude that
o _(x) L B[F(x 8 )]
n,n i

Using this fact, we get the desired result in (3.2.2).

3.3  BOOTSTRAP EMPIRICAL PROCESS

Let Xl,Xz,...,Xn be a random sample of F(x) and obtain the
X

bootstrap sample XT,X;,...,Xm. We define the bootstrapped empirical

distribution function as
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* n .
(3.3.1) F (%) = f L

where q is the number of times Xi occurs in the bootstrap sample

"l‘,x*,...,x:‘l, i=1,...,n. We note that

X
n
(3.3.2) Z q, =m

We also define the bootstrap empirical process as

(3.3.3) /i [F:(x) - Fn(x)].

Lemma 3.1

Let Ul,...,Um be i.i.d.r.v. from a uniform distribution U(0,I) which

are independent of Xl,...,Xn. Define Em(u) as
m I(U, < u)
(3.3.4) Eful= 3 —L—— 0<us<l.
m . m
Jj=1
Then

(3.3.5)  Jm [F:(x) - Fn(x)] — & [Em[Fn(x)] - Fn(x)].

Proof:

For each n,

(3.3.6) {q‘, 1<ix n} —
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From (3.3.4) we have
(3.3.7) {qi, 1<i< n} —, [ [Em[—i-] - Em{ii”; 1<i< n}

and from (3.3.1)

(3.3.8) {p:(x), x€R m=1,2, } —, {lgl[Em[%] - Em[-l—;-}”
I (X1 < x); x € R}.
Thus
(3.3.9) {ﬁﬁ [F:(x) - Fn(x)], x€R, m= 1,2,...}
. . I(X, < x)

— {8 [ ) e -

=, { ‘Lgl[EmE}—Em[i;i]—%] I(xi < x)}, X €R, m= 1,2,...}
(3.3.10) —, { ; [.El[Em[;]-Em[i_;l.]_ 11y, s x>],

i

1
P

where X(l) < X(Z) { v L X(n) are the order statistics of the sample

x€R, m=1,2,...

Xl""’xn‘ (3.3.10) is true since the qi’s depend only on n and m
’ 1"
and thus independent of the Xi’s. From Csorgo et.al. (1986, Section

17.2), (3.3.10) is

=, J/m [Em[Fn(x)] - Fn(x)].
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Hence, we have

{Jﬁ [F;(x) - Fn(x)], X € R, m= 1,...} ==, {J_ [Em[Fn(x)] - Fn(x)]

as desired.

3.4 PRELIMINARIES

As we go along the proof of (3.2.3), we assume conditions Al-A5
and notations set in the previous chapter. In addition, we state more
conditions to be used in the proof of the main result.

We claim the following assumption:

T3 =

b

Jm J

AB Jﬁ[g—E]:l_ lzna(x*e)_ﬂ
’ . i’ 0 n . n,m
J=1 J

. Q(XJ,BO)] + e

P
where € m 0 as nAm— o,
b

Asymptotically, this condition implies that
R o P
(3.4.1) /i [em—en} - J 2(x,8y) d /a [Fm(x)_ Fn(x)].

To show this, consider

i [o,-8,] = /i [8,-80] - v [8,-8,)
= : 2(x,89) 4 u'’? [FrGo) - F(x,80>]
- : e(x,00) d /% [F (0) - FCx,60))
. : 2(x,80) d w/? [Fh0 - E 0]
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This is true because of Al, A2 and AS6.

From Cs6rgg et.al. (1986, Theorem 17.8) and Csérgg and Révész
(1981, Lemma 4.4.4), we can construct a single probability space with
random functions E&, F; and B: defined on it. Also on this
probability space are versions of [;h’ Gn] and ['z, B:] which are
statistically independent.‘ These random functions satisfy the

following:

(1) Bz is a sequence of Brownian Bridge.
1) [B0), Rye0] == [E(0.E,@], t e 10,11, x < R

(iii) Fﬁ independent of random vector [Eé, B;].

3/4
‘ X ok . J(log n) 1
(iv) _wil;lzw |am(X) Bm[F(X"’o)” =a.s. O} RVEID|

as nAm — %, where

X = Jm - [
(3.4.2) o*(x) = vm [E&[ ;(x)] Fn(x)]
and 0 < 1lim inf % < lim sup g { »,
n, m® n,m°
(v) sup Ian(x)—Gn(x)I —24 0, where Gn(x) is defined in

—0x %

(2.2.1).
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3.5 CONVERGENCE OF a (%)

3

Theorem 3.1 (Burke and Gombay 1988)
Under conditions Al-A6 with F continuous, one can define two
independent sequences of Brownian Bridges on [0,1], IB ! and IB*l

\'nJ U'mf’
such that

sup Ja. (x) - G (x) —E» 0, as nAdAm— o,
ooy | DT n,m

where Gn m is the Gaussian process in (3.2.3).

Proof:

First we consider

;n’m(x) - Jn [Fn(x) - F(x,Em)]
= Jn {Fn(x) - F(X,gn)] - Jn {F(x,gm) - F(X’gn)]
(3.5.1) = a_(x) - /A [F(X,Em) - F(x,gn)].

”~

Apply the one-term Taylor expansion of F with respect to Gn in

(3.5.1). Thus (3.5.1) is

(3.5.2) = ;n(x)‘— J/n [Em - gn] [VG F(x,8n’m)] , where

(3.5.3)

Sam~ Ol = Jow - ol -

From conditions Al-AB,
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(3.5.4) “e -8 u P,0 and
m n n

‘6 - eou —Eq 0 as n — o,

Hence,

J#a,n = %0l = loa,n = 2l + [l - o

1A

”Bm - en“ + "Gn - 60", from (3.5.3).

Due to (3.5.4) we have

'"5 -9"—P-»0
n,m 0

and by A4,
sup "ve F(x,6n m) - Y F(x,&o)" —li+ 0.
—00 {0 ’
Therefore
(3.5.5) dh,m(x) = an(x) - J/n [Bm - Gn] [Ve F(x,eo)] .

Next we consider +n [Gm - Bn]. From (3.4.1) we know that

B [oy,) - 2 | etusy ¢ B [0 - 5,00]

'i.o.

)

Using Lemma 3.1, we obtain

i[5y = 3,2 | sy a8 [, [5,00)-5,00]] Lo

“\/E [Em -8 ]-—(nm_l)l/ZJ e(x,8,) d /m [EQ[FI'I(x)]—'Fr',(x)]" P, o,




due to (3.4.2) (ii).

[ [ - ™2 [ s 4 afoo] o

follows from (3.4.2) (iv). We also note that
(1) 1/ J 2(x,8,) d o (x)
= (mn"'l)l/2 J 2(x,8,) d BI";[F(x,eo)]

+ (om H1/? I 2(x,8,) d[a:(x)—B:[F(x,Bo)”.
As in:Lemma 2.1 and (3.4.2) (iv) we have

(om 1)172 [ 2(x,8,) d[a;(x)—B:[F(x,Bo)]] 2, 0.
Thus

©.5.0) | [iy - 5] HY2 | sy 0t [remsp]| o

(3.5.5) could now be written as

~

n

From (3.4.2) (v), it follows that

—0 x{®

sup I;h,m(x) - [Bn[F(x,BO)]—[ Q(X,BO) d Bn [F(x,eo)]-[ 0 F(x,Bo)]

% () = &n(x)-(mm‘l)l/2 [ 2(x,8,) d BF [F(x,eo)].[ve F(x,eo)]'.
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- (am 1)1/2 J 2(x,8,) d B} {F(X,BO)]'[VB F(x,eo)]'}l L,0

or

P
supldh’m(x) Gn,m(x) — 0.

Q.E.D.

As stated in (3.2.4), the covariance function of Gn n(x) is
3

E Gn’n(x) Gn’n(Y) = F(Xyeo) A F(Y)BO) - F(XQBO) F(Y980)-

To prove this consider

r

pn(®) = Bn[F(x,BO)] - | e(x,0,) 4 B_ [F(x,eo)]~[ , F(x,eo)]'

o]
~~
X
~

i

r

- | e(x,8,) a BF [F(x,ao)]»[ve F(x,eo)]'

G_(x) - j e(x,6,) d ) [F(x,ﬂo)]'[ve F(x,eo)]',

where Bz is independent of Bn and hence of Gn' Also, E(X,GO) is

defined as in (2.5.1). Now,
6, 06, (¥) = Gn<x)Gn(y)—GI_l(y)Jﬂ(x,eo)dl.%ﬁ[F(x,eo)]-[v9 F(x,00) |
- Gn<x>jz<y,eo>d3:[n'<y,eo)]-[ o T80

| 2 antfr)-[r, Foney]
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. ‘[z(z) d Bz[F(z)]-[ve F(y,eo)]'

G1 - G2 - G3 + G4.

