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ABSTRACT 

The classical problem of testing whether a set of 

observations comes from a population with specified distribution 

function F(x) has received a fair share of attention in the 

literature. As early as 1933, Kolmogorov introduced a "distribution 

free" statistic based on the empirical process a and has derived the 

asymptotic distribution of this test statistic. Since then a lot of 

work has been done on this subject. 

However, some goodness-of-fit problems arising in practice do not 

usually specify the parameters of F(x). Our main concern then is to 

test the hypothesis that a random sample was drawn from a parametric 

family of distribution functions. One way of testing this composite 

hypothesis is to adapt the empirical process where the parameter 8 is 

approximated in terms of the random observations. As will be shown in 

Chapter II, the limiting distribution of test statistics based on the 

estimated empirical process depends on the underlying distribution 

function F(x). 

Recent works of Burke and Goinbay (1988) and Durbin (1976 and 

1961) proposed distribution-free procedures to test this composite 

hypothesis. These are the bootstrap method, half-sample and random 

substitution method. 



It is the purpose of this thesis to show that the asymptotic 

behaviour of the estimated empirical process based upon the above 

procedures is the same as the asymptotic behaviour of the empirical 

process under the specified case. The same is true for the 

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises type of 

statistics. 

Numerical results from a computer study are tabulated in 

Chapter IV to examine these results and see how the results for sample 

sizes of 50, 100, 150 and 200 compare with the asymptotic values. 
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CHAPTER I 

TESTS BASED ON THE EMPIRICAL PROCESS 

WHEN PARAMETERS ARE SPECIFIED 

1.1 INTRODUCTION 

The problem treated in this chapter is that of testing the 

hypothesis that n independent, identically distributed random 

variables have a specified continuous distribution function F(x). In 

statistical 1anguae, this goodness-of-fit problem is to test the 

simple hypothesis 

H0: F(x) = F0 (x). 

For example, the population may be specified by the hypothesis to be 

normal with mean 2 and variance 4, where the corresponding cumulative 

distribution function 

-  (y-2 ' 
(_9'2 
J ,  

if 8 
e dy. 

2/2r 
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consider those tests which compare the empirical distribution function 

F(x) with the hypothetical distribution function F(x). 

Let X1,X2,...,X be a random sample from a continuous 

cumulative distribution function F(x). We define the empirical 

distribution function of the sample by 

n I(X.≤x) 
F (x) Z   - < x < , 

n j=l 

where 1(A) denotes the indicator function of the event A. An 

equivalent definition of F(x) in terms of the ordered statistics 

X(1) X() 

of the random sample X1,X2,...,X is given as 

(1.1.3) F(x) = 

J0 if X(1)>x if 

in X(k) :5 X < 

[1 if X :5 X. 
(n) 

1< = l,...,n-1 

Asymptotic behaviour of test statistics based on the empirical 

distribution function will be our main concern. These are the famous 

Kolniogorov-Smirnov (K-S) statistic 

D sup IF (x) - F0 (x)(, 
n .—oo<X<co 

the Cramer-von Mises (C-vM) statistic 

00 

2 

= n 1F (x) - F0(x)] dF0(x), n J In 
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and the Anderson-Darling (A-D) statistic 

A2 00 r 1' IF (x) - F0(x)} 2 d F0(x) 
nI  -. 

-Co 

Under the null hypothesis, these statistics are asymptotically 

distribution-free. From a goodness-of-fit point of view, this is a 

very desirable property. 

As will be shown in Section 6, the limiting distribution of the 

above mentioned statistics will be based on the Brownian motion and 

Brownian Bridge processes. These Gaussian processes are discussed in 

the next section. 

1.2 BROWNIAN MOTION AND OTHER GAUSSIAN PROCESSES  

The physical phenomenon of the Brownian motion was discovered by 

the English botanist Brown in 1827. A mathematical description of this 

process was first derived from the laws of physics by Einstein in 1905. 

Since then the subject has made considerable progress. 

The simplest model for a one-dimensional Brownian motion or 

Wiener process can be given in terms of the random walk model. Assume 

that the particle is moving on the real line and starting from the 

origin, it can only move one step to the right or to the left. These 

steps are assumed independent. If X. represents the outcome of the 

th step of the particle with possible values 1 or -1, then X1,X2,... 

are identically and independently distributed random variables 



Figure 1.1 

-4-

(i.i.d.r.v.) with P(X1) = P(X-l) = .. A typical realization of this 

stochastic process {x, t E T} would be 1, 1, -1, 1, -1, -1, 1. This 

is shown in Figure 1.1 where the ordinate for t=n is the value of X. 

(time) 

A Simple Example of a Stochastic Process 

After n steps, this particle will be located at S  X1 + X +...+  X. 

Thus the created path S1, S2 ,... imitates the Brownian motion quite 

well if the time unit and steps are short enough. In a more realistic 

model of a Brownian motion, the particle moves in a continuous time 

scale and continuous state space. 

Definition 1.1  

A stochastic process {W(t,) = W(t); 0 ≤ t 1) where w E Q, 

(2, A, P} is a probability space, is called a Brownian motion if 
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(i) P(W(0) = 0) = 1, 

(ii) W(t) N(O,t), 0 S t ≤ 1, 

(iii) W(t 1) - W(t 0), W(t2) - W(t 1), ... ,w(t ) - W(t ,) 

are independent for 0 S to ≤ t1 ≤ t ≤ 1, 

(iv) the sample path function W(t,) is continuous in t. 

A direct consequence of properties (ii) and (iii) is that 

[w(t 1),. . . ,W(t)] is multivariate normal with mean 0 and covariance 

function 

E W(t) W(t') = t A t', 

where t A t' = min(t,t'). The existence of this process on the space 

C[ 0 ,l] of Definition 1.4 was derived by Billingsley (1968, Section 9). 

Definition 1.2  

A stochastic process {B(t); 0 ≤ t ≤ l} is called a tied-down 

Brownian process or Brownian Bridge if 

(i) the joint distribution of B(t1), B(t 2),...,B(t) 

(0 ≤ t1 ≤ •• ≤ t :51; n 1, 2,...) is Gaussian 

with E B(t) = 0, 

(ii) the covariance function of B(t) is E B(t)B(t') = tAt'-tt', 

(iii) the sample path function of B(t,) is continuous in t 

with probability 1. 

(iv) B(0) = B(l) = 0 a.s. 
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The existence of such process is a simple consequence of Lemma 

1.4.1 in Csirgo and Révész (1981). Here, the Brownian Bridge can be 

represented as 

B(t) = W(t) t W(l), 0 t ≤ 1, 

where {W(t)} is a Brownian motion. An important property of the 

Brownian Bridge is that it behaves like a Wiener path W conditioned by 

the requirement W(l) = 0. To show this consider 0 < t1 < t2 < 1. 

From Definition 1.1 (ii) and (iii), we know that W(t.) - W(t. 1) is 

normally distributed with mean 0 and variance t. - t. and that 
1 1-1 

W(t 1), W(t2) - W(t1), W(1) - W(t2) are independent. Hence, their 

joint density is 

(1.2.1) 

- 1 W(t1)2 (W(t2)_W(t1)J2 + [W(1)-W(t2)J 21 
ti + t2-t l i-t2 

e 

(2ir) 3/2 

Using some simple transformations, we obtain the same density for 

W(t 1), W(t2 ), W(1). We note that the density of W(l) is 

- 1 wfl\2 
' 

(2r) -1/2 e 

Thus the conditional joint density of W(t 1) and W(t2) given W(1) = 0 

is 

1 
2 

e 

W(t1)2 + [W(t2)_W(t1fl 2 

ti t2-t l  + l-t2 

2r (t1(t2-t1)(l-t2))112 
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e 

i tW(t) 2 -2W(t1)W(t2) (l-t1)W(t2)2 

- t(t-t 1) - t2-t 1 + (t 2-t 1)(l-t2) 

2n (t1(t2-t 1)(l-t2 )) 1"2 

It can easily be verified that this is the joint density of two normal 

variables with variances t1(l-t 1) and t2(l-t2) and covariance 

t1(l-t 2). Similarly, the joint density of any finite set of W(t)'s 

given W(l) = U is normal with covariance function in Definition 

1.2 (ii). Since the distribution of a normal process in C is 

determined by its finite-dimensional distribution this implies that the 

distribution of {B(t)} is the same as that of (W(t)) given W(1) = 0. 

Definition 1.3  

A Kiefer process K, defined on [0,1] x (0,(o), is a separable 

Gaussian process with mean E K(t,n) = 0 and covariance function 

E K(t1 ,n1) K(t2 ,n2) = n1 i1 n (t1 ii t) - t1t2}. 

For fixed n > 0, 

where 
- 

n K(t,n) = 

stands for the equality of all finite-dimensional 

distributions and B(t) is a Brownian Bridge on [0,1]. As the name 

suggests, this process was first studied by Kiefer (1972). 

The above stochastic processes are Gaussian since all its finite 

dimensional distributions are normal. An important property of the 
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Gaussian process is that it is determined stochastically by its mean 

and its covariance function (Durbin, 1973b). 

1.3 PRELIMINARIES  

In the next two sections, we will be following the line of 

thinking of Durbin (1973b) and Billingsley (1968) in showing the weak 

convergence of the empirical process 

(1.3.1) x(x) = .in- (F(x) - F0(x)) x E R. 

Along these lines, we set the following definitions: 

Definition 1.4 

The space CfO,1I is the space of continuous functions in the 

interval [0,1], where C, the class of Borel sets in C, is generated by 

the uniform metric 

c(x,y) sup Jx(t) - y(t)J, for x, y E C. 
0≤t1 

Definition 1.5  

The space DfO,ll is the space of functions on [0,1] that are 

right continuous and have left-hand limits, that is, 

(1) for 0 < t < 1, x(t+) = urn x(s) exists and x(t+) = x(t), 
s4.t 

(ii) for 0 < t 1, x(t-) = urn x(s) exists. 

stt 
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On D, we use the Skorohod metric 

d(x,y) = mi sup Ix(t) - + sup It - 

1%EII 10:5t:51 

where x, y E II and ii is the class of all strictly increasing 

functions on [0,lJ such that A(0) = 0 and A(l) = 1. 

Definition 1.6  

Weak convergence in space D is used in the following sense. 

The stochastic process 

{X (t)) -s {X(t)} 

if 

(i) the finite - dimensional distribution of {X(t)} converges 

weakly to {X(t)}. That is, 

IX n (t 1), X(t2)...X(tk)J -i [X(tl),...,X(t k )]. 

(ii) {X(t)} is tight. 

{X(t)} is tight if {} is tight, where 1'n is the distribution of 

X. Paraphrasing Theorem 15.5 of Billingsley (1968), tightness follows 

if 

(i) for each positive q there exists an a such that 

P{X: IX(0)J > a} S 17, n ≥ 1, 

(ii) for each positive €. and q, there exist a 5, 0 < S < 1, 

and an integer no, such that 
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w(5) > 6, ≤ q, n ≥ no, 

where w(5) is the modulus of continuity defined by 

w (5) = sup IX(s) - X(t)I, 0 < 8 < 1. 
X fs-tl<5 

In this case, if P is the weak limit of a subsequence 'F'' of 'P 
nJ I nf' 

then P(C) = 1, that is, the sample paths of the limiting process are 

continuous almost surely. 

1.4 THE EMPIRICAL DISTRIBUTION FUNCTION 

The empirical distribution function, as defined in (1.1.2) and 

(1.1.3), is sometimes called the sample distribution function. It is 

easy to verify that for fixed x, F(x) is the relative frequency of 

successes in a Bernoulli sequence of trials with 

E F(x) = F(x) 

var F (x) - F(x)(1—F(x))  
n n 

By the classical strong law of large numbers, for fixed x, 

F(x) a. s. F(x) 

Hence, F(x) is an unbiased and strongly consistent estimator of F(x). 

As n -pCO, F(x) can be uniquely determined with probability one. 

This idea was embodied in the following 



Theorem 1.1 (Cantelli 1917 and Glivenko 1933) 

sup IF n a.s. (x) - F(x)J 0 
—<x<-

1.5 ASYMPTOTIC DISTRIBUTION OF THE EMPIRICAL DISTRIBUTION FUNCTION 

Consider the ordered sample X (1) ≤ X(2) ≤ X(n) from a 

continuous distribution F(x). To test the null hypothesis (1.1.1), we 

let 

t(.) = F0(X (J) ). 

Under H0, 0 t(1) • S t() S 1 is an ordered sample of n 

independent observations from a uniform distribution U(0,l). Let 

n I(t (. s t) 
F(t) = 

n 
j=1 

Viewing F(t), 0 t i} as a stochastic process, we want to show 

that its distribution is the same as the Poisson process P(t) with 

the condition P(l) = 1. 

From basic probability we know that the distribution of 

t(2) *..t() is 

(1.5.1) dP = n! dt dt dt , 0 t :5 t t :5 1 
12 n 1 2 n 

This distribution can be realized as the distribution of occurrence 

times in a Poisson process given that n events occur in [0,1]. 

Let {P(t)} be the Poisson process with occurrence rate n and 

jumps of I for 0 ≤ t ≤ i, i.e., n{P(t2) - P(t 1)) has Poisson 

distribution with mean 
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(1.5.2) n[t2-t 1] for 0 t1 t2 1, 

F(0) = 0 and increments are independent. 

Consider a set I 1 of time points 0 < t < n < t < 1 and choose 

dt. small enough such that (t., t. + dt.) are nonoverlapping. The 

probability of no event in [0,t1), one event in [t1, t1 + dt1), none in 

(t1 + dt l' t2), one in (t2, t2 + dt2) none in [t + dt, 1] is 

-nt 1 -ndt1 -n(t2-t1-dt1) _fl(l_tn_dtn) f n 
e e ndt1 e ndt e • o Z dt. 

n i=l 

1dt n dt + olin dt. 
=l 

This follows from (1.5.2). The probability of n events in [0,1] is 

-n n 
e n 

n! 