E Gn,n(x)Gn,n(y) EG1 - EG2 - EG3 + EG4.
In the maximum likelihood case, applying (2.5.8), we have
(3.5.7) EGl = F(x,BO) A F(y,&o) - F(x,&o) F(y,BO)
- v, rex,00) - e v, Fev,80]
8 ] 0’18 ¢ 1 T
Since Bi is independent of Gn and the fact that E Gn = Ean = 0,
(3.5.8) EG, =E G, = 0.
From (2.5.5) we have
] ol '
(3.5.9) Ea, - [ve F(x,8 )] I (60)[v9 F(y,&o)] .
Combining (3.5.7), (3.5.8) and (3.5.9) we get the desired covariance

function.

3.6  HALF-SAMPLE METHOD

Suppose we have a sample of independent observations Xl,...,Xn

from a continuous distribution function F(x,GO), where
- J %1 . cyqs
60 = (81,...,6p). Let lemI be a sequence of maximum likelihood

estimators of the unknown parameter 80, derived without replacement
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from the half-sample Xi,Xé,..x,X&, where n = 2m. Consider the

estimated empirical process
(3.6.1) aX(x) = va |F (%) - F(x,85] -
B n n *“m

As suggested by Durbin (1976), this procedure converges asymptotically

to a Brownian Bridge, that is,

(3.6.2) oFx) 2o B[F(x,eo)].

In showing (3.6.2), a slight modification from the proof of
Durbin (1976) will be introduced. We will be using the methodology
employed in Chapter II. Hence, we assume the same set of conditions
for the estimator sequence except for condition Al. In this case, we
assume that:

m
P
.Z z(x&,eo)) + €1n’ where € — .

(3.6.3) Al. Jm [e*—e ] -
m O 5=1

=

When -n = 2m, we have

[aN]

(3.6.4) ‘ Jn [e:—eol = = g 2(X

1,8.) +
JH J=1 J, 0) (=2

In’
From Chapter 2, we know that this is asymptotically equal to

(3.6.5) 2 J z(x,eo) d /n Fm(x).

Also, we define the function dj(x) as
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[l - Fx,8p) if X <x, x €R
(3.6.6) d.(x) = J
J 1—F(x,60) otherwise.

Then the empirical process an(x) can be represented as

: = Al 2
(3.6.7) an(x) = an(x) + an(x), X € R,
where
m d.(x)
(3.6.8) al(x) = & —=
Jj=1 vn
: n d.(x)
(3.6.9) and ag(x) = J_
Jj=m+l n

Obviously (3.6.8) and (3.6.9) are independent of each other. We note

that

[1 - F(x,BO)][F(x,BO)] + [— F(x,BO)][l - F(x,&o)]

5[d;C0)

=90

wd 3a00]" = [1 - Fexog] [rreg] + [ rnep] i - rensg)]

F(x,BO)‘[l - F(x,BO)}.

Thus

E[q;(x)] = E[a;(x)] =0

aﬁd | | E[a*(x)]2 = E[a;(x)}z g [F(x,&o)][lv— F(x,GO)].

Therefore, ELm;(x) + ag(x)] =0
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and Bled o + a20]” = [rosep][1L - o),

which are the moments of an(x).

From Theorem 1.2, we know that

sup ’an(x) —‘Bn[F(x,BO)]’ —24 0.
—00 x{®

We claim that there exists two independent Brownian Bridges

B;[F(x,eo)] and B;[F(X,BO)] such that

(1) Bn[F(x,GO)] = B;[F(X,BO)] + B;[F(x,s;)]

(3.6.10)  (ii) sup |a1(x) - Bl[F(x,eo)]l P,
~w¢x<o | P n
.. P
(iii) sup Ja?(x) - BZ[F(X ] )]l — 0.
—oo¢xcoo | B n 70

Without going into the details, we know from Chapter II that

az(x) J/n [Fn(X) - F(X,B:)]

i [B,00 - P89 - /a [F(x, 6k - Pex,80)]

- X ' P
an(x) - Jn [Gm— 60] [VB F(x,BO)] + € where € — 0.

As in the proof of Theorem 2.1 and by (3.6.5), a:(x) is

asymptotically equal to
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) = B_ [F(x,eo)l -2 [ 2(2,8,) d B;[F(z,eo)] {va F(x,eo)]'.
Due to (3.6.10) (i) we have

| ¢*x) = B;[F(x,90)]+B;[F(x,60)]—2J e(2,60) a8} [F(z,6,)]
{ve F(x,BO)]'.

Consider
Gﬁ(x)G:(y) = Bn[F(x,BO)]Bn[F(y,Ga)]—ZB;{F(y,eo)]

: [Q(Z,BO) dB;[F(z,ao)]-[ve F(x,6,)

~ " . -~ - 1
-2 B; .F(y, ] e(z,eo) dB;.F(z,SO)T-~v8 F(x{eo)~
- Z‘B;‘ F(x 8, ] e(z,eo) dB;‘F(y,eo)"_ve F(y,BO)‘

— o n2
2 Bn F(x 8 )

1 [ ] . [ ]
Q(Z,BO) dBn~F(Z,90)' Lve F(Y)BO)_

+

4 Iz(z,eo) a8} [F(z,60)] [v, PCx,8,)]

. Jz(z,eo) dB;[F(z,BO)]'[Ve F(y,BO):

Gli—GZ_G3_G4_G5+G6

Since B; and B; are independent and E[B;(')] =0, 1 =1,2, we have

(3.6.11) EG, = EG,. = 0.
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From Section 2.5

(3.6.12)  Ea

o =BGy = 2[v, F(x,00)] T80 [v #(y,e(,)]'

(3.6.13)  EG

6= 4 [va F(x,GO)] I—l(eo)[va F(y,eo)]'
From the covariénce of a Brownian Bridge, we have
(3.6.14) EG, = F(x,8,) 4 F(y,8,) — F(x,8,) F(y,8,).
Combining results (3.6.11) to (3.6.14), we obtain
EGY(x) GX(y) = F(x,8,) 4 F(y,8,) — F(x,8,) F(y,8,).
n n 0 0 0 0

The mean of Gﬁ(x) is obviously 0. These are the moments of a

Brownian Bridge. Hence we conclude that
* 2
an(x) — B[F(x,eo)].

3.7 RANDOM SUBSTITUTION METHOD

The ébject of this technique is to transform the hypothesis
(2.6.1) into simple hypothesis. This is done by replacing the maximum
likelihood estimator 3 of the unknown parameter 60 by a

'corresponding éstimator, external to the sample, of a known value of 8.

First we will consider the finite—-sample case. Under the
composite hypothesis (2.6.1), suppose a sufficient statistic T1 for
8 exists and another statistic T2 exists with the following
property:
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(i) T2 is distributed independently from T

1°
(i1) The distribution of T2 does not depend on 8. This is
true since T1 is sufficient.
(i1ii) The transformation
T Xl,Xz,...,Xn — Tl’TZ

has a unique inverse T—l such that given the values of

T and T

1 2’

-1
T Tl’TZ — Xl,Xz,...,Xn.
Suppose T1 is known to have distribution function G(Tl,e).

Let 9* be an arbitrarily selected value of 8 and let TT be a

random vector from the distribution function G(TI,B*). The

independent random variables XT,..‘,Xz are generated by the inverse

transformation

-1 * X X X
P11, — xl,xnz,...,xn.

The i.i.d.r.v; have a known distribution function F(x; BO,G*). Thus
the composite hypothesis with unknown 6, based on X

1’X2""’Xn’ may

therefore be replaced by the simple hypothesis

X

. _ L S
Hy:  (8,8) = (By,8) = 6

based on X*,X*,...,X*. Statistics based on the sample process
1’72 n

1]

o (x) ﬁ[%u>—um%mﬂ} x € R,

could now be applied to test this hypothesis.
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Next we consider from a heuristic point of view an asymptotic
form of this method. Again we use the notations and assumptions for
the estimator sequence listed in Chapter II, under the maximum

likelihood estimator case. In addition, we have a strong assumption:

AB. fve F(x,so)]“l—l(éo)[ve F(y,SO)]' is independent of 6.

REMARK. The author, Durbin (1976), claims that this assumption holds
under general conditions which he failed to formulate in satisfactory
form.

Recall from Chapter II that asymptotically

(3.7.1) & (x) =« (x) - & [S—ao] [ve F(x,so)]' e

Bn[F(x,BO)}—fz(x,Go) dBn[F(x,BO)]'[ve F(;,so)]' ‘e

where en, 55 —24 0. - This representation shows that an(x) and 6

are uncorrelated and hence independent asymptotically.
We therefore take

"~

T1 = 8 and T2 = aﬁ(x).

The observation Xl,Xz,...,Xn are mathematically equivalent to

the sample process ah(x); x € R. We denote the transformation

~ ~N

T ah(x) — 8, an(x).

The inverse transformation is
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_1 ~ ”~
T 8, an(x) —_— an(x).

From (3.7.1) this has the form

o (x) = a_(x) + /i [E—ao] [ve F(x,so)]' ~e .

Suppose 6 has distribution function G(8,8) and let 8* be an
arbitrary selected value of 8. Let 8* be a random vector,
independent of X.,...,X , from the distribution function G(B*,B*).

1 n

As in the finite-sample case, XT,...,X: are equivalent to aﬁ(x)

where
X, . _ " — [ox_ % 3
an(x) = an(x) + /n [8 ] ] [VB F(x,6 )] €
¥ P " aF(k,ﬂo,B) GF(X,ﬁO,B)
€, — 0 and Y F(x,6 ) = 691 yo ooy aap , evaluated at
2

(po,e*). Recall from Chapter II that under the maximum likelihood case

(i) E[JE [3*—9*]] = 0
(ii) nE[[S*-e*]'[S*—e*]] = 1% 16%)  where

X, K, _ .7 X
12 ¥y = E[ve log £(x,5 )] [ve log £(x,5 )]

0 [l s 7]

'[Va F(x,é*)} -I*"l(s*) [Ve F(y,6*)]'

[Ve F(x,zso)]'x"l(éso)[v6 F('y,so)]'.
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The last equality is true since by assumption A7, this is independent

of 8.

We note that Ea(x) = 0 since Ea (x) = 0 and by (3.7.2)(i).

To find the covariance function of a:(x), consider
% X, .~ — kX %1 — % X
aX(x) ar(¥) = 2,00 [a () + /& (856" [v, Fev,6H]'] + /A 168%-6%
X

-[VBF(X,S*)]I-[;n(y)+JE (3*—9*)-[veF(y,5 )]']+en, e 2 o.

5, (%) o (¥) + v a0 [8%-6%] [vy F(3,6%)]'

+ J/n [3*—8*] [ve F(x,S*)]. ;n(Y)

+n [8%-8% [veF(x,a*)]' r6%-6 [VBF(y,s*)]'

L1+L2+L3+L4.

From Section 2.5 and Theorem 2.1
v, rex,60) 1 6.0 v, Fev,e0 ]
8 70 0 ] 0 *
From the fact that 6* is independent of 6 which is independent of
aﬁ(x) and E an(x) = 0, we have
E L2 = K L3 = 0.

From (3.7.2) (iii),
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_ -1
EL, = {va F(x,&o)] I (55 [Ve F(y,éo)]
Combining these results we get the covariance function

B ar(x) o (y) = F(x,80) 4 F(y,6,) - F(x,6,) F(v,5,),

which we know is the covariance of a Brownian Bridge. Hence we say
that a:(x) has the same limiting distribution as an(x).

For practical reasons, this method is not preferable due to the
cumbersome computation to obtain g*.' Moreso, it is not recommended

because of its lack of power (Durbin, 1973b).

REMARK. We make note that the above methods are not the only
distribution-free procedures. In fact, the well-known x? test is not
only used for testing completely specified hypothesis but also for
testing composite hypothesis. This is due to the fact that under
fairly general assumptions it is known how the probébility distribution
of x? is approximately affected when parameters are estimated from
the sample (loss of one degree of freedom for each parameter
estimated). Moreover, it is based on the sample distribution function
since for group boundaries Xpyeoor ¥y g the chi-square statistic can

also be represented as

1 - ‘ 2
. k [Fn(xi) Fn(xi_l) F(xi)+F(xi_1)]
Xt =n 2 F(%)—F(x, ) —
i=1 i i-1 .
where Xg = =% and X = +® ., As n —— o, it is approximately

distribution—free.



CHAPTER IV

NUMERICAL RESULTS

4.1  INTRODUCTION

In this chapter some pertinent numerical and computational
results are presented. The main purpose of the sampling experiment is

to investigate how fast the following converge:

(1) for fixed x € R,

;n(x) = J/n [Fn(x) - F(x,,gn)] 2, B[F(x,ao)]

.. ~ 2
(ii) sup [a (x)| — sup [B(t)]
—00{x<0 : 0<t<1
(4.1.1)
1
(iii) Jan(x)z d F(x,6_) i.J B(t)? dt
0
~ 1
X (X‘)z A 2
(iv) J o dF(x,8) ‘f”:J B
F(x,8 )(1-F(x,8_))
n n
0
where {Bn} is a sequence of maximum likelihood estimators of

80 = (el,...,ep) derived under the following procedures:
(i) Bootstrap Method

(4.1.2)
(ii) Half-Sample Method.
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~

We also wish to verify that the limiting behaviour of an(x) is
the same as the limiting behaviour of an(x). The same is true for its
related functionals.

Estimates of large sample percentage points of the statistics of

interest are also tabulated for commonly used significance levels.
These are used in application to test the null hypotheses

P\

(4.1.3) H.: Feg-= IF(x,B); X €R, 8 €ScRh ;.
f

|\
4.2 PROCEDURE

The experiment was conducted by i?vestigating 4 sample sizes
n = 50, 100, 150, 200 and 2 distribution functions: the normal
distribution with mean u = 1.0 and variance 62 = 1.0 and the gamma
distribution with parameter « = 4.0 and scale parameter g = 2.0.
Slight modifications in the computer program are necessary should one
want to test for various sample sizes, parameters or continuous
distribution functions. As stipulated in Chapter iII, the maximum

likelihood estimators of the parameters must satisfy conditions Al-A5.

As in the normal distribution N(u,0?) with density function

f(x)z“f—: y X € R,

2 2

the maximum likelihood estimators of x4 and o are x and s

respectively, where



(4.2.1) and

These estimators obviously satisfy the given conditions by letting

l

]
|

N

01 (X580 = X,

and

-~ 2 _ 2
‘Qz(xj980) - (X,j I-l) a.
Thus for p = 2, the 1 X p dimensional vector

/o [x - u, s* - a?]

[ n [Xi—u] g [Xi—u]z—oz

J/n [Hn—ﬂo]

+ € .
— n

1 Jn

z — ’
i=1l n i

Similarly, the gamma distribution G(a,B8) with density function

X
e A x(x—1 .
f(x) = ———oo0, x>0, a>0, 8>0,

a
r(a) 8
has maximum likelihood estimators

A -2 A
@ = x and g8 = g— with
X

n

0 (x500) = 5 [xje] - & [[XJ"“"r‘ as?

&~
——
e
{
5,
N
1
dex

25(X5:84) =
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Figures 4.1 and 4.2 show the computer program for this

experiment.

Step 1.

Step 2.

Step 3.

Step 4.

The algorithm of the program runs as follows:

Simulate a random sample of size n from a continuous
distribution function F(X,BO). Call this the

first-stage sample.

For each procedure in (4.1.2), derive the second-stage
sample. In the bootstrap method, this sample consists
of n elements drawn with replacement from the first-
stage sample. The half-sample method draws without

replacement n/2 elements from the original sample.

Using the second—-stage sample, calculate the maximum

likelihood estimators of 60.

Calculate all the statistics given in (4.1.1).