Thus the conditional probability of an event in [t., t. + dt.) for 

i = 1,...,n, given n events in [0,1] is 

n! e -n n n 
dP= 

n 

1 
dt •••dt +0 Z dt. 

n . 
i=l  

-n n 
e n 

1(1.5.3) n! dt dt + o [i nj Z dt. , 0 < t < t < 1. 
1 n 1 n 

= 

As max(dt.) —+ 0, we see that the densities (1.5.1) and (1.5.3) are 

the same for 0 < t < t < 1. Since the events t = t 
1 n (i) (j) 

(i * J) t(1) = 0, t(n) = 1 in (1.5.1) have zero probability, the two 

distributions are the same for 0 ≤ t 1 :5 2 t :5t < 1, i.e., the 
n 
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distribution of the occurrence times of {P.(t)} in [0,1] given 

P(l) = 1 is the same as that of the uniform order statistics. Since 

the mappings from the vector [t 1,...,t]' to the space D of 

functions on [0,1] are the same for both Fn(t) and P(t), it follows 

that the distribution of the stochastic process F 1(t)} is the same 

as that of the process {P(t)} given P(l) = 1. 

To study the asymptotic behaviour of F'(t), we normalize to give 

the empirical process 

(1.5.4) al(t) = .I F(t)_t], 0 S t 1, 

where E al(t) = 0 and the covariance function is 

(1.5.5) E a'(t) a'(t') = t A t' - tt'. 

These moments follow from (1.4.1) and (1.4.2). The pointwise behaviour 

of a is quite simple. For fixed x E 

.a n (x) -p N(0,F(x)(1-F(x)) 

or for fixed t E [0,1], 

al(t) -L N(0,t(l-t)). 

We take note that the sample paths of {a'(t)} are elements of 

space D[0,l] of Definition 1.5. To find the limiting distribution of 

cx'(t), we want to find a normal process in the space D[0,1J that 

coincides with the mean and covariance function of a'(t). as shown in 

(1.5.5). From Definition 1.2, the Brownian Bridge satisfies these 
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conditions. However, since its domain is in space C[O,1], we need to 

extend its domain to the space D[O,l]. 

Following Billingsley (1968, Section 16), let P(W(t) E A) 

= Pr (W(t) E A fl c), for each A E 2, where the latter probability is 

being calculated from the distribution of W(t) on (C, Ce). The same 

is true for {B(t)} because the Brownian Bridge is defined in terms of 

W(t). Since C is a member of the class 2, we have 

P(W(t) E C) = Pr(B(t) E C) = 1. 

This means that the stochastic process {W(t)} and {B(t)} in D 

have continuous sample paths with probability 1. 

Using the multivariate version of the Central Limit Theorem, we 

have 

(&(t.l) ,... ,a(tk)) - 2 p n 

for any fixed sequence 0 ≤ t1 ≤ •.. ≤ t 1. This suggests that the 

finite-dimensional distribution of {al(t)} converges weakly to those 

of {B(t)}. 

1.6 ASYMPTOTIC THEORY OF SOME FUNCTIONALS OF THE EMPIRICAL PROCESS  

From Billingsley (1968, Section 5), an important result of the 

weak convergence theory is that if g is a measurable function in D 

which is continuous almost everywhere in metric d and with respect to 

the distribution of {B(t)} and if 

1a'(t) 1 1L {B(t)} 
in J 
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then 

+-(t)) _!, g(B(t)). 

Due to the results in Section 1.5, it seems natural to replace 

the {a(t)} process by the {B(t)} process as n -+ , and 

consequently, the function of {at(t)} will converge in distribution 

to the function of {B(t)). The same is true for cx(x). In 

particular, 

-In D = sup ja(x)J -. sup IB(t)I, 
-03<X<CO Otl 

(1.6.1) 

and 

n 

A2 
n 

J-- = 

T 
J-- = 

a(x) 2 d F(x) 

CX (x) 2 dF(x) n  th 
F(x)(l-F(x)) •. 

B(t) 2 dt, 

1 
f B(t)2 
j t(1-t) 
0 

However, from Definition 1.6, the weak convergence of the 

finite-dimensional distribution of {a'(t)} to {B(t)} does not imply 

convergence in D. The "tightness" of a 1 (t)} has to be shown. To 

do away with this tedious proof, we quote the result with the best 

rates for approximating {a'(t)} by a sequence of Brownian Bridges. 

We have 

Theorem 1.2 (Komlós, Major and Tusnády 1975) 

If the underlying probability space is rich enough (that is, an 
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independent sequence of Wiener processes, which is independent of the 

originally given i.i.d. sequence can be constructed on the 

assumed probability space), one can define a Brownian Bridge 

{B(t), 0 ≤ t S i} for each n and a Kiefer process {K(t,y); 

o ≤ t ≤ 1, 0 < y < oo} such that 

and 

sup 
—o<X<co 

n n 
Ia (x) - B (F(x))I a.s. OIn —1/2  log n} 

sup In 1/2 a n (x) - K (F(x),n)f a.s. O{log2 nj. 
—<x<-

Since B(F(x)) = '. B(F(x)) = B(F(x)), the above theorem 

implies that 

Thus 

a n (x) —i B(F(x)). 

g(a(x)) --, g(B(F(x))), 

where g is a continuous function. 

To prove the results in (1.6.1) it is sufficient to show that the 

functions 

(1) g(x(t)) = sup Ix(t)1 
O≤tl 

(1.6.2) 

I 

(ii) g(x(t)) = j x(t) 2 dt 
0 

are continuous in d for all x(t) E D. 
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Now if d(x,x') < 6, there is a A € A such that 

sup IX(t) - x'{A(t)}I + sup It - A(t)f < 2 
OStl Ot≤l 

so that 

sup Ix(t) - x'{A(t)}f < 2 E. 
O≤t≤1 

We note that 

sup fx(t)f ≤ sup Ix' {A(t)}f + sup fx(t) - x'{A(t)}f 
Otl OSt≤1 OtS1 

sup Jx'(t)( + 2 E. 
O:st:s1 

Similarly, one can show that 

sup Jx(t)I ? sup fx(t)f - 2 E, 
Ot≤1 ot1 

whence sup Jx(t)I is continuous in metric d. 
O≤t≤l 

As to the proof of (1.6.2) (ii), we let z(t) = x(t) 2 and show 

that j z(t) dt as a function of z(t) is continuous in d. Now for 

0 

any sequence of functions z  converging to z in d there exist 

functions A such that urn z(A(t)) = z(t) uniformly in t and 

urn A m (t) = t uniformly in t (Billingsley 1968, page 112). Since 

every element of D is bounded and has at most a countable number of 

discontinuities it is Riemaun integrable. Take Riemann subdivisions 
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o < t1 <...< t p < 1 

for J 
0 

1 

for J z(t) dt and 0 < A(t 1) <•< A(t) < 1 

0 

1 

z(t) dt. As in -i 00 the upper and lower sums for the latter 

integral converge to those for the former. It follows that 

J1 z(t) dt ; J z(t) 

Cl 

Hence j z(t) dt is continuous in d. 

0 

We take note that this argument does not apply to the function 

since the function 

g(x(t)) - J1 X(t)2 
- t(1-t) dt 

0 

(t(1-t) 1 is not continuous at t = 0 or 1. As 

suggested by Durbin (1973b, page 31), one could consider the 

convergence of the statistic obtained by integrating over the range 

(5, 1-5) and then let 5 -. 0. 

A significant application of the above results is in testing the 

null hypothesis in (1.1.1). In practice, if measure ./i D is 

adapted, the null hypothesis is rejected for those samples for which 

.Jn D = sup fa(x) 2:c, 
n —co<X<oo 
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where c is calculated from 

a = Pr( sup IB(t)I ≥ c), 
0t≤l 

for a specified a, say .01 or .05. 

1.7 NUMERICAL TABULATION OF THE DISTRIBUTION OF THE K-S, C-vM AND  
A-D TEST STATISTICS  

Kolmogorov (1933) introduced the statistic 

D sup jF(x) - F(x)l, 

and showed that it has the following properties which make it useful 

for judging how "close" F(x) is to F(x): 

(i) the probability distribution of D depends on n but is 

independent of F(x), 

(ii) for large n, the probability distribution of D is given 

by the relationship 

00 

1 -2j (1.7.1) lim Prob{fi n D < z} = 1 - 2 Z (_l) e = L(z). 
n-.00 j=l 

In his original paper, Kolniogorov derived a system of recursion 

formulas which make it possible to compute for any finite n the 

probabilities 

ProbD < for c = 1,2,...n. 
in nj' 
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Birnbaum (1952) gave a numerical tabulation of the distribution of K-S 

statistic for finite sample size. Massey (1950) also tabulated 

Prob'D < for selected values of c and n. He obtained a system 
in nj 

of recursive formulas, equivalent to Kolmogorov's, as well as a 

procedure for replacing them by a system of difference equations. 

The function L(z) has been tabulated by Smirnov (1948). A new 

proof of (1.7.1) has been given by Feller (1948) and a heuristic 

outline of a proof by Doob (1949). Doob's derivation was based on the 

evaluation of the probability that a sample path of W(t)) crosses one 

or both of two straight-line boundaries. 

Cramer (1928) proposed as a measure of the discrepancy between 

F(x) and F0(x) the statistic 

LIF n (X) F0(x)] dx. 

This was generalized by von Mises (1931) to the form 

03 

Lg(x) [F(x) - F0(x)] dx, 

where g(x) is a suitably chosen weight function. Smirnov (1936) 

modified this to 

CO 

LY, (F(, (x) ] IF (x) - F0 (x)] d F0(x) 
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so as to give a distribution-free statistic. When 'P = 1, we call this 

the Cramer-von Mises statistic and write it as 

03 

2 

= n F (x) - F0(x)} d FO(X). 
n j I n 

-03 

' 
When 'P[F0(x)] = IF 0 (x)(1-F O(x)) I , we have the Anderson-Darling 

statistic 

03 

A2 n 
n. 

-03 

2 

IF n (x)-F O(x) I  d F0 (x) 

F0(x)[1_F0(x)} 

Little is known about the exact distribution of C-vM statistic. 

Marshall (1958) has given explicit expressions for the distribution 

functions of V2, V2 and V2 and Stephens and Maag (1968) have given 

formulae for the extreme lower-tail probabilities for V2. 
n 

We know that for large n, the distribution of the C-vM statistic 

is approximately the same as the distribution of 

= J1 B(t) 2 dt. 

0 

The characteristic function of V2 is 

(1.7.2) 

03 

j=l I 

2iG -1/2 

j 22 

- I /2iO  11/2 

- [sin ji-j 
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This was inverted by Smirnov (1936) to give 

(2j) 2ir2 
- 1/2 X 

(1.7.3) Prob( 2 ≤ x) 1 - I (_1)l J [Sin -  1 e 2 dy. 
11. 

*jyj 
(2j-l) 2112 

A different inversion of (1.7.2) was given as a rapidly-

converging series by Anderson-Darling (1952) and was used by them to 

tabulate the distribution function of V2 . 

Similarly, the A-D statistic converges in distribution to 

1 

A2 -  

- I t(l-t) dt. 

0 

This has characteristic function 

= 

1/9 [ iri8 
-2  

cos[zr J1+8iO] 

Anderson and Darling (1954) gave a rapidly converging series for the 

inverse of and tabulated a short table of significance points. 

Stephens (1970) has provided good approximations to the 

percentage points of the above statistics in an extremely compact form. 

In his paper, for each test statistic T, a simple modification T is 

given, and T* is compared with the given percentage points. 



CHAPTER II 

WEAK CONVERGENCE OF THE EMPIRICAL PROCESS 

WHEN PARAMETERS ARE ESTIMATED 

2.1 INTRODUCTION 

Consider a random sample X1,X2 ,. .. ,X from a family of 

distribution functions 

= (F(x,O): x E R, 8 E S C 

Let be a sequence of estimators of 0 = [e', O2 ... 8 ,) , a 

vector of parameters, based on the random sample. 

In this chapter, we shall consider the asymptotic behaviour of 

the estimated empirical process 

(2.1.1) ct(x) - F(x8)J, x E R, 

under the null hypothesis (2.1.2) and under a sequence of alternative 

hypotheses (2.6.2). As will be shown in Section 3, this limiting 

distribution converges to a Gaussian process that depends not only' on 

F(x) but also 8, the true theoretical value of 8. Consequently, 

procedures based on cx(x) would not be asymptotically distribution-

free (Durbin, 1973b). 

The results, as well as an extension of the methodology used in 

this chapter, are employed in Chapter III to obtain some distribution-
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free procedures for testing the composite hypothesis 

(2.1.2) H0: FE9. 

A typical example might be the hypothesis that the data came from a 

normal distribution with unknown mean and variance. 

2.2 PRELIMINARIES 

The following exposition is based on the recently developed 

it 

strong approximation methodology of Kiefer (1972), Csbrgo-Révész (1975) 

and Konilós-Major-Tusnâdy (1975). The type of estimation of the 

parameters e Q if of F(x,8) follows from Durbin (1973a). 

Under the null hypothesis (2.1.2), we wish to show that the 

estimated empirical process a(x) can be approximated asymptotically 

by the Gaussian process 

(2.2.1) G(x) = B[F(x,80)} - J £(x,6) dBn[F(X8o)][V9F(X9(,)]' 

where B is a sequence of Brownian Bridges. 

The following notation will be used: 

(i) The transpose of a vector v will be denoted by v. 

(ii) The norm IIII on R1' is defined by fly1,.. .,y U = max 
r' l≤i≤p 

(iii) V9 F(x,60) denotes the gradient vector of partial 

derivatives, 
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rF(x,8) àF(x,8) aF(x,e) 

a0 1 ' • ' ae 

evaluated at 8 =0 E RP. 

(iv) For a vector-valued -function k = [e1,...,], let 

denote the vector j zi, J ]. 
(v) All integrals are evaluated from - to 00. 

We will assume the following conditions on the estimator 

sequence. 

I 

ii 

Al. .ui to n - 8 Oj I = Z   + in , 0 where 0 is the true 
J • - =i ../n 

unknown value of 0; Z(., oo) is a measurable 

p-dimensional vector-valued function and E _!.. 0 as 
in 

A2. E X.,8 0) = 0. 

A3. M(Bo) = E V(X8 0) (X,,0 0) is a finite nonnegative 

definite matrix. 

A4. The vector V8 F(x,8) is uniformly continuous in x and 

8 E 11, where 11 is the closure of the given neighbourhood 

of 80. 