For each sample size, procedure and distribution function, the

above routine was executed 1000 times, thus generating 1000 values for

each of the above mentioned statistics. As a check on the sampling

experiment, the first-stage sample was used to compute for an(x) and

its functions, where 80 is specified. In the normal case,

60 = [1.0, 1.0] while in the gamma case 80 = [4.0, 2.0]. With this
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obtained data, the sampling distribution Fn(x), as defined in (1.1.3),
was computed for each statistics. The increment of x was arbitrarily
chosen. The results are tabulated in Tables 4.1, 4.2, 4.4 and 4.6.

The corresponding graph for this data when n = 200 are shown in
Figures 4.3, 4.4, 4.5 and 4.6. The Fi(x) column for each table is

computed by the formula

no. of XJ,S X
Fi(x) = 1000 s, d=1,...,n

i=1,2,

where i represents the method used in the estimation. The bootstrap
method is'represented by i =1, and the half-sample method by 1 = 2 .
i = 3 refers to the method whereby an(x) is involved under the
specified distribution function.

An IGP (Interactive Graphing Package) printout of the graph, as
shown in Figures 4.3, 4.4, 4.5 and 4.6, compares the behaviour of the
statistics under the two procedures with that of the theoretical
values. The horizontai axis corresponds to the x column in the table
while the y axis corresponds to the Fi(x) column.

Empirically derived percentage points are also tabulated as shown
in Tables 4.3, 4.5 and 4.7. The F;l(p), i = 1,2, represents the pth
percentile of the distribution of the statistics under method 1i.

In the tabulation of ;n(x), we have fixed x at 2. From the

theoretical results in Chapter III, the limiting distribution of this
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statistics under the hypothesis, say HO: F = G(4,2), converges to a

normal process with mean 0 and variance F(2,60)(1 - F(2,80)) where

X
F e"i !
F(2,8,) = . dx.
0 )
J, r(4):2

The 2z column in Table 4.1 represenfs the corresponding standard
normal deviates and the F(z) column is obtained by using the normal
table.

The K-S type of statistic was generated by calling the NKS1
package of the well-known IMSL (International Mathematical and
Statistical Library). The generation of this statistic was based on
Kolmogorov’s (1933) recursion formulas. Inasmuch as this package is
used to test that a random sample was drawn from a specified
distribution, slight changes were introduced in the external subroutine
for our purposes. In Table 4.2, the theoretical values in column F(x)
are obtained from Smirnov (1948); rounded off to four decimal places.

As to the C-vM and A-D type of statistics, we have made the

following versions for computational reasons:

A N n k _ ~ 2
e CRRICTONCN]
ok N 2
PER [;’,\— B;{X(k)’en],]\
n _
k=1 F(X(k),en) [1—F(x(k)’en)_

=1

where follows from the definition of Fn(x) in (1.1.3) and x

(k)

is the kth order statistics of the first—stage sample. Theoretical
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values of F(x) in the C-vM case can be found in Anderson and Darling
(1952). The same authors (1954) gave a short table of some percentage
points for the A-D statistic when the levels of significance are .10,
.05 and .01. 1In Figure 4.6, the "+"’s are derived from the values in

column F3(x) of Table 4.6.

4.3 OBSERVATIONS AND CONCLUSIONS

It was found that the experimentally derived distribution
function of the above mentioned statisiics agreed well with the
theoretical distribution function. The agreement was found to be
_ fairly close to 2 decimal places for an(x), K-8 and C-vM type of
statistics. As shown in the tables, even for n = 50, there seems to
be a good agreement to 1 decimal place. Hence we say that the
asymptotic value is reached very rapidly. The upper tail of the
distribution appears to be the part which comes into agreement most
rapidly with n. 1In application when n is large, it seems reasonable
to use the last upper tail - the region that makes for the statistical
tests.

From the graphs, there seems to be no significant difference
between the 2 procedures, especially at the tails of the distribution.
Some minor discrepancies occur between the fails. This is quite a
surprising result because theoretically we expect the statistics based
on the bootstrap method to converge faster than those under the half-
sample method due to the fact that more randomization is introduced and

the sample size used for estimating the parameter is larger.
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In spite of the approximations made for the C—vM, it appears that
its distribution behaves just as "nice" as the K-S. However, the A-D
seems a little bit "off" from the theoretical values. It appears, in

particular, that the experimental values are always greater than the

- A A _1
exact ones. Perhaps this is due to the function [F[x,&n][l—F(x,Bn)]]

which gives heavier weight at the tails of the distribution.

As to the effects of the distribution function, this author
observed that there is no significant difference between the gamma and
the normal case as shown in the graphs of the K-S and C-vM. This is in
consonance with our learned theory that these statistics are
distribution—-free. However, it seems that the distribution of A-D has
longer tail in the gamma case compared to the normal. This author
cannot explain £his phenomenon.

In testing the hypothesis (4.1.3), it is of considerable
importance to determine what sample size, test statistics or method
should be applied. Basing from these numerical results, it seems safe
to use n > 50 and the bootstrap method. But if one is concerned
about the computer time, then the half-sample method is preferable.
This author cannot suggest as to which test statistic is superior than
the other the fact that powers of these tests have to be considered.
However, for practical purposes, the K-S is recommended since it is
reasonably easy to evaluate especially with a coméuter. Without the

machine, the following version can be used:
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sup ko F(x
l<k<n '°

(k) * ¥

So far this thesis has limited its scope of study to the
asymptotic behaviour of the estimated empirical process and its related
functionals for the univariate case. Of equal importance in hypothesis
testing, one might consider the multivariate case and the power of the
tests given in this paper.

The enormous manipulation of data in this research was made
possible through the aid of some computer packages of the University of
Calgary Academic Computing Services. Information and conventions on

the routine used are available in the IMSL manual. Experimental data

of this study is available in the files of the Mathematics Department.
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Computer Program for The Normal Case -
This is to show that the limiting distribution of the estimated
empirical process, Koimogorov—=Smirnov, Cramer von Mises and
Anderson-Darling statistics under the 1)Bootstrap Method
2) Durbin’s Half-Sample Method, converges to the limiting distribution
of these statistics under the specified hypothesis,
H:F=Fo, where F is continuous.
integer i,j,k,nexec,n,kount,isam2(1000), ix(1000)
real sam1(1000),som2(10002),ep(1600),ks(1000),cvm(1000),and(1000),
&pdif(6),sum,var, rmean,x,fn,fnx,f1,f2,cm,ad,y
double precision dseed
external pdf
common rmean,var
open(27,file="nresearch.data’,form ='formatted’)
parameter(aver=1.8,8ig=1.0,nexec=1000 )
do 200 n=50,200,50
do 100 k=1,3,1
do 1 j=1,nexec
kount=90.0
dseed=9.0+j«k+n
sum=0.9
var=90.0 . ’
¢ Toke the first—stage somple ~N(1.0,1.0)
call ggnmi(dseed,n,samt)
do 2 k2=1,n
sam1(k2)=sam1(k2)*sig + aver
2 continue
¢ Order the sample
col!l vsrta(sami,n)
dseed=8.0+]sk+n
if (k .ne. 3) go to 16
rmean=aver
var=sig=»2
go to 12
16 if (k .ne. 1) go to 8
¢ Bootstrap Method:Take the second-stage sample,it’s mean and stdev.
g=n
call ggud(dseed,n,n, isam2)
9 do 3 k3=1,ng
i=isam2(k3)
sam2(k3)=sam1(i)
sum=sum+saom2(k3)
3 continue
rmean=sum/f loat(ng)
do 4 k4=1,ng
var=var + ({sam2(k4)—rmean)+*2)/float(ng)
4 continue
go to 12
c Durbin’s Half-Sample Method
8 ng=n/2
iopt=0
npop=n
ip=0
nsamp=ng
call ggsrs(dseed.iopt,npop.ip,mpop.pop.nsamp,msamp,somp.isam2,ier)
go to 9
¢ Calcuiate ep=sqrt(n)(fnx—f(x=*)),where x is fixed
12 x=2.0
do 5 k&=1,n

0O00000O0

Figure 4.1

Fortran Program for the Asymptotic Behaviour of the Estimated
Empirical Process and other Related Statistics under a
Normal Distribution
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it (samt(k5) .gt. x) go to 6
kount=kount+1
5 continue :
6 fnx=float(kount)/fioat(n)
x=(x—rmean)/sqrt(var)
call mdnor(x,f1)
ep(j)=sqrt(n)=(fnx—f1)
¢ Calculate ks=sup/fnx—f(x=)/
call nks1(pdf,sami,n,pdif,ier)
ks(j)=pdif(4)
¢ Calculate cvm=summation(fnx—f{(x=))ss2
ad=0.9
cm=0.0
do 7 k7=1,n -
fn=float(k7)/float(n)
y=(sam1(k7)—rmean)/sqrt(var)
call mdnor(y,f2)
cm=cm+{ fn—f2)es2
¢ Calculate ond=summation(cramer/f(x*)(1-f(x#*))
ad= ad+(fn—f2)ex2/(f2¢(1.0-12))
7 continue
cvm( j)=cm
and(j)=ad
1 continue
call vsrta(ep,nexec)
call vsrta(ks,nexec)
call vsrta(cvm,nexec)
call vsrta(and,nexec) ’
if (k .ne. 1) go to 18
write(27,10) n
10 format (20x,23hBOOTSTRAP METHOD FOR N=,i3)
go to 25
18 if (k .ne. 2) go to 19
write (27,20) n

20 format(20x,34hDURBIN’S HALF-SAMPLE METHOD FOR N=,i3)

go to 25
18 write(27,40)n

40 format(20x,37hUNDER THE SPECIFIED HYPOTHESIS FOR N=,i3)

25 do 15 k15=1,nexec

write (27.36)k15.ep(k15).ks(k15),cvm(k15),and(k15)
30 formot(Sx.i5.5x.f9.5,5x.f9.5.5x,f9.5.5x.f9.5,5x.f9.5)

15 continue

100 continue

200 continue
end
subroutine pdf{x,f)
real x,f,t
common rmean,var
t=(x—rmean)/sqrt(var)
f=.5serfc(~.7071068+t)
return
end

Figure 4.1 (continued)
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¢ Computer Program for the Gamma Case
c This is to show thot the limiting distribution of the estimated
¢ empirical process,Kolmogorov-Smirnov, Cramer—von Mises and
¢ Anderson-Darling statistics under the 1)Bootstrap Me thod
¢ 2) Durbin’s Half-Sample Method, converges to the limiting distribution
c of these stattistics under the specified hypothesis,
¢ H:F=Fo, -where F is continuous.
integer i,j.k,nexec,n, kount,isom2(1000Q)
real som1(1000),sam2(1000),ep(1000),ks(1000),cvm(1000),and(1000),
&pdif(6),sum,var,rmean,x,fn,fnx,f1,f2,cm,ad,y,a,b,alpha,beta,wk(1)
&,am1(1000)
double precision dseed
external pdf
common beta,alpha .
open(28.filex'gresearch.dato'.form='f§rmatted')
parameter(o=4.0,b=2.0,nexec=10800)
do 200 n=50,200,50 |
do 100 k=1,3,1
do 1 j=1,nexec
kount=0.0
dseed=9.0+jek+n
sum=0.0
var=0.0
¢ Take the first-stage sample ~G(4.0,2.9)
call ggamr(dseed,a,n,wk,samt)
do 2 k2=1,n
sami (k2)=sam1(k2)sb
2 continue
c Order the sample
call vsrta(sami,n)
dseed=8.0+j+k+n
if (k .ne. 3) go to 16
alpha=a
betao=b
go to 12
16 if (k .ne. 1) go to 8
¢ Bootstrap Method: Toke the second-stage sample, it’s mean and stdev.
ng=n
call ggud(dseed,n,n,isam2)
9 do 3 k3=1,ng
i=isam2(k3)
sam2(k3)=sam1 (i)
sum=sum+sam2{k3)
3 continue
rmean=sum/f loat(ng)
do 4 k4=1,ng
var=var + ((sam2(k4)-rmean)=*«2)/float (ng)
4 continue
alpha=rmeans+2/var
beta=var/rmean
go to 12
¢ Durbin’'s Half-Sample Method
8 ng=n/2
iopt=0
npop=n
ip=0
nsamp=ng
call ggsrs(dseed.iopt.npop,ip.mpop.pop,nsamp,mscmp.samp,isomz.ier)
go to 9

Figure 4.2

Fortran Program for the Asymptotic Behaviour of the Estimated
Empirical Process and other Related Statistics under a
Gamma Distribution
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¢ Calculate ep=sqrt(n)(fnx—f(x)s),where x is fixed
12 x=2.90
do 5 kS5=1,n
if (sam1(k5) .gt. x) go to 6
kount=kount +1
5 continue
6 fnx=float(kount)/float(n)
x=x/beta :
call mdgom(x,alpha,f1,ier)
ep(j)=sqrt(n)+(fnx-f1)
¢ Calculate ks=sup/fax—f(x*)/
do 31 k17=1,n
am1(k17)=sam1(k17)
31 continue .
call nksi(pdf,omi,n,pdif,ier)
ks(j)=pdif(4)
¢ Calculate cvm=summation(fax—f(xs))e+2
ad=e.0 .
cm=0.0
do 7 k7=1,n
fn=f loat (k7)/f1oat(n)
y=sam1(k7)/beta
call mdgam(y,clpha,f2,ier) i
cm=cm+{(fn—f2)=*2
¢ Calculate ond=summation (cramer)/(f(x*)(1=f(x*))
ad=ad+(fn—f2)es2/(f2+(1.0-12))
7 continue
cvm{ j)=cm
and(j)=ad
1 continue
call vsrta(ep,nexec)
call vsrta(ks,nexec)
call vsrta(cvm,nexec)
call vsrta(and,nexec)
if (k .ne. 1) go to 18
write (28,10)n
10 formot (20x,23hBOOTSTRAP METHOD FOR N=,i3)
go to 25
18 if (k .ne. 2) go to 19
write(28,20)n .
20 format (20x,34hDURBIN’S HALF~SAMPLE METHOD FOR N=,i3) .
go to 25 .
19 write(28,40)n
49 format (20x,37hUNDER THE SPECIFIED HYPOTHESIS FOR N=,i3)
25. do 15 ki15=1,nexec
write(28.30)k15.ep(k15),ks(k15),cvm(k15).cnd(k15)
30 formot(Sx,i5,5x.f9.5,5x.f9.5.5x,f9.5.5x,f9.5)
15 continue
100 continue
220 continue
end
subroutine pdf(x,f)
real x,f
common beta,alpha '
x=x/beta
call mdgam(x.alpha,f,ier)
return
end

Figure 4.2 (continued)
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Table 4.1

A Comparison of the Sampling Distribution of the Estimated Empirical
Process at x = 2 Using the Methods in (4.1.2)

NORMAL DISTRIBUTION

GAMMA DISTRIBUTION

u
[true | I I |true | l
value n = 50 | n = 100 u ‘ value n = 50 l n = 100
i
X l Z I F(z) }Fl(x)|F2(X)IF3(X)IFI(X)lFZ(X)lFB(X)" X I Z ' F(x) lFl(x)lFZ(x)lFB(x)IFl(x)IFZ(x)IFB(x)
i
-1.3|-3.56| .0000]| .000| .000] .001| .000} .000} .001f-0.65]-4.65] .0000] .007] .001| .000}-.002] .000{ .000
-1.1]-3.01| .0013] .002| .000] .002| .000| .001| .001}}-0.55|-3.94] .0000| .011] .006| .000| .007| .004] .000
-0.9|-2.48] .0069| .005| .005| .008| .005| .005} .005[-0.45]|-3.22] .0006] .025| .014] .000] .015} .013| .000
0.7]-1.92| .0274| .015] .022] .049] .023| .021| .033||-0.35[-2.51] .0060| .048| .052| .000| .039| .045| .000
-0.5|-1.37] .0853| .070| .075| .084| .059| .090| .088||-0.25)-1.79] .0367| .136] .126] .000] .108| .100| .000
-0.3]-0.82] .2061| .169| .198| .149| .180| .204| .210||-0.15|-1.07| .1423| .277| .261] .000| .242[ .251| .163
-0.1]-0.27| .3936| .379| .392| .382| .370| .404| .410||-0.05]-0.36] .3594| .528| .510| .384| .457| .485[ .439
0.1} 0.27| .e064| .598] .613| .525| .595| .647| .627|| 0.05| 0.36{ .6406| .769| .744| .774] .709] .733] .717
0.3] 0.82] .7939] .804] .828| .803| .810| .836]| .807|| 0.15| 1.07| .8577| .913| .899]| .934| .873| .884| .882
0.5] 1.37| .9147| .925| .927| .918] .918| .924| .928] 0.25| 1.79| .9633| .970| .966] .934| .958| .959| .965
0.7] 1.92| .9746] .974| .972| .994| .970| .968| .984f| 0.35| 2.51| .9940| .988] .989| .988| .988| .992| .984
6.9] 2.46] .9931| .991] .990] .998] .992| .991| .997| 0.45| 3.22| .9994| .999] .999| .998| .999]1.000] .994
1.1] 3.01| .9987| .998| .997]1.000] .997| .997]1.000f] 0.55} 3.94}1.0000]1.000]1.000] .999|1.000]| |1.000
1.3} 3.56(1.0000{1.000} .999| | .999(1.000] ]| 0.65] 4.65] | | {1.000] | |
1.5] 4.11} | |1.000] |1.000]| | | 0.75} 5.37| | | |
I I

e s s S B —— S S —— T— t— — — —— — — —— ——— —— - —— ——— ——
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Table 4.1 (continued)