A5. Each component of the vector function x,8 0) is of 

bounded variation on each finite interval. 
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Lemma 2.1  

Suppose that the vector function (x,O 0) satisfies conditions A3 and 

A5. Then, as n -p CO P 

(2.2.2) L n J £(x,60) d[a(x) - B[F( x,O ,, ))) 0, 

where cx(x) is the empirical process and B is a sequence of 

Brownian Bridges. 

Proof: 

Let 

(2.2.3) 

where T(x) is the total variation of the j th component j'9O of 

(x,O0) on the interval [-x,x), j = l, ... ,p. Choose a sequence of 

positive numbers u tending so slowly to infinity such that 

(2.2.4) 

With this u , consider 
n 

IIT(u n )H log n -. 0 
- 

'In 

J(x,O0) d a(x) - J (x,80) d B[F(x,80) 
IxI>u n n 

+ J (x,80) d Lan (x) - B [F (x, 19,,) ) ] 

n 



- 27 - 

(2.2.5) =L in -L 2n +L 3n 

Now, we can write L as 
3n 

J 
X 

n 

d a(x) - J(x,80) d B[F(x,80)]. 

I  ≤u 
n 

Since (x,8 0) is of bounded variation, using integration by parts we 

have 

a(x) x,80) 

- B[F(x,90)} ''°o 

U 
n 

X=-U n IxIu.. 
U 

+ J B[F(xO 0)] d (x,6 0) 

X=-U 
n 

n 

=  (an  (x) - B [F(xo0 )JJ (x,8) 

I 
Jxu 

n 

Therefore, 

n 

X=-U 
n 

{a(x) - B [F(x,80 ))] d (x,60). 

ilL 3n II II J (ccn (x - B [F(x,O,,))) d (x,00)II 

I x n 

+ II [an (x) - B n [F(x,80))] (x,8) 
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Using Theorem 1.2, (2.2.3) and (2.2.4), we have 

(2.2.6) JJL 11 =  0f1og nj IIT(u )II -' 0. 
3n a.s. Li- " na 

Next, consider L (i) and L the j th components of L and L 
in 2n in 2n 

respectively, j = l,...,p. Since 

E a n (x) = E B n [F(x,80 )J = 0, 

we have 

(2.2.7) 

Thus 

E L = E L = a. 
in 2n 

E L (j)j2 I in = E[L2J)] d F(x,6 0) 

- [t (6) d F(x*80)I _[ J (x9) d F(x,60) 
x x>u 

n n 

But by (2.2.7), we have 

J.(x,8) d F(x,8 0) is bounded. 

n 

Hence, by Chebyshev inequality, with s > 0, we have 

P 
P1flL II + IlL It > 2 - ! J (x,6) d F(x,6 0). 

In 2n f E.2j=l 

Ixl>u n 
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(2.2.8) As u -p , this bound tends to 0 by condition A3. 

Finally, using the results in (2.2.6) and (2.2.8), we obtain (2.2.2). 

2.3 CONVERGENCE OF THE ESTIMATED EMPIRICAL PROCESS 

H H 

Theorem 2.1 (Burke, Csbrgo, M., Csirgo, S., Révész (1979)) 

Suppose that the sequence f• I { 8 } satisfies conditions Al to A5 then 

P 
(2.3.1) sup Ia(x) - Gn (X)l 0, 

-o,<x<Q, 

where a(x) and G(x) are defined in (2.1.1) and (2.2.1) 

respectively. 

Proof:  

Let us consider 

c((x) = /i - F(x8)] 

= {Fn (x) - F(x,9 0)] - - F(x,90)}. 

Applying the. one-term Taylor expansion of F with respect to OW  we 

obtain 

(2.3.2) a(x) = in- ['x) - F(x,80 )J - .J [-°J [6 F(x,O*)], 

where 

(2.3.3) lien - 6 II ≤ lien 6o11 

The right-hand side of (2.3.2) is equal to 
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where 

[e_e ] [v9 F(x,6*)} 

B [F(x,80)J[^n-80) - .J o  .[v9 F(x,80 )j 

,o)] P 
+ a (x) - B 1F(x +  -8 liv F(x,8 0) - V8 n1 fl 

B [F(x,80)J 
= - J [̂8.-8,)-[V, F(x,00)] + 62n (x) + 63n (x)' 

a(x) - B[F(x,80 )) and 

a (x) = ./n- lB 3n n Oil -8 liv6 F(x,8 0) - v8 F(x,8)} 

If we can show that 

11in-(2.3.4) (i) 18 _e - J (x,O0) I n 

(2.3.5) (ii) sup Is 2n P (x)l -p 0, 
—4 o<X<oo 

3n 
(2.3.6) (iii) sup k. (x)l - P i 0, 

—.00<X<co 

d B{F(x,8o)]II _L, 

then we get the desired result in (2.3.1). We note that 

n 
Z j #-(x.,80) J (x,80) d F(x), 

n =l 

where d F(x) = when x = X. Using condition Al, we have 

0, 
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.Jin- a n-e 0) i 
= J (x,O0) d F(x) + 6 in 

By condition A2, this is equal to 

J(x,6) d [F(x) - F(x,80)J + S in 

J (x,8) d a n(x) + ln 

= J (x,8) dB [F(x,80)]+f (x,O0) d(an(x)-B.(F(X'6.)]) +E ln 

= J (x,60) dBn{F(xOü)) + n + ln 

Since 61n _!, 0 and L  !_, 0 by Lemma 2.1, (2.3.4) follows. 

The result in (2.3.5) is a direct consequence of Theorem 1.2 

which says that 

sup Ia (x)-B (log ni n{'6o)I' a.s. 
—<X<- J 

Lastly, to show (2.3.6), we take note that ./ {_o] is 

asymptotically a normal vector because of conditions Al, A2 and A3. 

Thus 

(2.3.7) 
F8n-6O 0 0. 

From (2.3.3), (2.3.7) and A4, we have 
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sup 1a3 (x)l - p + 0.. 
-03<x<OO 

Q.E.D. 

As in Burke et.al. (1979) paper, if the convergence of e In is 

almost-sure, then the convergence of Theorem 2.1 is also almost-sure 

provided conditions Al* - A3* hold. These additional assumptions are 

as follows: 

Al* . 

A2*. 

A3* . 

The vector V8 F(x,6) is uniformly bounded in x and the 

vector V F(x,6) is uniformly bounded in x and 8 E ii, 

where ii is defined as in A4. 

lim[s log log 
s1-0 S) 

and urn [(1_s) 

s'rl 

where F 1(s,00) 

1/2 . 

0 A 
11I2 

log log 1 — j lig (F-1 

= inf{x: F(x,00) ≥ s} 

à(F1(s,60), eo) 
I 

as  I 

60111 = 0, 

(F1(s,o0), °oand (l-s) Id-e ll sc, <s<l, 
I 

for some positive constant c, where the vector of partial 

derivatives of the components of Z (F-1 (S '8 0 ), 8) with 

respect to s, 

s E (0, 1). 

à(F 1(s,6 0), 8) 
exists for all 

If E In = a.s. O{h(n)}, where h(n) > 0, h(n) - 0, and the above 

conditions hold, the authors have established that the rate of 

convergence of Theorem 2.1 is 
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sup fcx (x) - G W1fl = Omax(h(n), n-6)1 for some a > 0. 
n n a.s. 

2.4 MOMENTS OF G(x)  

In the previous chapter, we know that a sequence of Brownian 

Bridges converges to a Brownian Bridge, that is, 

This implies that 

where G is represented as 

(2.4.1) G(x) = B{F(x,00)} - J (x,8) d B[F(x,60 )J.{v6 F(x,60)]. 
This Gaussian process G(x) has mean 0 and covariance function 

(2.4.2) E G(x)G(y) = F(x,80) A F(y,80) - F(x,00) F(y,80) 

B B. 
n 

G —s 
n 

- J(x)[V9 F(y,6 0)} - J(Y)[ve F(x,60)} 

+ [v0 F(x,60 )] 

where M(80) is defined in A3 and 

M(60) [v9 F(y60 )] 

J(x) = f Z(z,6 0) d F(z,8 0). 

The mean obviously follows from the mean of the Brownian Bridge. 
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To prove (2.4.2), let us consider 

G(x) = B[F(x,80 )} - J (x,60) d B{F(x,60)J.{v9 F(x60 )] 

G(y) = BfF(Y60 )J - J (y,6) d B[F(y,60)J.[v9 F(y,60)]. 
Now, 

G(x)G(y) = B[F(Y,0 0)}B[F(x,6 0)} - B[F(Y8 o)]J (z,8 0) d B[F(z,80)] 

•{ve F(x,60 )] - B[F(x,00)J J (z,80) d B[F(ze0 )J 

•[v9 F(y,00 )} + J (z,O) d B[F(z,80 )] {v6 F(xO3)] 

,8) d B{F(z,80)) IV 0 F(yO0)]. 

G(x)G(y) L1 - L2 - L3 + L4. 

E G(x)G(y) EL - EL  - EL  + EL 4' 

Let 

Thus 

(2.4.3) 

Consider the first term in (2.4.3). 

EL1 = E B(F(Y60)) B[F(x80 )J 

(2.4.4) = F(x,80) A F(y,00) - F(x,00) F(y,60 ). 

This follows from the covariance function of the Brownian Bridge. 



- 35 - 

As to the second term of (2.4.3), we have 

EL  = E B[F(y,6(,)) J (z,80) d B{F(z80)J [ye F(x,60)] 

Je (z,6) d E B[F(y,60)J B{F(z,60 )j IV, F(x,80 )] 

= lk(z ,80) d[F(Y,00) A F(z,00)_F(y,60)F(z,00 )] IV 8 F(x,19 0 )] , 

= J (z,60) d{F(y,80) A F(z,60 )].{v0 F(x,80 )] 

- J (z,6) d[F(y,60).F(z,60)J.[v9 F(x,80 )} 

J(z,60) d F(min (y,z),00).[v9 F(x,00 )] 

- F(y,60) J (z,60) d F(zO0 ).{V6 F(x,80)]. 

Since (x,9 0) d F(x,6 0) = 0, we have 

EL  J (z,60) d F(min (y,z),00)[ve F(x,eo)] 

= [J £(z,9 0)dF(min(y,z),6 0)+ J e(z,e 0 )dF(min(y,z),8 0) IV 8 F(x,8 0)] 

z≤y z>y 

= J (z,80)dF(z,O0)+ J 9(Z,8 0 )d (y,6 0 -[V,F(x,t7o)]'. 

z≤y z>y 

d F(y,8 0) 
But   = 0, hence 

dz 
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EL = 
ty 

(zO0)dF(z,60).[v0 F(x,60 )] 

—Co 

(2.4.5) = J(y) Ive F(x,00)]. 

Using the same argument as in the proof of EL 2' we have 

(2.4.6) 

V 

EL = J (zG0)dF(z,60).{v8 F(,60 )] 

—Co 

= J(x) [v0 F(,O0)J 

Now, let us consider the last term of (2.4.3). 

EL  = EJ(zeo)dB[F(z6o)}.{v6F(xeo)} .Je (z,O) cIB{F(z,6 0)] 

• [V9F(Y, BO)]' 

[V,F(X,8 0)] EJ 1(z8o)dB[F(z8 o)}.J (z,9 0) dB[F(z 180)} 

• [V,F(y,80)] . 

Since 

EJ(z8 o)dB[F(z8o)] = Je (z, 6,)) dEB{F(z,6 0)} = 

this means that 

(2.4.7) E J v(zo o)dB[F(zeo)}.J (z,60) c1B[F(z,90)} 
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(2.4.8) 

But I 

= J J V(z,6) (z',60) d E B[F(z80 )] B[F(zs,80)] 

= J J V(z,6) (z',O0) d 1F(Z,6 0 ) A F(z 1 80)] 

- {J I f £'(z,60) d F(z80)} it (z',8 0) d F(z 1 G0 )} 

JU(z,80) (z,80) dF(zeo)_{J '(z,60) dF(z6ü )} 

{J (z',8 0) dF(z 1 6ü)} 

d F(z',8 0) = 0, thus the second term in (2.4.8) goes 

to 0. Hence (2.4.7) is equal to 

J'(z,6) (z,9 0) 

= H V(z,8 0) .(z,8 0) 

(2.4.9) 

This implies that 

(2.4.10) 

= M(60 ). 

EL4 - [v9 F(x,60 )] M(00) . [V, F(y,60 )] 

Combining the results in (2.4.4), (2.4.5), (2.4.6) and (2.4.10), we 

finally get the covariance function in (2.4.2). 

2.5 THE MAXIMUM LIKELIHOOD ESTIMATOR CASE 

The sequence of maximum likelihood estimator often satisfy Al 

with 



r 
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(2.5.1) (x,60) = V8 log f(x,00) I1(6), 

where f is the density function of F and I1(8) is the inverse 

of the Fisher information matrix 

(2.5.2) I(8) = E{v8 log f(X.,00 )] ' • [v9 log f(X.,80 )]. 

Under these sequence of estimators, we can show that the covariance 

function of G(x) is 

EG(x)G(y) = F(x,8 0) A F(y,O) - F(x,8 0) F(y,8 0) 

f1(e0) [v9 F(y,00 )] 

To show this, we look at (2.4.2) and obtain 

-03 

fy 

-03 

(z,60) dF(z,80).[V8 F 

'e log f(z,60) I_1(80) dF(z,60) {v8 F(x,80 )J 

V8 log f(z,80) dF(z,80),I'(80)[v9 F(x,90 )} 

[v8 f(z,80)Jf(z,80) dz.C'(00).{v9 F(x,80 )J 
f(z,80) 
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(2.5.3) 

Similarly, 

y 

V9 J f(z,6) dz.I'(60 ).[v6 F(x,00 )] 

= {v9 F(y,60 )] 1 1 (60) [v0 F(x,60 )] 

= [v8 F(x8 0)} C 1(6 0) [v6 F(y,6 0)] 

(2.5.4) J(x) [v9 F(Y,00 )J [v6 F(x,60 )} 11(60) Iva F(yG0)] 
while Eve 

Eve 
Eve 

Eve 

F(x,8 0)] M(6 0) [v9 F(y,8 0)] is equal to 

F(x,80 )J E U(z,60) (z,80) [v6 F(y,60 )] 

F(x,6 0)] E{I 1(0 0) log f(z,6 0)] [17, log f(z,00)]f 1(6 0)} 

F(y60)}. 