NORMAL DISTRIBUTION

GAMMA DISTRIBUTION

s e — i — ——— —— — ———— it —— ——— Vo— — T——— ——— S————— t—— — Co— —

l

I

l

|

|true | ] [true | |
value n = 150 | n = 200 value n = 150 I n = 200
X l pA | F(z) =Fl(x)|F2(x)'Fs(x)lFl(x)le(x)lFS(x)“ X , Z I F(x) 'Fl(x)in(x)'F3(x)lFl(x)IFz(x)'Fg(x)
i
-1.3}-3.56] .0000| .000} .000| .000} .001] 65|-4.65] .0000]| .001| .002| .000| .001] .000| .000
-1.1}-3.01} .0013] .001| .001| .000]| .001) . 55|-3.94| .0000] .004{ .005] .000| .004| .004| .000
-0.9]-2.46} .0069{ .006] .003| .004] .004]| . 45|-3.22] .0006f .010{ .012| .000} .010] .010| .000
-0.7|-1.92] .0274| .014| .017] .022] .020] 35|-2.51] .0060| .032| .042| .000| .033| .036{ .000
-0.5|-1.37| .0853| .016] .072] .085] .072] 25|-1.79| .0367] .089| .111| .000| .089] .090]| .021
-0.3]-0.82] .2061| .191} .181} .174| 191 15]-1.07| .1423| .228| .264| .216] .208| .238| .106
-0.1}-0.27} .3936] .377| .368| .342] .394| 05]-0.36] .3594] .436| .495| .417| .401| .454| .478
0.1] 0.27] .6064] .605] .603| .604| .616] 0.05] .6406| .681| .730| .694| .672] .705| .669
0.3] 0.82} .7939| .806| .801] .772| .805] . 0.15} .8577} .857| .894| .840| .849| .873| .819
0.5] 1.37| .9147| .929| .918| .918| .9221 . 0.25] .9633| .951| .962| .942} .956| .964| .959
0.7] 1.92] .9746| .974] .975| .973| .974 | 0.35] .9940| .990{ .993] .992] .989| .988| .986
0.9] 2.46] .9931| .992| .992| .997| .994] . 0.45| .9994] .999] .997| .997| .998| .998| .996
1.1} 3.01} .9987| .998] .999| .999| 998|1.000}] 0.55] 1.0000]1.000{1.000]1.000| .999]1.000]| .998
1.3} 3.56/1.0000[1.000]1.000{1.000]1.000]1.000] 0.65] | | | [1.000] | .999
1.5; 4,11} | | | | | 0.75{ | | | | ;1 000

s e e s — i — s —— e e S — ——— — —— — —t——— — — ——
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Figure 4.3

An IGP Printout for the Plot of the Data Given in

Table 4.1 for the Estimated Empirical
Process at x = 2 when n = 200
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Table 4.2

A Comparison of the Sampling Distribution of the K-S Type of Statistic
Using the Methods in (4.1.2)

NORMAL DISTRIBUTION

GAMMA DISTRIBUTION

Jtrue ||

n

= 100

l

n =

100

Value-" n = 50
n

X ’ F(x) "Fl(x)le(x)lFs(x)'Fl(x)'Fz(x)'Fg(x)ﬁFl(x)le(x)ng(x)IFl(x)IFZ(X),Fg(x)

0.35| .0003| .002| .000|
.45] .0126]| .022] .029|
55| .0772]| .094| .096|
.65| .2080]| .236| .224|
.75| .3728] .381] .392|
.85| .5347|| .529] .549|
.95| .B725|| .657| .675]
.05] .7798]| .744| .779|
.15| .8580| .818| .841|
.25| .9121]| .881| .903|
.35| .9478|| .920] .944|
.45| .9701]| .954| .966|
.55| .9836|| .972] .979|
.65| .9914|| .988] .985|
.75| .9956|| .994| .993|
.85| .9979|| .995| .996|
.95| .9990]| .996] .999|
2.05| .9996| .997| .999]
.15| .9998|| .999]1.000|1.000]1.000]

.003]
.014]
.083]
.214]
.385|
.551]
.678|
.791|
.875|
.918]
.947|
.975|
.987|
.994|
.995|
.997|
.999|
.999|

.000] .001]
.015 .018|
.092| .080|
.229] .215|
.402| .380|
.534| .554|
.669| .687]
.784| .778|
.845| .850|
.900| .904]
.941| .939|
.963| .968|
.980| .982|
.991| .993|
.995| .9986| .
.999] .999] .
.999]1.000] .
.999|

| .
(1.
|

. 001}
.010|
.078|
.213|
.401}|
572
.715|
.813|
.895|
. 940}
. 962}
.974)
.988||
. 991

997|I1.
999|
999|
999
000

.000]
.014|
.096]
.223]
.389]
.544|
.693]
.794|
.854|
.913]
.945 |
.967|
.986]
.995 |

000 |

(1.
I
|
|
I

.000|
.018]
.090 |
.225]
.397|
.564|
.689]
.796]
.858|
.913|
.947|
.967|
.978|
.991|
.998|

000 |
|

.002|
.024]
.099|
. 236
.403]
.554|
.702]
.789|
.872|
.932]
.961|
.975]
.985|
.991|
.996|
.998|
.999|

.000]
.014]
.082|
.217|
.375]
.530|
.684]
.794|
.858]
.905|
.942|
.971]
.986|
.989|
.994]
.998|
.999] .

{1.0001.000(1.000]

I
l

.000] .000
.013] .013
.096| .092
.207] .222
.356| .377
.535] .544
.658| .701
.772] .795
.859| .869
.912| .924
.954| .961
.970| .985
.981] .994
.994| .996
.998| .997
.999| .998
999|1.000
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Table 4.2 (continued)

NORMAL DISTRIBUTION

GAMMA DISTRIBUTION

true ||
value l

n

= 150

n = 200

n = 150

n =

200

X l F(x) “Fl(x)’Fz(x)lF3(x)‘F1(x)'F2(x)’Fg(x)ﬁFl(x)

0.35]
.45|
.55]
.65]
.75|
.85]
.95]
.05]
.15]
1.25]
.35]
.45|
.55
.65]
.75]
.85]
.95|
.05
.15]

.0013]|
.0126||
.0772]|
.2080]|
.3728||
.5347]]
.6725||
.7798]|
.8580]|
L9121}
.9478||
L9701 ||
.9836]|
.9914]|
. 9956
.9979]|
.9990|
.9996]| .
.9998]|1.

.001| .000] .
.016| .011| .
.088| .076] .
.245| .227| .
.413| .397]
571} .531]
.688| .679|
.786| .794|
.871] .867|
.924| .913|
.961] .951]
.983| .973|
.991| .984]
.993| .991]
.996| .997|
.997| .998|
.999| .999]
999|1.000]
000 |

.410]
.577|
.715]
.827|
.900]
.935
.966|
.981|
.987|
.991|
.998|
.998|
.999|
.999|

001} .
015] .
085] .
2341 .

000| .000]
016] .014]
094| .077|
224] .216]
.396| .368|
.529| .545]
.628| .698|
.794] .797]
.864| .866|
.915] .918|
.947| .957|
.974| .976|
.985| .987]
.993| .993|
.995| .994|
.996| .997|
.998| .998|

{1.000/1.000]1.000]

.999| .999|1.000}|

.000]] .001| .001]
010f| .014| .013]
085|| .082| .081}
.230]| .233| .223]
.383|| .404| .392|
.572|| .561| .544]
.713]| .708] .700]
.795|| .795| .805]
.873|| .867| .868|
.919| .924| .916|
.949|| .951| .959]
.971|] .966| .978|
.986|| .976| .990]
.992|| .988| .999]
.996]| .995]1.000]
.998|| .998|

.999||1.000|

.000| .
.022] .
.100] .
.251] .
.409|
.567]
.692|
.801]
.881|
.929|
.964]
.983|
.988|
.993|
.996|
.998|
.999]
.999(1.
1.000]

.391]
.535]
.672]
.799]
.873]
.924|
.953]
.969|
.982|
.988|
.992]|1.
.996|

.997]

000| .
010] .
071] .
218] .

000

’FZ(X) 'F3(X) 'Fl(X) ‘FZ(X) |F3(X)

000| .000
012{ .016
083] .077
218| .219
.375] .401
.532] .569
.676] .692
.788| .800
.871] .877
.928] .930
.955| .958
.981| .982
.993] .991
.999| .993
000| .996

| .999

|1.000

...L8_



n
1 2"1 g =
- T LLLLL . 6555Ulll
| n“ i H'
¥ ¥
0.8 ¥ 0.8 — Q
" ] i ®
4 § ] R
0.4 4 Q 0.4 — Q
i ") i g
A Q _ %
O-O I.I’l 1 l L] T ) T ] T : Sl ] ﬁ] O-O 1.7'1 T I ] T T 1 l 1 1'—]
0 1 2 3 0 1 2
X (Normal Case) : X (Gamma Case)
Figure 4.4

An IGP Printout for the Plot of the Data Given in
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Table 4.3

Estimated Percentage Points of the K-S Type of Statistic
for Commonly Used Significance Level 1-p

’ NORMAL DISTRIBUTION '

GAMMA DISTRIBUTION

.005

true n = 50 n = 100 n = 50 n'= 100
value

-1 -1 [ -1 -1 ’ -1 -1 -1 -1
I-p IF (p)}iF; (P)|F, (p)|Fy (P) F (p) Il Fi(p)|Fo(pP)|F,(P)|Fs(p)|
| 1 THE Dl - Ny
.20 |1.073[|1.112[1.084]1.083]1.085 || 1.058|1.055]1.055]1.085|
.10 [1.224|[1.292]1.244(1.251|1.242 || 1.232|1.220[1.238]1.233]
.05 [1.358||1.415]1.396|1.384{1.377 || 1.378|1.362|1.376|1.335|
.02 |1.517||1.589|1.561|1.550]1.534 || 1.536|1.555|1.509]1.535]
.01 |1.628||1.667|1.682]1.642|1.596 || 1.585|1.638|1.659]1.605]
.005 |1.731}|1.760|1.820|1.737[1.695 || 1.643|1.676|1.783|1.676]
! i
i ]

NORMAL DISTRIBUTION ||  GAMMA DISTRIBUTION

true = 150 = 200 = 150 = 200

value

l " 1 TS
1-p IF (p) F, (p) Fy (p)}F (p) F, (p) {! F. (p) F (P)IF (p) F, (p):
| .20 |1.073|[1.062|1.058|1.059]1.056 || 1.057|1.0451.051|1.068]
| .10 |1.224|[1.206]1.202|1.209|1.216 || 1.206{1.218|1.199|1.197]
| .05 [1.358]1.318]1.341]1.363]1.317 || 1.341[1.311|1.337|1.331]
| .02 |1.517||1.429]1.503|1.516|1.474 || 1.573|1.469|1.536|1.433|
| .01 [1.628||1.526]1.600]1.633]1.595 || 1.675|1.548|1.728]|1.525]

|l 731“1 710|1 726!1 766!1 776 "

l.760ll.591‘1.807l1.595!




Table 4.4

A Comparison of the Sampling Distribution of the C-vM Type of Statistic
Using the Methods in (4.1.2)

NORMAL DISTRIBUTION " GAMMA DISTRIBUTION

[true || | il I
value n = 50 n = 100 " n = 50 n = 100

Fa(x)

X I F(x) IFI(X)lFZ(X)IF3(X)’Fl(X)le(X)IFB(X)HFl(X)IFZ(X)'F3(X)IF1(X)IF2(X)

i
.05| .1298| .123] .135| .104| .134| .129| .106] .126| .118| .119] .111] .107] .118
.15] .6104| .583| .629| .552| .585| .610| .597|| .620] .618| .579| .600| .594| .594
.25| .8116) .796| .822] .755| .804| .813| .820| .805| .805| .799]| .814| .799| .804
.35| .9016|| .889] .912| .877| .897| .897| .903|| .896] .909| .887| .900| .899| .898
.45| .9463| .934| .951| .939] .946| .948] .948|| .945| .949| .940| .946| .951| .944
.55| .9702| .969] .968| .962| .973| .974| .972|| .971| .970| .961| .971] .980] .976
.65| .9824| .981] .978| .976] .985| .989] .985| .982] .981| .979] .981| .988| .989
.75| .9901] .991] .989] .990| .991| .996| .992|| .990| .989| .990] .988] .995| .993
.85| .9923|| .994| .996] .994| .996| .998| .997|| .994| .993| .994| .993| .998| .995
.95| .9944| .995| .997| .995| .997|..999| .998|| .999| .995| .997| .996| .998] .995
.05| .9965) .996| .997| .996] .998] .999| .999J/1.000| .998| .998|1.000{1.000| .999

.15] .9986|| .997| .999| .998| .999|1.000]1.000}| | .998| .998| | {1.000
.25[1.0000]] .998| .999| .999|1.000] | I [1.000| .999| | [
.35/1.0000| .999]1.000| .999] | | I | | .999] | |
.45]1.0000]| .999] | .999] [ | N | | .999] |
.55]1.0000]|1.000| | .999] | | I | |1.000] | |

| | | [ I I




Table 4.4 (continued)

NORMAL DISTRIBUTION

GAMMA DISTRIBUTION

[true ||
value l

n = 150

n = 200

n =

150

n =

200

X i'F(x) “Fl(x) Fz(x)|F3(x)'Fl(x)le(x)'F3(x)"Fl(x)|F2(x)'F3(x)|F1(x)|F2(x)|F3(x)

.05]
.15]
.25]
.35]
.45
.55]
.65]
.75]
.85|
.95]
.05
11.15]
.25]1.
.35/1.
.45]1.
.55]1.

.1298|]
.6104]|
.8116]|
.9016]|
.9463||
.9702}|
.9824||
.9901]|
.9923||
. 9944
. 9965
. 9986|

0000]] .
0000} .
0000]] .
0000}j1.

|
000 | |
| l

.132] .123] .114]
.620{ .614| .609]
.818| .829| .825]
.911] .918| .918]
.954| .944| .958|
.979| .974| .975|
.986]| .988| .984]
.993| .994| .990|
.995| .997| .993|
.997| .998| .993]
.999] .998| .995|
.999| .999| .999|
999/1.000| .999|
999| [1.000] .
999 | |

.125] .116]
.617| .633]
.820| .825|
.907| .913]
.937] .959]
.964| .976]
.979| .989|
.988| .994]
.991| .995]
.995| .996]
.996| .998|
.997| .999|
.998] .999]
999|1.000|
.999|
[1.000]

.129) .142|
.611|| .608|
.815]] .821]
.904|| .908|
.947]|| .951]
.967|| .972|
.979|| .977]
.991]| .985]
.994 .993|
.998]| .998|
.999]|1.000|

.999]| [1
.999]| [
.999}| |
.999]| |
[1.000]] |
I

.109|
.607|
.815]
.911|
.961|
.982|
.990
.994|
.997|
.998|
.999|
.000|

l

.137] .107| .112|
.615| .592| .583]
.822| .820| .794|
.905| .908| .910|
.943| .948| .958]
.967| .963| .977]
.982| .978| .992]
.988| .986| .995]
.993| .991] .998|
.995| .995|1.000]
.997| .995] |
.998| .997| 1
.999| .998| [
.999| .999] |
1.000]1.000] |
|
|