By (2.5.2), this is equal to 

[v9 F(x,60)].I 1 (60),I(60),I'(60) [v9 F(y,60 )] 

• (2.5.5) = {v9 F(x,6 0)] • I_1(eo) Iva F(y,60)]. 
Combining the results in (2.4.2), (2.5.3), (2.5.4) and (2.5.5) we have 

EG(x)G(y) = F(x,60) A F(y,60) - F(x,60)F(y,60) 
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- IV, F(x,8(,)] f 1 (80) IV e F(Y,80 )] - [VeF(x,60)]I-'(8 ()) 

[v8 F(y,6 0)] +[v8 F(x,8 0)]I 1(8 0) [V,F(Y,O () )] 

(2.5.6) = F(x,8 0) ii F(y,8 0)-F(x,8 0)F(y,8 0) 

- IV, F(x,80)JI'(80){v8F(Y,80)J. 

2.6 APPROXIMATIONS UNDER A SEQUENCE OF ALTERNATIVES 

In this section, the above results are extended to cover the 

asymptotic approximation of a(x) under a sequence of alternative 

hypotheses. 

Suppose that the distribution function of the i.i.d.r.v. is 

F(x;/3,8), where /3 is a p1-dimensional vector of parameters which is 

assumed to be known and 9 is a p2-dimensional vector of unknown 

parameters which is estimated by nf based on 

Consider the null hypothesis 

(2.6.1) H0: (/3,8) 0 016 o 

where 8 stands for the theoretical true value of 8. The sequence 

of alternatives H is defined as follows: 1 nf 
Let {a} be a sequence of 

satisfying the condition 

p1 .misjo1 (nonrandom) vectors 

-1/2 
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where i is a given constant vector. Let A1 denote the closure of a 

given neighbourhood of 8 and let m = min{k: /3 E Al, for all. 

n ≥ k > 2}. 

Then consider 

(2.6.2) H: (/3,0) = (/3,00), for n = in,m+1,... 

Under the sequence of alternatives fH 1 of (2.6.2), we wish to 

show that the estimated empirical process 

= .Ji - F(x; 'o'°)J' x E R, 

can be estimated by the Gaussian process 

(2.6.3) 

with 

z n (x) n G (x) - AI[v6 F(x; /30 ,00 )1 * + 

G n n (x) = B [F(x; A09 3 
{v9 F(x; .80 te 0)] 1 

and A as defined below in (i). 

.80 180) ] 

•11. 
d B[F(x; "0"0)]1-f 

We can easily verify that the mean of Z(x) is 

E Z(x) = - 1 A 1 {v0 F(x; 80te)] + F(x;  
and its covariance is the same as in (2.4.2), with the-obvious changes 

in notation. 
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Again we list all the assumptions under H. 

(2.6.4) 

(i) 1 [Xi /30  - 8n-In 8 -6 I = Z £, ,80. + i A' • a , where A 
.  

is a given finite matrix of order p2 x p1, is a 

measurable p2-dimensional vector-valued function, and 

P 
a 8n —.0. 

(ii) E £{x,/30 ,60} = 0 for n ≥ in. 

(iii) E U[X.,/30,O0}{x,/30,80) = M(/3n80) a finite 

nonnegative definite matrix for each n ≥ in which 

converges to a finite nonnegative matrix = M{/30 O0J as 

(iv) The vector V48 F[x;/380] is uniformly continuous in x 

and /3 E A1, and the vector v0F{x;/30 ,8J is uniformly 

continuous in x and 6 E A 23 where A2 is the 

closure of a given neighbourhood of 8. 

(v) Each component of P_ IX0601 001 

on each finite interval. 

is of bounded variation 

REMARK. Additional conditions are set to obtain the almost-sure 

approximation of a(x) (Burke, et.al., 1979). 
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As in Lemma 21, we claim that if the vector function 9 1x'AOf 6 01 

satisfies conditions (2.6.4) (iii) and (v) then as 

(2.6.5) 

n -p 00 t 

J (x, '3o'°o d[a(x) - B{F(x; $,8o)J' -p 0. 

We state the result. 

Theorem 2.2 (Burke, et.al., 1979) 

Suppose that conditions (2.6.4) hold and let 

G 9n = sup la (x) - Z (x)J. 
-o<X<co n n 

Then under the sequence of alternatives 

P 
E 9n —40. 

Proof: 

By adding and subtracting, we have under H 

a(x) [F(x) - F(x; 6n O)} 

.J 1F I n (x) - F(x; /3,O)] + ui [F(x; /360)-F(x; 'o'° o)]  

(2.6.6) 

- in [F(x; 10 6n) - F(x; 

+ Q2 (x) - Q3 (x). 

180180) ] 
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For the first term in (2.6.6) we have 

Q in (x) = .Ji n (x) - F(x; /36)J 

= B F(x; /3e 0)+{./i {F(x)_F(x; /36 0)]_B F(x; 

=B 
n 

(2.6.7) 

By Theorem 1.2 

(2.6.8) 

F(x; /3o, 6o)+{./ {Fn(x)_F(x; /3n 6ü)f_Bn F(x; 

+ fB F(x; /3 ,O ) - B F(x; 60 ,80)1 
n 0 n 

B n 10n (x). I3O' °O + € ['x; /3, 8o )J + e. (x). 

f -1/2 
SU Is, {F(x; n' ° ] a.s. 01n log n}. 

-<x<- 

it 
From the modulus of continuity of the Brownian motion (Csrgo and 

Révész, 1979, Chapter I), 

(2.6.9) 1 -61. 
5up1610(x)I a.s. O1.n , 

for any 6 satisfying 0 < 6 < 1 

For the second term, apply the one-term Taylor expansion of F with 

respect to 6 to obtain 

(2.6.10) 

= in-IF(x; /3,G) - F(x; io)8o)J 

= ., [8-/3} {v/3 F(x; /3*,BQ)] 

= F(x; s* ,00 )] + 
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where IId'-/30ll :5 IJn"2 ll. Thus the second term in (2.6.10) -* 0 as 

n -p , reducing (2.6.10) to 

,Y[V,, F(x; o'°o] + F(x; /3* 9) - F(x; A0,8 )] 

(2.6.11) = 1[v,3 F(x; 6 0180)], + 

By condition (2.6.4) (iv) and the fact that IId'-/30U -, 0, 

(2.6.12) sup 16 un (x)J —s 0. 
-<x<-

For the third term, we can repeat the proof of Theorem 2.1 to get 

(2.6.13) 

Q3 () = in- [,F(x; 13O' 6n - F(x; 130,80)] 

-I 

= j o - e F(x; 
L °J  '80'0*)] 

where ≤ 8-8(. As in the proof of (2.3.4), using conditions 

(2.6.4) (i) and (ii), we have 

J(x; 13o'°o d {F(x)_F(x; 

Thus (2.6.13) can be written as 

(2.6.14) 

130,60)11 + iA' + 8n 

{J (x; d B F(x; 13o'°o + All IV 6 F(x; 60P6 0)] 

+ {J (x; 13o'°o d 14xn (x)_B F(x; fl'6)]} [v9 F(x; 0180)] 

+6 
8n 
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By (2.6.5) and the fact that € 8n ü we have 

(2.6. 15) Q (x) = {J(x; dB F(x; o,8o) +1 AI } {v9 F(; ,60)I'. 3n n 

Combining all the results in (2.6.6) to (2.6.15), we finally have 

p 
sup Ia n  (x) - Z n(x) -i 0. 

-°°<X<° 



CHAPTER III 

DISTRIBUTION-FREE PROCEDURES 

3.1 INTRODUCTION 

For testing the composite hypothesis 

(3.1.1) H0: F E {F(x,G): x E R, B e S c 

it was shown in the previous chapter that tests based on the estimated 
A 

empirical process c(x) are inadequate; they are not distribution-

free.. It is the objective of this chapter to examine some procedures 

that will overcome this difficulty. We wish to obtain a version of the 

empirical process, whose limiting distribution in the composite 

hypothesis case is the same as that of the usual form of the 

empirical process in the specified hypothesis 

H0: F = F 0 . 

Section 2 refers to the bootstrap method proposed by Burke and 

Gombay (1988). In this method, a bootstrap sample of size n is 

obtained from the random sample X1,X2, .... X of F(x). This is used 

to obtain an estimate of the unknown sequence of parameters 

60 = (ei,...B). 

In Sections 6 and 7 we will examine the half-sample and random 

substitution device suggested by Durbin (1976) and (1961). In the 

- 47 - 
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first technique, as initiated by Rao (1972), the unknown parameter 

vector is estimated from a randomly chosen half-sample of data and the 

empirical distribution function is constructed as if the estimates were 

the true value. In the other method the unknown parameter vector is 

estimated from an external sample with known distribution function. 

Using the above mentioned procedures, the estimated empirical 

process is approximated by a sequence of Gaussian processes. In the 

maximum likelihood case, it converges to a Brownian Bridge. 

A significant implication of this result is that the K-S, C-vM, 

and A-D type of statistics converge respectively to the following: 

A 

D = sup ../i (F (x) - F(x,8 fl - sup (B(t)I 

Co 1 

F(x) " 2 j I - F(x,6)} d F(x,6) -L J B(t) 2 dt 

—03 

(3.1.2) 
0 

03 (x) A 

A A2 = n  6 IF n - F(x,8) A 

A A d F(x,O ) _!_, fl 
B(t) 2 

F(x 8n)[1_F(x ) n t(1-t) dt, 
n 

0 

where f ri}' the sequence of estimators of 8, is obtained using the 

above procedures and B is a Browrdan Bridge. These statistics could 

now be applied to test the hypothesis in (3.1.1). 

3.2. THE BOOTSTRAP METHOD  

A general method called "bootstrap" was first introduced by Efron 

(1979) to solve a variety of estimation problems. For example, the 
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estimation of the sampling distribution of the random variable R(X,F) 

on the basis of the observed data X. This procedure is based 

on randomization. The bootstrap algorithm is as follows: 

(i) Draw a random sample X1,X2, .... X from a population with 

distribution function F(x). 

I' 

(ii) Construct the sample probability distribution F, putting 

1 
- at each point mass 

(iii) Given the sample, the bootstrap sample X1 * ,X2 * ,. .. , * X is 

obtained by sampling with replacement m elements of the 

set fX ,...,X Hence ii nf 
In 

< x 1 , X ≤ x2,...,Xm m * 1S X JX ,•••,xnf = if fl F (x.). 
. 1 
i=1 

(iv) Approximate the sampling distribution of R(X,F) by the 

*  bootstrap distribution of R = R(X* ,F). 

For our purposes, consider a random sample from a 

distribution function F(x). Given this sample, obtain the bootstrap 

sample 1 2 in n Let 0 be the maximum likelihood estimator of 

6. Let 0 be the bootstrapped version of 0 based on the 

bootstrapped sample X1,X2,...,X. Our main goal is to show that when 

n = in, the estimated empirical process 

(3.2.1) a nm(x ) = .n; [F(X) - F(x,0) 

converges weakly to a Brownian Bridge, that is, 
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(3.2.2) a (x) -! B[F(x,00 )J. 
n,n 

To attain this goal, we need to show that anm can be approximated 

asymptotically by the Gaussian process 

(3.2.3) G n,m (x) = B ni 1F(xe(,))_J (x,80) d B (F(x,80))-[Ve F(x,80)] 

- [-1 1/2 nm ] J (x,60) d B*[F(x,00)J.[v8 F(x,80)] 

Obviously, the mean function of G(x) is 0. Its covariance 

function is 

(3.2.4) E G n,n n,n (x) G (y) = F(x,6 0) 11 F(y,0 0) - F(x,60) F(y,6 0). 

Remarkably, this is the covariance function of a Brownian Bridge. 

Since a Gaussian process is uniquely determined by its covariance 

function, we conclude that 

G(x) -L B[F(x,60 )). 

Using this fact, we get the desired result in (3.2.2 

3.3 BOOTSTRAP EMPIRICAL PROCESS  

Let X1,X2 ,...,X be a random sample of F(x) and obtain the 

** * 
bootstrap sample X1,X2 ,. . . ,X. We define the bootstrapped empirical  

distribution function as 
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(3.3.1) 
n q. I1X ≤x 

1 f  
m m 

i=l 

where qi is the number of times X occurs in the bootstrap sample 

** * 
1 = 1,...,n. We note that 

(3.3.2) 
n 
2: q. = m. 

i=l 

We also define the bootstrap empirical process as 

(3.3.3) .Ii - F(x)]. 

Lemma 3.1  

Let U1,. ..,U be i.i.d.r.v. from a uniform distribution U(O,l') which 

are independent of X1,...,X. Define E(u) as 

m I(U. S u) 
(3.3.4) E [u] 2:   m m 0 :5 u ≤ 1. 

j=l 

Then 

(3.3.5) Jiii - F(x)] = .Jm {E (F (x)) -  F(x)]. 

Proof: 

For each n, 

m I(U' :5 ) m I(U :5(3.3.6) {q., 1 i = m1 2:   - 2: r  IL 
in j=l m f 
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From (3.3.4) we have 

(3.3.7) {q., 1 :5I :5 ni = HEM(l] - E 1! ; 1 :5 i nnJ }mmii 
and from (3.3.1) 

flr .- 

(3.3.8) {F*(x), x  R, in = 1 2 Z 1E I!1 - E 
mnJ mini 

1=1 

• I (X. S x); x E R}. 
1 

Thus 

(3.3.9) F (x) - F f { * (x)], x E R, m = 
in n 

f n  . n 
I [z[E [! )-E [::]] I(X1 - i1 in  

1E f.1—E 1-1Z.—I ! I(X ≤ x) lmLni m nj I 111 

-4 (3.3.10) - 

[E[)_Emf2)_ 1 n I (X 1 

x  

x E R, m = 1,2,. 

in = 1,2,.. 1 
•1 

where X (1) < X(2) < (n) < X are the order statistics of the sample 

.,X. (3.3.10) is true since the q1 's depend only on n and in 

and thus independent of the X''s. From Csbrgo et.al. (1986, Section 

17.2), (3.3.10) is 

iiii [Em {} - F(X)]. 
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Hence, we have 

[F* x) - F(x) 

as desired. 

x E R, m i,...} = {.i 1E 1F (x)1 - F (x) 1 1mm n if 

3.4 PRELIMINARIES  

As we go along the proof of (3.2.3), we assume conditions A1-A5 

and notations set in the previous chapter. In addition, we state more 

conditions to be used in the proof of the main result. 