.116
.613
.804
. 905
. 949
.976
. 986
.990
.996
.998
.999
.000

I
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An IGP Printout for the Plot of the Data Given in
Table 4.4 for the C -vM Type of Statistic’

when n = 200
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Table 4.5

Estimated Percentage Points of the C-vM Type of Statistic
for Commonly Used Significance Level 1-p

NORMAL DISTRIBUTION GAMMA DISTRIBUTION
true 1 = 50 = 100 n = 50 n = 100
value
‘ -1 | -1 -1 -1 -1 -1 -1

l1-p |F (p) r, (p) |F, (p)lF (p) F (p) I F,(p)|Fo(P)IF(P)]Fs(P) |
|— TN -l - ey

| .20 | .241) .252] 232| .246| .242 || .249 | .245| .241] .251]

| .10 | .347| .374| .333| .360| .354 || .353 | .338] .350| .353|

| .05 | .461| .480| .443| .468| .457 || .463 | .464] .471| .447|

| .02 | .620] .619] .669] .601| .586 || .633 | .626| .639| .554]

| .01 | 743" .723| 759 .735’ .667 || .736 | .764| .760| .673|

i
i 1
NORMAL DISTRIBUTION " GAMMA DISTRIBUTION
true ), - 150 = 200 n = 150 = 200
value

‘ -1 -1 I - -1 -1 -1
l-p |F (p) P, (p) F (p)lF (p) Fo(p) Il F1(p)|Fy(p) F,(p) Fo(p) |
| | | Ii | |
| .20 | .241) .242| .234| .235] .228 || .234 | .244] .235| .253|
| .10 | .347| .327| .323| .338| .329 || .333 | .321] .337| .332|

| .05 | .461| .435] .459| .483| .427 || .441 | .427| .466] .420]

| .02 | .620| .582| .576] .662] .575 || .679 | .544| .670| .576|

| l .651 || .810 '

1

743"

709| 680’

764|

.651! .835'

.638|
]




A Comparison of the Sampling Distribution of the A-D Type of Statistic

Table 4.6

Using the Methods in (4.1.2)

NORMAL DISTRIBUTION

I

GAMMA DISTRIBUTION

" n = 50 n = 100 l n = 50 n = 100
] ]

X IFl(X)le(x),F3(X)'Fl(x)'FZ(X)IF3(X)”Fl(X) Fz(x)ng(x)lFl(x)IFZ(X)IF3(X)

1] i

| 0.3]| .035] .071| .052] .053| .062| .048]| .012| .070| .059| .053| .061] .048
| 0.6]| .226] .362| .307| .318| .346| .275]| .325| .314| .285| .298| .292| .304
| 0.9]| .430| .595] .533] .545| .579] .496) .512| .515| .487| .515| .500| .527
| 1.2)f .551] .723| .676| .687| .705| .654] .644| .654| .639| .654]| .635| .670
| 1.5/ .668| .816| .769| .796| .808| .764| .727| .726| .714| .746| .738| .776
| 2.0 .792] .887| .867| .892| .895| .871| .822| .819| .825| .845| .831| .868
| 3.5|| .947| .972| .970| .987| .987| .971|| .936] .922| .949| .959| .952| .976
| 5.5] .983| .994] .989(1.000|1.000| .996|| .974| .963] .979| .991| .987| .994
| 7.5|| .993] .999| .997| | | .998|| .988] .978| .988| .994| .991] .997
| 9.5| .996] .999]1.000] | | .999|| .993| .988| .993| .994| .994| .998
|11.5|| .998]1.000| | | | . |l .993| .988] .995| .996] .995| .998
[13.5] .999| | | | 1 | .994] .990| .995| .997| .996| .998
|15.5]| .999| | | | | | .995] .991| .995] .997| .996| .998
[17.5]|1.000] 1 | | | . || .995| .992| .996| .997| .996] .998
[19.5]] | | | | | % | .996] .995] .997| .998| .996| .998
[21.5]] | | | | | Il .996] .995| .997| .998| .997| .998
|23.5]] | | | | | | .996] .996] .997| .998| .997|1.000
S | e e A R | R (O O A R
| | | | | | Il | | | | |
e A I I | R Y R N
| | | | | I x| x | % | x | x |
‘ I I [ I I | | | I |

T s, S e Gt s T e e S e S — ——— i V" s S rems ——— S ———— it Sma. T Siree. st e ]



Table 4.6 {continued)

NORMAL DISTRIBUTION

|

GAMMA DISTRIBUTION

n = 150

n = 200

n =

I
150

n

= 200

| 0.3] .048]
| 0.6]] .348]
| 0.9] .565]
| 1.2 .714]
| 1.5] .825]
| 2.0} .911|
| 3.5] .979]
| 5.5]] .998]
| 7.5] .999]
| 9.5(1.000]
{11.5]|
[13.5]|
[15.5]]
|17.5]]
[19.5]]
[21.5]|

|
|
I
l
|
I
I
|
l
|
I
I

.062]
.368|
.594|
.739|
.836]
.912|
.985|
.996|
.999|
.999|
.999|
.999]
.999)|
.999|
.999|
1.000]

.041 |
.307|
.523|
.682]
.797|
.891}
.979]
.996|
.999|
.999]
.999|
.999|
.999|
.999|
.999|
.999]

|1.000]

.043| .058|
.328| .335|
.560| .592]
.726| .835|
.827| .915]
.906| .988|
.977| .998|
.995| .999]
.998|

.999]

X

X

!

l
l I
| |
I I
I I
I I
I I
| I
| I
I I
I I
I I
I l

. 060}
. 296|
.552]|
.803]|
.892]|
.972|
.997||
. 998|

.069| .063| .061]
.318| .332| .339]
.518| .535| .555|
.668| .689] .712|
.751| .777} .795]
.866| .871| .885]
.965| .978| .973|
.989| .994| .994|
.996| .997| .998]
.996| .999| .999|
.996] .999|1.000|
.996] .999| |
.998|1.000| |
.998| | |
.998| | I
.998| | |
.999] | |
. | |

| | |
. | |
x| | I

I | I

.050|
.304|
.500]
.659|
.762|
.857|
.966|
.989|
.995|

.064]
.317]
.529]
.672]
.763]
.903]
.975|
.993]
.999|

X ﬂFl(x)lFZ(x)'Fg(x)lFl(x)'Fz(x)IF3(x)ﬂFl(x)'F2(x)|Fg(x)lFl(x)le(x)’F3(x)

.064
.312
.561
.696
L7197
.900
.978
.996
.999

.998/1.000]1.000

.998|
.998|
.998|
1.000|

e o st s S — t—

|
I
|
I
!
I
I
I
|
|
l

e e e . et - e . . ey ——- v — ——- — —— — S ———

X Extreme values have been discarded
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Figure 4.6

An IGP Printout for the Plot of the Data Given in
Table 4.6 for the A-D Type of Statistic
when n = 200
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Table 4.7

Estimated Percentage Points of the A-D Type of Statistic
for Commonly Used Significance Level 1-p

" NORMAL DISTRIBUTION

“ GAMMA DISTRIBUTION

true

.01

3. 857"4.399

3‘752l4.762

3.693

” 6.075

4.898!5.792

4.800|
]

n = 50 = 100 n =50 = 100
value
‘ -1 I-l -1 -1 ‘ -1 -1 -1 -1
1-p |F (p) P (P) [Fo(p) [F1(P) |Fy(p) [| F1(P)| Fo(p)IF{(p)|Fys(p) ]
l : — N D Dl
| .10 |1. 933n2 305(2.079|2.048(2.034 || 2.775| 2.841|2.409|2.573|
| .05 |2.492]j2.970|2.736|2.737|2.597 || 3.916] 4.495|3.306|3.445|
.01 l3 857“5 541‘4 433‘4 .066(3.605 " 7.942 12.963'5.262 7.113’
i i
’ NORMAIL, DISTRIBUTION GAMMA DISTRIBUTION
true y  _ 150 = 200 = 150 = 200
value
! -1 -1 -1 -1 ! -1 -1 -1
1-p lF (p) Fl(p) FZ(P):Fl(P) Fy(p) H F (p) Fz(p)‘Fl(p) Fz(p){
]
.10 |1.933(/1.904(1.892]1.961]1.869 || 2.221]2.230|2.329]2.181]|
.05 [2.492||2.404|2.469]2.716|2.413 || 2.976|2.770|3.134]2.851|
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