We claim the following assumption: 

n 
A6.  -0 f = L  ,(X*,,,) (X*,8 0 ) - Z e(X.6 ()j + E . m .,s [jml 

n j=l n,m 

where a -- 0 as n A m -p 00 . 
n,m 

Asymptotically, this condition implies that 

(3.4.1) •i {inn} = J (x,0) 
To show this, consider 

d ./ [F(x) .- F(x)]. 

- 
' "i [m 8oJ 
Lm nJ [•n 

d m112 {F(x) - F(x,80 )] 

d m1'2 [F(x) - F(x,00 )] 

d m12 I F(x) - F(x)J. 
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This is true because of Al, A2 and A6. 

H H 

From Csrgo et.al. (1986, Theorem 17.8) and Csorgo and Révész 

(1981, Lemma 4.4.4), we can construct a single probability space with 

random functions E, F1 and B defined on it. Also on this 

(a*, g,probability space are versions of Ia , G I and  B'1 which are 
in nj minj 

statistically independent. These random functions satisfy the 

following: 

(i) B* is a sequence of Brownian Bridge. 

(ii) [Em' (t) , Fn' (x)] = {E(t),F(x)], t E {O,1], x E 

(iii) F' independent of random vector r, B*1. 
IPM mj 

(iv) sup I *() - B*[F(x,60)}j =a. 0f(log n) 3141 
1, m m s. xi 1/4 

as nilm - °, where 

(3.4.2) 

(v) 

c(x) = ..jii IEI{FI(x) FI J - (x)] 

and 0 < liin mu 2 ≤ urn m sup - < . 

n,m-s° 

sup I  (x)-G(x)J .!-, 0, where G xi (x) is defined in 
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3.5 CONVERGENCE OF a (x) 
n,m 

Theorem 3.1 (Burke and Gombay 1988) 

Under conditions A1-A6 with F continuous, one can define two 

independent sequences of Brownian Bridges on [0,1], {B} and 

such that 

sup I a •(x) - G n,m(x) --s 0, as n A m - 
n,in n,m 

where  G n,m is the Gaussian process in (3.2.3). 

Proof: 

First we consider 

an,m(x) = 

= .,/n 

In in 
(x) - F(x,O )] 

IF n(x)  - F(x,e)} - ..Ji - F(x,U)] 

(3.5.1) a(x) - ui IF(x, M) - F(x,O)J. 

Apply the one-term Taylor expansion of F with respect to 6 in 

(3.5.1). Thus (3.5.1) is 

(3.5.2)- = a(x) T "i {m nIj {v6 F(x 5n , where 

1 

(3.5.3) 116 -8 :50 -8 n,m n in n 

From conditions Al-A6, 
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(3.5.4) lie M - ̂8.11 --, 0 and 118̂. - --+ 0 as 
Hence, 

- °oll ≤ 115 9 II + P - 0011 n,m nil fl 

S1   - I-M 
Due to (3.5.4) we have 

- U 

O II + H9 - from (3.5.3). nil ll̂n 

P 
116 -0 —40 n,m 0 

and by A4, 

sup 11V F(x,6 ) - V8 11 P F(x,80) —p 0. 
-<< n,m  

Therefore 

• (3.5.5) anm (x) (x) - ./i Im - J {v9 F(x,90)J. 

Next we consider ./i [e - }. From (3.4.1) we know that 

ll.i [ - 6) - I (x,O) d j {F*(x) - F(x)JJJ 
--4 0.IFM 

Using Lemma 3.1, we obtain 

1 im 

18  

8 _11/2 J(x run ) ni -(  

- 9)(_1)1/2J RZ  (x,9) 

— 0. d .i {E{F(x)J..•F(x)III p 

d ./i [E;IF'(x)l_F 1(x) °' l'I " 
tn J ili'  
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due to (3.4.2) (ii). 

p 1 -1 1/2 j (xeo) d a*(x)f( _-+ 0 Cm -O J-(nm 
follows from (3.4.2) (iv). We also note that 

(nm_i) 1/2 J e(x,e ) d a*(x) 
(nm ) 

-1 1/2 J £(x,80) 
d B*[F(x,80)J 

+ (nm -1 ) 1/2 J (x,8) d{a(x)_B[F(x,O0)]J. 
As in Lemma 2.1 and (3.4.2) (iv) we have 

Thus 

(3.5.6) 

(mu ) -1 1/2 J (x,60) d1d(x)-B*[F(x,6)J] p 
-4 0. Lm m 

1J.'n-- - -l1/2 J (x,e0) 8 8 (mu ) Cm } 
(3.5.5) could now be written as 

a (x) 
n,m 

d B ' -4 0. {F(x,80)}II  

-1 1/2 
a (x)-(nni J £(x,00) d B* {F(x,80)J.[ve F(x,80 )] ) n 

From (3.4.2) (v), it follows that 

sup 1--an,M (x) - 1B [F(x ,80))-j (x,80) d B n ].[v F(x,80)] 
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or 

-(nm) -1 1/2 J x,8 0) d B* [F(x, 6,,)]-[v, F(X8O)}]I 

sup a (x) -G (x) -LO. 
n,m n,in 

P 
-4 0 

Q.E.D. 

As stated in (3.2.4), the covariance function of Gnn(x) is 

E G(x) G() = F(x,60) ,1 F(y,6) - F(x,80) F(y,60 ). 

To prove this consider 

G n,n n IF(x, (x) = B 60 )J - J (x,8) d B [F(x,60 ))-[V, F(x,80)J 

where B * 
n 

- J (x,8) d B* [F(x, 08)].[v9 F(x,80)] 

= G (x) - J (x,G0) d B* [F(x,00)J.{ve F(x,eo)] n 

is independent of B and hence of G. Also, x,6 0) is 

defined as in (2.5.1). Now, 

G (x)G (y) = G (x)G (Y)_G (Y)J(x6o)dB[F(x8o)].[vo F(x,60 )J 
n,n n,n n n n 

- G (x)I(y,60)dB*{F(y,80)}.[v9 (y,80)] 
nJ 

+ J (z) d B*[F(z)J.{v6 F(x,60)] 
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J9 (z) d B* (F(z)),IV, F(y,80 )] 

= G1 - G2 - + 

E G(x)G(Y) = EG 1 - EG2 - EG3 + EG4. 

In the maximum likelihood case, applying (2.5.6), we have 

(3.5.7) EG1 = F(x,00) 11 F(y,90) F(x,00) F(y,60) 

- [v9 F(x,8 0)] C'(80)[v0 F(Y8 0)]. 

Since B* is independent of G and the fact that E G = EB = 0, 

(3.5.8) 

From (2.5.5) we have 

(3.5.9) 

E G = E G3 = 0. 

E a4 = [ye F(xoo )J C 1(6)[v F(Y,80 )] 

Combining (3.5.7), (3.5.8) and (3.5.9) we get the desired covariance 

function. 

3.6 HALF—SAMPLE METHOD  

Suppose we have a sample of independent observations X1,...,X 

from a continuous distribution function F(x,80 ), where 

80 = Let be a sequence of maximum likelihood 
j mf 

estimators of the unknown parameter 8, derived without replacement 
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from the half-sample X' X' . .'.,X', where n = 2m. Consider the 
1' 2' m 

estimated empirical process 

(3.6.1) a*(x) = .J - F( x,O*)] 

As suggested by Durbin (1976), this procedure converges asymptotically 

to a Brownian Bridge, that is, 

(3.6.2) a * (x) 2-* B[F(x,8(,)}. 
n 

In showing (3.6.2), a slight modification from the proof of 

Out-bin (1976) will be introduced. We will be using the methodology 

employed in Chapter II. Hence, we assume the same set of conditions 

for the estimator sequence except for condition Al. In this case, we 

assume that: 

in 
(3.6.3) Al. ./iii 1 = - (X,60 )) + a , where a -. P --. 0. 

I m OJ in in 

When •n = 2m, we have 

(3.6.4) .n; 1oo 1 = + a urn 0J - in .,/n j=i 

From Chapter 2, we know that this is asymptotically equal to 

(3.6.5) 2 J (x,60 ) d F(x). 

Also, we define the function d.(x) as 
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(3.6.6) 
fl - F(x,6) 

d.(x) = 1_F ,6o) 
if X.≤x,x€R 

J 

otherwise. 

Then the empirical process o(x) can be represented as 

(3.6.7) a(x) = x(x) + a2 (x), x E 

where 

(3.6.8) 

(3.6.9) and 

m d.(x) 
Z   
j=1 .Jn 

n d.(x) 
a' (X) 

jm+l ,/• 

Obviously (.3.6.8) and (3.6.9) are independent of each other. We note 

that 

E(d.(x)) = {i - F(x,60)}{F(x,0(,)} + {- F(x,9(,)){1 - F(x,60)J 
=0 

and E[d.(x)] = [i - F(x,00)][F(x,& (,) 

Thus 

and 

Therefore, 

= F(x,00) [i - F(x,00 )J. 

[al(x)J = E[a2 (x)J 

E[al(x)] E[a(x)] 
in 

n 

- )] [1 - F(x 180)} F(x8 0  

=0 

IF(x,O 0 )) (1 - F(x,60)]. 

+ a 2 (X) = 0 
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and EIa'(x) + a' (x)  = [F(x, 80)J{1 - F(x 160)], In n J 

which are the moments of a(x). 

From Theorem 1.2, we know that 

sup I a (x) -B n [F(x,8(,))l -- 0. 
—<x<-

We claim that there exists two independent Brownian Bridges 

BI[F(x,0 0)} and B2[F(x,6(,)} such that 

(i) B[F(x,O0 )] = BL{F(x,80 )} + B2 [F( x ,80 )J 

(3.6.10) (ii) sup Ia'(x) - BL[F(x,00)}I -f-, ü 

(iii) sup I a2 (x) - B2 {F(x ,60)J) !+ 0. 
n n 

Without going into the details, we. know from Chapter II that 

a(x) = I.J - F(x,6 *)} 

= in- [F (x) -  F(x,80 )} - ./i - F(x,60 )J 

= a(x) - .i [0_ °} {v6 F(x,8 0)} + E, where E _ P i 0. 

As in the proof of Theorem 2.1 and by (3.6.5), a*(x) is 

asymptotically equal to 
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G*(x) = B [F(x, O,) )l - 2 J (z,80) d BI [F(z,60)] IV, F(x,80)) 

Due to (3.6.10) (i) we have 

G*(x) = B[F(x8 o)}+B[F(x6 o)}_2J 

IV8 F(x,60)}. 
Consider 

(z,6 0) dB 1[F(z,6 0)} 

G*(x)G*(y) = B 1F(x,O )1B [F(y,19 '))-2B'[F(y,O,,))0  
n n ni OJn 

J(z6o) dB{F(z60)].[v0 F(x,60)J 

- 2 B IF(Y,60 )J J(z6o) dB[F(z,60)J.[v0 F(x,60 )] 

- 2 B' IF(x,80)} (zOo) dB{F(Y,G0)J.{v6 F(,60)Jfl 

- 2 13 2 IF(x,60)J j (z6o) dB 1 [F(z,G0)J [70 F(y,8 0)] 
ni 

+ 4 t(Z,80 ) dB'{F(z,60)J.[v9 F(x,60)] 

J(z8o) &{F(zO0)}.IV, F(y,60 )J 

= G1 - G2 - G3 - G4 - + G6 

Since B' and B2 are independent and E{B1(.)J = 0, i = 1,2, we have 

(3.6.11) EG3 - EG5 = 0. 
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From  Section 2.5 

(3.6.12) EG2 = EG4 = 2[v8 F(x,80 )J I'(e0)[v, F(Y,80)] 

(3.6.13) E06 = 4 [v8 F(x,8 (,)} f 1(8 0) [v6 F(Y,6 0)J 

From the covariance of a Brownian Bridge, we have 

(3.6.14) EG1 = F(x,60) /1 F(y,80) - F(x,80) F(y,80 ). 

Combining results (3.6.11) to (3.6.14), we obtain 

EG*(x) G*(y) = F(x,8 0) ii F(y,8 0) - F(x,8 0) F(y,8 0). 

The mean of G *n (x)  is obviously 0. These are the moments of a 

Brownian Bridge. Hence we conclude that 

a *(x) -+ B[F(x,6 0)]. 
n 

3.7 RANDOM SUBSTITUTION METHOD  

The object of this technique is to transform the hypothesis 

(2.6.1) into simple hypothesis. This is done by replacing the maximum 

likelihood estimator 8 of the unknown parameter 6 0 by a 

corresponding estimator, external to the sample, of a known value of 8. 

First we will consider the finite-sample case. Under the 

composite hypothesis (2.6.1), suppose a sufficient statistic T1 for 

8 exists and another statistic T2 exists with the following 

property: 
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(i) T2 is distributed independently from T1. 

(ii) The distribution of T2 does not depend on 6. This is 

true since T1 is sufficient. 

(iii) The transformation 

r: X1,X2, ... ,X -' 

has a unique inverse such that given the values of 

T1 and 

Tl2 T1,T2 0 X1,X2, .... X. 

Suppose T1 is known to have distribution function G(T1,6). 

Let 8 be an arbitrarily selected value of 6 and let T be a 

random vector from the distribution function G(T,6*). The 

independent random variables are generated by the inverse 

transformation 

The i.i.d.r.v. have a known distribution function F(x; /30 ,6* ). Thus 

the composite hypothesis with unknown 6, based on X1,X2, ... )X, may 

therefore be replaced by the simple hypothesis 

= (/30)6*) = 5* 

** * 
based on X1,X2 ,. ..,X. Statistics based on the sample process 

cx*( x) = Ji [F(x) - F(x; /30,6*)J, x E R, 

could now be applied to test this hypothesis. 
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Next we consider from a heuristic point of view an asymptotic 

form of this method. Again we use the notations and assumptions for 

the estimator sequence listed in Chapter II, under the maximum 

likelihood estimator case. In addition, we have a strong assumption: 

A6. [v6 F(x,60)] 
-1 

(5 0 )[Ve F(Y,60)] is independent of e. 

REMARK. The author, Durbin (1976), claims that this assumption holds 

under general conditions which he failed to formulate in satisfactory 

form. 

Recall from Chapter II that asymptotically 

(3.7.1) (38-6 0] [v6 F(x,50)] a (x) = a n (x) -  
n 

where e i 0. This representation shows that a(x) and 6 

are uncorrelated and hence independent asymptotically. 

We therefore take 
F' 

• T1 6 and T2 = a.(x). 
n 

The observation X1,X, .. . . X are mathematically equivalent to 

the sample- process an(x), x E R. We denote the transformation 

r n n n : a (x) —+8, a (x). 

The inverse transformation is 
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-1 
T 
n 

6, a(x) -p a(x). 

From (3.7.1) this has the form 

a (x) = a (x) + {°] (v8 F(x,50)) € n n 

Suppose S has distribution function G(8,e) and let 8* be an 

arbitrary selected value of 6. Let 8* be a random vector, 

independent of X1,... ,X, from the distribution function G(8 *,0*) . 

As in the finite-sample case, X1,...,X are equivalent to a(x) 

where 

* A 

a n n (x) = a (x) + /n- [*_o*] {v9 F( x, 6*)] - 

n 

E* J, 0 and V6 F(x,5*) 
n 

(3.7.2) 

CF(x,/30 ,0) 

ao 
p2 

evaluated at 

Recall from Chapter II that under the maximum likelihood case 

(1) E(.J [8*8*]) = 0 

(ii) nE {[ 8* 0*]1[ 9* 0*]} I*_1(o*) where 

= E[V9 log f(x,6*)] I've log f(x,6*)] 

(iii) nE[{v8 F(x,6*)).[0*_8*] [8*_8*}.[V8 F( y,6*)J] 

= F'8 F(x,8*)].I* l(6*)[ F(y,5*)] 
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The last equality is true since by assumption A7, this is independent 

of 6. 

We note that E a(x) = 0 since E a(x) = 0 and by (3.7.2)(i). 

To find the covariance function of a*(x), consider 

* * 
a(x) a(y) = a(x) F n  + ,i:; {9**] [V, F(y,5*)] +in [6 *6*] 

I, p 
[ve F(x,6*)] ' - [̂  (y)+.i (6*6*).[vF(y5*)] I•E , C -i 0. 

j n n 

= a(x) a(y) + cx(x) [O*_6*] Ive F(y, &*)] 
* * 

+ .J [6 -8 [v6 F(x,5*)] a(y) 

+ *_* [V6F(x, 6*)]' [6*_o*] [V,F(y,6*)]' 

= L1 +L + L3 + L4. 

From Section 2.5 and Theorem 2.1 

EL  = F(x,60) ,1 F(y,60) - F(x,60) F(y,s50) 

- [V, F(x,60)].I 1(60)[v6 F(y80)]. 

From the fact that 8 is independent of 8 which is independent of 

a(x) and E a(x) = 0, we have 

E L2 E L3 = 0. 

From (3.7.2) (iii), 
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E L4 = 1178 F(x,&0)].I 1(50) {v9 F(y,50)}. 

Combining these results we get the covariance function 

E a*( x) a*(y) = F(x,60) 11 F(y,5) - F(x,60) F(y,60), 

which we know is the covariance of a Brownian Bridge. Hence we say 

that a*(x) has the same limiting distribution as a(x). 

For practical reasons, this method is not preferable due to the 

cumbersome computation to obtain 8. Moreso, it is not recommended 

because of its lack of power (Durbin, 1973b). 

REMARK. We make note that the above methods are not the only 

distribution-free procedures. In fact, the well-known N 2 test is not 

only used for testing completely specified hypothesis but also for 

testing composite hypothesis. This is 

fairly general assumptions it is known 

of x. 2 is approximately affected when 

due to the fact that under 

how the probability distribution 

parameters are estimated from 

the sample (loss of one degree of freedom for each parameter 

estimated). Moreover, it is based on the sample distribution function 

since for group boundaries xl,...,xkl the chi-square statistic can 

also be represented as 

k [F (x )-F (x 
2 fl 1 fl i  

F(x. i)-F(x ) i=l 1 -i 

where x0 = - CO and x k = + CO . As n -+ 00, it is approximately 

distribution-free. 



CHAPTER IV 

NUMERICAL RESULTS 

4.1 INTRODUCTION 

In this chapter some pertinent numerical and computational 

results are presented. The main purpose of the sampling experiment is 

to investigate how fast the following converge: 

(i) for fixed x E R, 

a(x) = .J ['x - F(x,6)} -L B[F(x,60 )J 

(ii) sup Ia (x)l -+ sup fB(t)f 
• 0St≤1 

(4.1.1) 

(iv) 

where '8 
•I. nj 

80 = °l'••• ,8) derived under the following procedures: 

I 

I 

p. p. 

cc n n (x) 2 d F(x,8 ) 

F(x, 6) (l-F(x, 8)) 

JB(t) 2 dt 

0 

1 

d F(x,6 _:!_, I B(t) 2 dt  
n)  J t(1-t) 

0 

(4.1.2) 

is a sequence of maximum likelihood estimators of 

(i) Bootstrap Method 

(ii) Half-Sample Method. 
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We also wish to verify that the limiting behaviour of a(x) is 

the same as the limiting behaviour of a(x). The same is true for its 

related functionals. 

Estimates of large sample percentage points of the statistics of 

interest are also tabulated for commonly used significance levels. 

These are used in application to test the null hypotheses 

(4.1.3) H0: F E Y = F(x,6); x E H, e E S c R P1 

42 PROCEDURE  

The experiment was conducted by investigating 4 sample sizes 

n = 50, 100, 150, 200 and 2 distribution functions: the normal 

distribution with mean = 1.0 and variance a2 = 1.0 and the gamma 

distribution with parameter a = 4.0 and scale parameter 8 = 2.0. 

Slight modifications in the computer program are necessary should one 

want to test for various sample sizes, parameters or continuous 

distribution functions. As stipulated in Chapter III, the maximum 

likelihood estimators of the parameters must satisfy conditions Al-A5. 

As in the normal distribution N(i,a2) with density function 

f(x) = e- 

1 lx-u1 2 
2 1aJ 

the maximum likelihood estimators of M and a2 are x and s2 

respectively, where 
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n X. 
1 

x= Z - 

n 
1=1 

(4.2. 1) and 

[Xi-1 2 L J  

i=1 n 

These estimators obviously satisfy the given conditions by letting 

= 

and 

2(X60) = (X/1) 2 - 

Thus for p = 2, the 1 x p dimensional vector 

X - /2, s2 - a2] 

n {X.-iJ n (X1-/2) 2-a2 
= 1  , 

- i - n i=1 /n =1 Jn 

Similarly, the gamma distribution G(cx,/3) with density function 

x 
/3 e xa-i 

1(a) /3a 

has maximum likelihood estimators 

x > '0, a > 0, /3 > 0, 

" ". 

a = - and /3 = - with 

= [X_cJ - .!_ [[xj_cc)2 

/32 

1 2 X. 
e2(X.,o0) = [Xj _aa) 

- 2. 

2] 
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Figures 4.1 and 4.2 show the computer program for this 

experiment. The algorithm of the program runs as follows: 

Step 1. Simulate a random sample of size n from a continuous 

distribution function F(x,00 ). Call this the 

first-stage sample. 

Step 2. For each procedure in (4.1.2), derive the second-stage 

sample. In the bootstrap method, this sample consists 

of n elements drawn with replacement from the first-

stage sample. The half-sample method draws without 

replacement n/2 elements from the original sample. 

Step 3. Using the second-stage sample, calculate the maximum 

likelihood estimators of 80. 

Step 4. Calculate all the statistics given in (4.1.1). 

For each sample size, procedure and distribution function, the 

above routine was executed 1000 times, thus generating 1000 values for 

each of the above mentioned statistics. As a check on the sampling 

experiment, the first-stage sample was used to compute for a(x) and 

its functions, where 8o is specified. In the normal case, 

60 = {1.0, 1.0] while in the gamma case 80 = [4.0, 2.0]. With this 
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obtained data, the sampling distribution F(x), as defined in (1.1.3), 

was computed for each statistics. The increment of x was arbitrarily 

chosen. The results are tabulated in Tables 4.1, 4.2, 4.4 and 4.6. 

The corresponding graph for this data when n = 200 are shown in 

Figures 4.3, 4.4, 4.5 and 4.6. The F.(x) column for each table is 

computed by the formula 

no. of X < x 
F.(x) =  loOOJ  

i = 1, 2, 

where i represents the method used in the estimation. The bootstrap 

method is represented by i = 1, and the half-sample method by i = 2 

i = 3 refers to the method whereby cx(x) is involved under the 

specified distribution function. 

An IGP (Interactive Graphing Package) printout of the graph, as 

shown in Figures 4.3, 4.4, 4.5 and 4.6, compares the behaviour of the 

statistics under the two procedures with that of the theoretical 

values. The horizontal axis corresponds to the x column in the table 

while the y axis corresponds to the F.(x) column. 

Empirically derived percentage points are also tabulated as shown 

in Tables 4.3, 4.5 and 4.7. The F. 1(p), i = 1,2, represents the pth 

percentile of the distribution of the statistics under method i. 
I-. 

In the tabulation of a(x), we have fixed x at 2. From the 

theoretical results in Chapter III, the limiting distribution of this 
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statistics under the hypothesis, say H0: F = G(4,2), converges to a 

normal process with mean 0 and variance F(2,8 0)(1 - F(2,8 0)) where 

r2 x 4-1 

F(2,60) = 100   dx. 
i(4)•2  

The z column in Table 4.1 represents the corresponding standard 

normal deviates and the F(z) column is obtained by using the normal 

table. 

The K-S type of statistic was generated by calling the NKS1 

package of the well-known IMSL (International Mathematical and 

Statistical Library). The generation of this statistic was based on 

Kolmogorov's (1933) recursion formulas. Inasmuch as this package is 

used 'to test that a random sample was drawn from a specified 

distribution, slight changes were introduced in the external subroutine 

for our purposes. In Table 4.2, the theoretical values in column F(x) 

are obtained from Smirnov (1948); rounded off to four decimal places. 

As to the C-vM and A-D type of statistics, we have made the 

following versions for computational reasons: 

" 2 
Z - F(x ) j 

k=l kk (k) 

n -F [ x (k), 6 
In A2 = 2:   flj I  

k=l F(x(k),8)[1-F(x(k),e)} 

where follows from the definition of F(x) in (1.1.3) and x(k) 

is the kth order statistics of the first-stage sample. Theoretical 
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values of F(x) in the C-vM case can be found in Anderson and Darling 

(1952). The same authors (1954) gave a short table of some percentage 

points for the A-D statistic when the levels of significance are .10, 

.05 and .01. In Figure 4.6, the "+"s are derived from the values in 

column F3(x) of Table 4.6. 

4.3 OBSERVATIONS AND CONCLUSIONS  

It was found that the experimentally derived distribution 

function of the above mentioned statistics agreed well with the 

theoretical distribution function. The agreement was found to be 

fairly close to 2 decimal places for c(x) K-S and C-vM type of 

statistics. As shown in the tables, even for n = 50, there seems to 

be a good agreement to 1 decimal place. Hence we say that the 

asymptotic value is reached very rapidly. The upper tail of the 

distribution appears to be the part which comes into agreement most 

rapidly with n. In application when n is large, it seems reasonable 

to use the last upper tail - the region that makes for the statistical 

tests. 

From the graphs, there seems to be no significant difference 

between the 2 procedures, especially at the tails of the distribution. 

Some minor discrepancies occur between the tails. This is quite a 

surprising result because theoretically we expect the statistics based 

on the bootstrap method to converge faster than those under the half-

sample method due to the fact that more randomization is introduced and 

the sample size used for estimating the parameter is larger. 
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In spite of the approximations made for the C-vM, it appears that 

its distribution behaves just as "nice" as the K-S. However, the A-D 

seems a little bit "off" from the theoretical values. It appears, in 

particular, that the experimental values are always greater than the 

exact ones. Perhaps this is due to the function [F[x,J [1_F(x,)J] 1 

which gives heavier weight at the tails of the distribution. 

As to the effects of the distribution function, this author 

observed that there is no significant difference between the gamma and 

the normal case as shown in the graphs of the K-S and C-vM. This is in 

consonance with our learned theory that these statistics are 

distribution-free. However, it seems that the distribution of A-D has 

longer tail in the gamma case compared to the normal. This author 

cannot explain this phenomenon. 

In testing the hypothesis (4.l.3),it is of considerable 

importance to determine what sample size, test statistics or method 

should be applied. Basing from these numerical results, it seems safe 

to use n > 50 and the bootstrap method. But if one is concerned 

about the computer time, then the half-sample method is preferable. 

This author cannot suggest as to which test statistic is superior than 

the other the fact that powers of these tests have to be considered. 

However, for practical purposes, the K-S is recommended since it is 

reasonably easy to evaluate especially with a computer. Without the 

machine, the follbwing version can be used: 
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k 
sup I--
lk≤n In 

So far this thesis has limited its scope of study to the 

asymptotic behaviour of the estimated empirical process and its related 

functionals for the univariate case. Of equal importance in hypothesis 

testing, one might consider the multivariate case and the power of the 

tests given in this paper. 

The enormous manipulation of data in this research was made 

possible through the aid of some computer packages of the University of 

Calgary Academic Computing Services. Information and conventions on 

the routine used are available in the IMSL manual. Experimental data 

of this study is available in the files of the Mathematics Department. 
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c Computer Program for The Normal Case 
c This is to show that the limiting distribution of the estimated 
c empirical process, Kolmogorov—Smirnov. Cramer von Mises and 
c Anderson—Darling statistics under the 1)Bootstrap Method 
c 2) Durbin's Half—Sample Method, converges to the limiting distribution 
c of these statistics under the specified hypothesis, 
c H:F=Fo, where F is continuous. 

integer i,j,k.nexec.n,kount,isam2(1000),iX(1000) 
real saml(1000),sam2(1000),ep(1000),ks(1000),cvm(1000),and(1000), 

&pdif (6) , sum , var, rmean, x, fn, f nx,fl, f 2, cm , od,y 
double precision dseed 
external pdf 
common rmean,var 
open(27,file='nresecrch.data',form ='formatted') 
parameter(over=1.0,sigl.0,nexec1000 ) 
do 200 n=50,200,50 
do 100 k=1,3,1 
do 1 j-1,nexec 
kount=0.0 
dseed=9.0+j*k+n 
sum=0.0 
var=0.0 

c Take the first—stage sample .-N(1.e,1.0) 
call ggnml(dseed.n,saml) 
do 2 k2=1,n 
saml(k2)=saml(k2)*sig + over 

2 continue 
o Order the sampl,ç 

call vsrta(scml ,n) 
dseed=8.0+j*k+n 
if (k .ne. 3) go to 16 
rmeon=ave r 
varsi g*s2 
go to 12 

16 if (k ne. 1) go to 8 
c Bootstrap Method:Take the second—stage sample,it's mean and stdev. 

ng=n 
call ggud(dseed,n,n, isam2) 

9 do 3 k3=1,ng 
i=i som2(k3) 
sam2(k3)=saml(i) 
sum=sum+8am2(k3) 

3 continue 
rmeansum/f loat(ng) 
do 4 k4=1,ng 
var=vor + ((sarn2(k4)_rmean)*s2)/float(ng) 

4 continue 
go to 12 

c Durbin's Half—Sample Method 
8 ng=n/2 

iopt=0 
npop=n 

nsamp=ng 
call ggsrs(dseed,iopt,npop.ip,mpop,pop,nsamp,m5arflP.80mP.i5am2.ier) 
go to 9 

c Calculate ep=sqrt(n)(fnx—f(x*)),where x is fixed 
12 x=2.0 

do 5 k5=1,n 

Figure 4.1 

Fortran Program for the Asymptotic Behaviour of the Estimated 
Empirical Process and other Related Statistics under a 

Normal Distribution 
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if (saml(k5) .gt. x) go to 6 
kountkount+1 

5 continue 
6 fnx=float(kount)/flOct(fl) 

x=(x—rrnean)/sq rt(va r) 
call mdnor(x,fl) 
ep(j)=sqrt(n)*(fnx—f 1) 

c Calculate ks=sup/fnx—f(x*)/ 
call nksl(pdf,saml.n,Pdif, icr) 
ks(j)=pdif(4) 

c Calculate cvm=summat jon(fnx—f(xa))**2 
ad---0.0 
cm0 .0 
do 7 k7=1.n 
fn=float(k7)/float(n) 
y=(saml(k7)_rmean)/sqrt(Var) 
call mdnor(y.f2) 
cm=cm+(fn—f2)**2 

c Calculate andsummation(crOmer/f(X*)(1f(X*)) 
ad= od+(fn_f2)s*2/(f2*(1.0—f2)) 

7 continue 
cvm(j )=cm 
and(j)=ad 

1 continue 
call vsrta(ep,nexec) 
call vsrta(ks,nexec) 
call vsrta(cvm,nexec) 
call vsrta(and,nexec) 
if (k .ne. 1) go to 18 
write(27,10) n 

10 forrnot(20x .23h600TSTRAP. METHOD FOR N=, 13) 
go to 25 

18 if (k .ne. 2) go to 19 
write (27,20) n 

20 format(20x,34hDUR6IN'S HALF—SAMPLE METHOD FOR N=,13) 

go to 25 
19 write(27,40)n 
40 format(20x,37hUNDER THE SPECIFIED HYPOTHESIS FOR N=,13) 

25 do 15 k15=1,nexec 
write (27,30)k15,ep(k15),ks(k15),cvm(k15)safld(k 15) 

30 formot(5x, I5,5x,fg.5,5x.f9.5,5X,f9.5,5X.f9.5,5X,f9.5) 
15 continue 

100 continue 
200 continue 

end 
subroutine pdf(x.f) 
real x,f,t 
common rmean,VOr 
t=(x_rmean)/sqrt(vor) 
f=.5*erfc(—.7071068*t) 
return 
and 

Figure 4.1 (continued) 
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c Computer Program for the Gamma Case 
c This is to show that the limiting distribution of the estimated 
c empirical process,Kolmogorov—Smi rnov, Cramer—von Mises and 
c Anderson—Darling statistics under the 1)Bootstrap Method 
c 2) Durbin's Half—Sample Method, converges to the limiting distribution 
c of these stattistics under the specified hypothesis. 
c H:FFo, where F is continuous. 

integer i ,j,k,nexec.n.kount. isom2(1000) 
real saml(1000).sam2(1000),ep(1000),ks(1000).cvm(1000).afld(1000). 

&pdif(6),sum,vor.rmeon.x.fn,fnX.fl.f2,Cm.Od.Y,a.b.OlPhO.betO.Wk(1) 
&,aml(1000) 
double precision dseed 
external pdf 
common beto.alpha 
open(28.f i le='gresearch.data' ,form='fbrmotted') 
pa ramete r (a4 .0 , b=2 .0. nexec1 000) 
do 200 n-50,200.50 
do 100 k1.3,1 
do 1 j1,nexec 
kount=O .0 
dseed=9 .0+j 'k+n 
sum"O.O 
var0.0 

c Take the first—stage sample -G(4.e,2.0) 
call ggamr(dseed,o,n,wk.saml) 
do 2 k2'l,n 
sami (k2)=sarnl (k2).b 

2 continue 
o Order the sample 

call vsrta(soml ,n) 
dseed8.0+j *k+n 
if (k .ne. 3) go to 16 
alpha=c 
betab 
go to 12 

16 if (k .ne. 1) go to 8 
c Bootstrap Method: Take the second—stage sample, it's mean and stdev. 

ng=n 
call ggud(dseed,n.n. isam2) 

9 do 3 k3=1,ng 
iisom2(k3) 
sam2(k3)saml(i) 
sumsum+sam2( k3) 

3 continue 
rmeon=sum/f I oat (ng) 
do 4 k4=1.ng 
var=var + ((sam2(k4)—rmeon)..2)/float (ng) 

4 continue 
a I pha=rmean.*2/var 
bet a=vo r/rmean 
go to 12 

o Durbin's Half—Sample Method 
8 ng=n/2 
i opt=0 
npopn 
i p=0 
nsomp=ng 
call ggsrs (dseed.i opt.npop,ip,mpop,pop,nsamp,msamP,samP.i5am2. icr) 

go to 9 

Figure 4.2 

Fortran Program for the Asymptotic Behaviour of the Estimated 
Empirical Process and other Related Statistics under a 

Gamma Distribution 
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c Calculate ep=sqrt(n)(fnx_f(x)*).where x is fixed 
12 x=2.0 

do 5 k5-1,n 
if (saml(k5) .gt. X) go to 6 
kountkount +1 

5 continue 
6 fnx=float(kOUflt)/flOat(fl) 

x-x/beto 
call mdgam(x.0lPhO.fl.ier) 
ep(j)sqrt(n)*(fflXf 1) 

c Calculate ks=Sup/fflX_f(X*)/ 
do 31 k171.fl 
aml(k17)=saml(k17) 

31 continue 
call nksl(pdf.aml.fl.Pdif,ier) 
ks(j)'.pdif(4) 

c Calculate cvmsummotiOfl(fflX_f(X*))**2 
ad=0.0 
cm=0.0 
do 7 k71.n 
fn=f ioat(k7)/f loat(n) 
y=saml (k7)/beta 
call mdgam(y.olpha.f2.ier) 
cm=cm+( f n—f 2) * *2 

a Calculate and=sumniatiofl (cramer)/(f(x*)(1f(X*)) 
ad=ad+(ffl_f2)**2/(f2*(1 .0—f2)) 

7 continue 
cvm(j )=crn 
and(j)0d 

1 continue 
call vsrtc,(ep,nexec) 
call vsrtc(ks,neXec) 
call vsrta(cvrn.nexec) 
call vsrta(ond,neXec) 
if (k .ne. 1) go to 18 
write (28.10)n 

10 format(20x,23h9OOTSTR METHOD FOR N--,i3) 

go to 25 
18 if (k .ne. 2) go to 19 

writ e (28 20) n 
20 format (20x.34hDURBIN'S HALF—SAMPLE METHOD FOR N=,i3) 

go to 25 
19 write(28.4e)n 
40 format(20x,37hUNDER THE SPECIFIED HYPOTHESIS FOR N-- .i3) 

25 do 15 k15=1.nexec 
wri te(28,30)k15,eP(k15),kS(d15),cfm((15) ,and(k15) 

30 format(5x.i5.5X.f9.5,5X.f9.5. 5X.f955(95) 
15 continue 

100 continue 
200 continue 

end 
subroutine pdf(x.f) 
real x.f 
common beta.alpha 
x=x/beta 
call mdgam(x.alpha,f.ier) 
return 
end 

Figure 4.2 (continued) 



Table 4.1 

A Comparison of the Sampling Distribution of the Estimated Empirical 
Process at x = 2 Using the Methods in (4.1.2) 

NORMAL DISTRIBUTION 

x 

-1.3 
-1.1 
-0.9 
-0.7 
-0.5 
-0.3 
-0.1 
0.1 
0.3 
0.5 
0.7 
0.9 
1.1 
1.3 
1.5 

z 

-3.56 
-3.01 
-2.46 
-1.92 
-1.37 
-0.82 
-0.27 
0.27 
0.82 
1.37 
1.92 
2.46 
3.01 
3.56 
4.11 

true 
value 

F(z) 

.0000 

.0013 

.0069 

.0274 

.0853 

.2061 

.3936 

.6064 

.7939 

.9147 
9746 
.9931 
9987 

1.0000 

n = 50 

F1(x) 

.000 

.002 

.005 

.015 

.070 

.169 

.379 

.598 
• 804 
925 
.974 
.991 
998 

1.000 

F2(x) F3(x) 

.000 

.000 

.005 

.022 
• 075 
.198 
.392 
.613 
• 828 
.927 
.972 
.990 
997 
999 

1.000 

.001 

.002 

.008 
049 
• 084 
149 
.382 
.525 
• 803 
.918 
• 994 
• 998 

1.000 

n = 100 

GAMMA DISTRIBUTION 

F1(x) 

000 
.000 
.005 
.023 
059 
• 180 
.370 
.595 
.810 
.918 
.970 
• 992 
.997 
.999 

1.000 

F2(x) 

.000 

.001 

.005 

.021 

.090 

.204 

.404 
647 
.836 
• 924 
.968 
.991 
• 997 

1.000 

.0011 

.0011 

.0051 

.033J 

.0881 

.2101 

.4101 

.627J 

.8071 

.928 
• 984j 
•997f 

1.0001 

x 

-0.65 
-0.55 
-0.45 
-0.35 
-0.25 
-0.15 
-0.05 
0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 

z 

-4.65 
-3.94 
-3.22 
-2.51 
-1.79 
-1.07 
-0.36 
0.36 
1.07 
1.79 
2.51 
3.22 
3.94 
4.65 
5.37 

true 
value 

F(x) 

.0000 

.0000 

.0006 

.0060 

.0367 

.1423 

.3594 

.6406 

.8577 

.9633 

.9940 
9994 

1.0000 

n = 50 

F1(x) 

.007 

.011 

.025 
048 
136 

.277 

.528 

.769 

.913 

.970 
• 988 
999 

1.000 

F2(x) 

.001 
• 006 
.014 
.052 
.126 
.261 
.510 
• 744 
899 
966 
989 
.999 

1.000 

F3(x) 

.000 

.000 

.000 

.000 

.000 

.000 

.384 

.774 
934 
.934 
988 
999 
999 

1.000 

n = 100 

F1(X) 

- .002 
.007 
.015 
.039 
108 
• 242 
.457 
709 
.873 
.958 
988 
999 

1.000 

F2(x) 

.000 

.004 

.013 

.045 
100 

.251 

.485 

.733 
884 
.959 
.992 

1.000 

.000 

.000 

.000 

.000 

.000 

.163 

.439 

.717 
• 882 
965 
984 
994 

1.000 



Table 4.1 (continued) 

NORMAL DISTRIBUTION 

x 

-1.3 
-Li 
-0.9 
-0.7 
-0.5 
-0.3 
-0.1 
0.1 
0.3 
0.5 
0.7 
0.9 
1.1 
1.3 
1.5 

z 

-3.56 
-3.01 
-2.46 
-1.92 
-1.37 
-0.82 
-0.27 
0.27 
0.82 
1.37 
1.92 
2.46 
3.01 
3.56 
4.11 

true 
value 

F(z) 

.0000 

.0013 

.0069 

.0274 

.0853 

.2061 

.3936 

.6064 

.7939 

.9147 
• 9746 
.9931 
9987 

1.0000 

n = 150 

F1(x) 

.000 

.001 
006 
.014 
.016 
.191 
.377 
605 
.806 
.929 
974 
992 
998 

1.000 

F2(x) 

000 
.001 
.003 
.017 
• 072 
.181 
.368 
.603 
.801 
.918 
• 975 
.992 
• 999 

1.000 

F3(x) 

.000 

.000 

.004 

.022 

.085 

.174 
342 
• 604 
.772 
.918 
.973 
• 997 
• 999 

1.000 

n = 200 

F1(x) 

.000 

.002 
• 004 
.017 
• 074 
.185 
.395 
623 
.796 
.931 
• 975 
.991 
998 

1.000 

F2(x) 

.001 

.001 

.004 

.020 

.072 

.191 

.394 

.616 

.805 

.922 
• 974 
.994 
.998 

1.000 

.000 

.0021 

.0131 

.0381 

.090! 
2141 

.3331 

.5561 

.7881 
931! 
•981J 

995! 
1.0001 

GAMMA DISTRIBUTION 

x 

-0.65 
-0.55 
-0.45 
-0.35 
-0.25 
-0.15 
-0.05 
0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 

z 

-4.65 
-3.94 
-3.22 
-2.51 
-1.79 
-1.07 
-0.36 
0.36 
1.07 
1.79 
2.51 
3.22 
3.94 
4.65 
5.37 

true 
value 

F(x) 

.0000 

.0000 

.0006 

.0060 

.0367 

.1423 

.3594 

.6406 

.8577 

.9633 
• 9940 
.9994 

1.0000 

n = 150 

.001 
• 004 
.010 
.032 
.089 
• 228 
.436 
.681 
.857 
.951 
• 990 
• 999 

1.000 

F2(x) 

.002 
• 005 
.012 
.042 
.111 
.264 
.495 
.730 
894 
• 962 
• 993 
• 997 

1.000 

F3(x) 

.000 

.000 

.000 

.000 

.000 

.216 

.417 
• 694 
.840 
942 
992 
997 

1.000 

n = 200 

F1 (X) 

.001 
004 
.010 
.033 
.089 
208 
.401 
.672 
849 
.956 
989 
.998 
999 

1.000 

F2(x) 

.000 

.004 

.010 

.036 

.090 
• 238 
.454 
.705 
.873 
964 
988 
.998 

1.000 

F3(x) 

.000 

.000 

.000 

.000 

.021 

.106 

.478 
669 
.819 
.959 
.986 
996 
• 998 
.999 

1.000 
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Figure 4.3 

An IGP Printout for the Plot of the Data Given in 
Table 4.1 for the Estimated Empirical 

Process at x = 2 when n = 200 

00 
Lii 



Table 4.2 

A Comparison of the Sampling Distribution of the K-S Type of Statistic 
Using the Methods in (4.1.2) 

NORMAL DISTRIBUTION GAMMA DISTRIBUTION 

x 

0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 
1.25 
1.35 
1.45 
1.55 
1.65 
1.75 
1.85 
1.95 
2.05 
2.15 

true I 
value 

F(x) 

.00031 

.01261 

.0772j 

.20801 

.3728j 

.5347J 

.67251 

.77981 

.85801 

.91211 

.94781 

.97011 

.98361 

.99141 

.99561 

.99791 

.99901 

.99961 

.99981 

n = 50 

F1(x) 

.002 

.022 

.094 
236 
.381 
.529 
.657 
.744 
818 
.881 
.920 
• 954 
.972 
988 
994 
995 
.996 
997 
999 

F2(x) F3(x) 

.000 

.029 
• 096 
.224 
.392 
.549 
675 
779 
.841 
.903 
944 
966 
979 
985 
993 
996 
.999 
999 

1.000 

003 
.014 
083 
.214 
.385 
.551 
.678 
791 
875 
.918 
947 
975 
987 
994 
996 
997 
.999 
999 

1.000 

n = 100 

F1(x) 

.000 

.015 

.092 

.229 

.402 

.534 
669 
.784 
845 
.900 
.941 
963 
980 
.991 
995 
.999 
999 
.999 

1.000 

F2(x) 

.001 

.018 

.080 

.215 

.380 
554 
.687 
778 
.850 
.904 
.939 
968 
982 
993 
996 
999 

1.000 

F3(x) 

.001J 

.010 

.0781 

.2131 

.4011 

.572 

.715 

.813 

.8951 

.940 

.9621 

.9741 

.9881 

.991j 

.9971 

.9991 

.999 

.999 
1.0001 

n = 50 

F1(x) 

• 000 
.014 
096 
• 223 
389 
.544 
• 693 
794 
• 854 
.913 
945 
• 967 
986 
995 

1.000 

F2 (x) 

.000 

.018 

.090 
225 
397 
.564 
689 
.796 
858 
.913 
947 
967 
.978 
.991 
998 

1.000 

F3(x) 

.002 

.024 

.099 

.236 
403 
.554 
702 
.789 
.872 
.932 
.961 
• 975 
985 
.991 
996 
998 
999 

1.000 

n = 100 

F1(x) 

.000 

.014 
082 
.217 
.375 
.530 
684 
.794 
.858 
905 
942 
.971 
986 
989 
994 
998 
999 

1.000 

F2(x) 

.000 

.013 

.096 

.207 

.356 

.535 

.658 

.772 

.859 

.912 

.954 

.970 

.981 
994 
.998 
.999 
.999 

1.000 

F3(x) 

.000 

.013 

.092 
222 
.377 
.544 
.701 
.795 
869 
924 
.961 
985 
994 
996 
997 
998 

1.000 



Table 4.2 (continued) 

NORMAL DISTRIBUTION 

x 

0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 
1.25 
1.35 
1.45 
1.55 
1.65 
1.75 
1.85 
1.95 
2.05 
2.15 

true 
value n = 150 

F(x) 1F1(x) 

.00131 .001 

.01261 .016 

.07721 .088 

.20801 .245 

.37281 .413 

.53471 .571 

.67251 .688 

.77981 .786 

.85801 .871 

.91211 .924 

.94781 .961 

.97011 .983 

.9836 .991 

.99141 .993 

.9956j .996 

.9979( .997 

.99901 .999 

.99961 .999 

.99981 1.000 

F2(x) 

.000 

.011 

.076 

.227 

.397 

.531 

.679 

.794 
• 867 
.913 
.951 
.973 
• 984 
.991 
.997 
998 
.999 

1.000 

F3(x) 

.001 

.015 

.085 

.234 

.410 

.577 

.715 

.827 

.900 

.935. 
• 966 
.981 
.987 
.991 
.998 
998 
999 
.999 

1.000 

n = 200 

GAMMA DISTRIBUTION 

n = 150 

F1(x) 

.000 

.016 

.094 

.224 

.396 

.529 

.628 

.794 
864 
.915 
947 
974 
• 985 
.993 
.995 
• 996 
• 998 
• 999 

1.000 

F2(x) 

.000 

.014 

.077 

.216 

.368 

.545 

.698 

.797 

.866 

.918 

.957 

.976 
• 987 
993 
994 
• 997 
998 
• 999 

1.000 

F 3  F1(x) 

.0001 .001 

.0101 .014 

.0851 .082 

.2301 .233 

.3831 .404 

.5721 .561 

.7131 .708 

.795 .795 

.873 .867 
•919 .924 
•949J .951 
.9711 .966 
.9861 .976 
.992J .988 
.9961 .995 
.9981 .998 
•9991 1.000 

1.0001 

F2(x) 

.001 

.013 

.081 
223 
.392 
.544 
.700 
805 
.868 
.916 
.959 
.978 
.990 
999 

1.000 

F3(x) 

.000 

.022 

.100 

.251 

.409 

.567 
• 692 
.801 
.881 
.929 
• 964 
983 
• 988 
993 
996 
998 
999 
999 

1.000 

n = 200 

F1(x) 

.000 

.010 

.071 

.218 

.391 

.535 

.672 

.799 

.873 

. 924 

.953 

.969 

.982 
988 
992 
996 
997 

1.000 

F2(x) 

.000 

.012 

.083 

.218 
375 
.532 
.676 
.788 
.871 
.928 
955 
.981 
993 
999 

1.000 

F3(x) 

.000 

.016 

.077 

.219 

.401 

.569 

.692 

.800 

.877 

.930 

.958 
982 
.991 
• 993 
.996 
.999 

1.000 



F n (x) F n (x) 
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Figure 4.4 

An IGP Printout for the Plot of the Data Given in 
Table 4.2 for the K-S Type of Statistic. 

when n = 200 
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Table 4.3 

Estimated Percentage Points of the K-S Type of Statistic 
for Commonly Used Significance Level 1-p 

NORMAL DISTRIBUTION GAMMA DISTRIBUTION 

true 
value 

- n = 50 n = 100 n = 50 n'=  100 

1-p F(p) F1 (p) F2 (p) F1(p) F2 (p) F1(p) F2 (p) F1(p) F2 (p) 

.20 1.073 1.112 1.084 1.083 1.085 1.058 1.055 1.055 1.085 

.10 1.224 1.292 1.244 1.251 1.242 1.232 1.220 1.238 1.233 

.05 1.358 1.415 1.396 1.384 1.377 1.378 1.362 1.376 1.335 

.02 1.51711.589 1.561 1.550 1.534 1.536 1.555 1.509 1.535 

.01 1.628 1.667 1.682 1.642 1.596 1.585 1.638 1.659 1.605 
.005 1.731 

1.76011.82011.737 1.695 1.643 1,676 1.783 1.676 

i-p 

.20 

.10 

.05 

.02 

.01 
005 

true 
value 

NORMAL DISTRIBUTION 

n = 150 

-1 

F (p) F(p) F2(p) 

1.073 11.06211.058 
1.224111.20611.202 
1.358 1.318 1.341 
1.517 1.429 1.503 
1.628 1.526 1.600 
1.731 1.710 1.726 

n = 200 

F(p) F2(p) 

1.05911.056 
1.20911.216 
1.363 1.317 
1.51611.474 
1.63311.595 
1.766 11.776 

GAMMA DISTRIBUTION 

n = 150 

F1(p) F2(p) 

1.057 1.045 
1.20611.218 
1. 34111. 311 
1.573 1.469 
1.675 1.548 
1.760 1.591 

n = 200 

F1(p) F2(p) 

1.05111.068 
1.199 1.197 
1.337 1.331 
1.536 1.433 
1.728 1.525 
1.807 1.595 



Table 4.4 

A Comparison of the Sampling Distribution of the C-vM Type of Statistic 
Using the Methods in (4.1.2) 

NORMAL DISTRIBUTION 

x 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 
1.25 
1.35 
1.45 
1.55 

true 
value n = 50 

F(x) 1F1(x) F2 (x) 

.1298f 

.6104 

.8116J 

.90161 
94631 
.9702 
.98241 
.990lJ 
.9923 
.9944J 
.99651 
.99861 

1.00001 
1.00001 
1.00001 
1.00001 

.123 

.583 
796 
• 889 
• 934 
969 
.981 
.991 
994 
.995 
996 
• 997 
.998 
999 
999 

1.000 

F3(x) 

.135 
• 629 
.822 
.912 
.951 
968 
.978 
.989 
996 
• 997 
.997 
.999 
• 999 

1.000 

104 
.552 
755 
877 
.939 
962 
.976 
• 990 
.994 
• 995 
• 996 
998 
• 999 
.999 
• 999 
.999 

n = 100 

GAMMA DISTRIBUTION 

n = 50 

F1(x) 

.134 

.585 
• 804 
897 
946 
.973 
985 
991 
• 996 
• 997 
• 998 
999 

1.000 

F2(x) 

129 
.610 
.813 
897 
948 
974 
• 989 
996 

. 998 
• 999 
.999 

1.000 

F3(x) 

106 
.597 
820 
.903 
948 
.972 
• 985 
• 992 
• 997 
• 998 
999 

1.000 

F1(x) 

.126 

.620 
805 
896 
945 
.971 
982 
990 
994 
999 

1.000 

F2(x) 

.118 

.618 
805 
.909 
949 
.970 
.981 
• 989 
993 
• 995 
.998 
998 

1.000 

F3(x) 

.119 

.579 
• 799 
887 
940 
.961 
.979 
990 
994 
997 
• 998 
.998 
999 
999 
999 

1.000 

n = 100 

F1(x) 

.111 

.600 

.814 

.900 

.946 

.971 

.981 
• 988 
993 
• 996 

1.000 

F2(x) 

.107 

.594 

.799 
• 899 
.951 
.980 
988 
.995 
998 
998 

1.000 

F3(x) 

.118 

.594 
804 
898 
944 
.976 
.989 
993 
• 995 
.995 
• 999 

1.000 



Table 4.4 (continued) 

NORMAL DISTRIBUTION 

x 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 
1.25 
1.35 
1.45 
1.55 

true I 
value 

'F (X) 

.12981 

.61041 

.81161 

.90161 

.94631 

.9702 
• 98241 
.99011 
.99231 

.99441 

.99651 

.99861 
1.00001 
1.00001 
1.00001 
1.00001 

n = 150 

F1(x) 

.132 
• 620 
.818 
.911 
954 
.979 
.986 
993 
995 
• 997 
• 999 
999 
999 
999 
• 999 

1.000 

F2(x) F3(x) 

.123 
• 614 
829 
• 918 
• 944 
974 
• 988 
994 
.997 
.998 
998 
999 

1.000 

.114 

.609 
• 825 
• 918 
.958 
975 
984 
990 
993 
• 993 
• 995 
.999 
• 999 

1.000 

n = 200 

F1(x) 

• 125 
617 
820 
.907 
937 
964 
.979 
• 988 
.991 
• 995 
• 996 
• 997 
• 998 
.999 
.999 

1.000 

F2(x) 

. 116 

.633 
825 
.913 
.959 
.976 
989 
994 
995 
996 
• 998 
999 
• 999 

1.000 

GAMMA DISTRIBUTION 

n = 150 

F1(x) 

.1291 

.6111 

.8151 

.9041 

.9471 

.9671 

.9791 

.9911 

.9941 

.9981 

.9991 

.999J 

.9991 

.9991 

.9991 
1.0001 

142 
.608 
.821 
.908 
.951 
.972 
977 
985 
993 
998 

1.000 

F2(x) 

.109 

.607 

.815 

.911 

.961 
982 
990 
• 994 
• 997 
998 
999 

1.000 

F3 (x) 

• 137 
• 615 
.822 
905 
*943 
• 967 
982 
988 
• 993 
995 
• 997 
.998 
.999 
• 999 

1.000 

n = 200 

FIW  

• 107 
.592 
• 820 
.908 
• 948 
963 
.978 
• 986 
.991 
995 
• 995 
.997 
998 
• 999 

1.000 

F2(x) 

112 
.583 
.794 
• 910 
• 958 
.977 
• 992 
995 
.998 

1.000 

F3(x) 

116 
.613 
804 
• 905 
949 
.976 
. 986 
• 990 
.996 
998 

. 999 
1.000 
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Figure 4.5 

An IGP Printout for the Plot of the Data Given in 
Table 4.4 for the C -vM Type of Statistic 

when n = 200 



- 93 - 

Table 4.5 

Estimated Percentage Points of the C-vM Type of Statistic 
for Commonly Used Significance Level 1-p 

NORMAL DISTRIBUTION GAMMA DISTRIBUTION 

true 
value n = 50 n = 100 n = 50 n = 100 

1-p F (p) F1(p)1F2 (p) F1(p) F2 (p)F1(p) F2 (p) F1(p) F2 (p) 

I .20 I .241 .252J .232 .2461 .242 .249 .2451 .241j .251 

.10 .3471 .374J .333 .3601 .354 .353 I .338 .3501 .353 

.05 .4611 .4801 .443 .4681 .457 .463 .464 .471 .447 

.02 .620 .6191 .669 .601 .586 .633 .626 .639 .554 

.01 .743 .7231 .7591 .735 .667 .736 .764 .760 .673 

NORMAL DISTRIBUTION GAMMA DISTRIBUTION 

true 
value 

n = 150 n = 200 n = 150 n = 200 

i-p F (p) F1(p) F2 (p) Fl (p)F2 (p) F1(p) F2 (p)F1(p) F2 (p) 

.20 J 

.10 

.05 

.02 

.01 

.24111 
I .34711 

.461 

.620 

.743 

.242 

.327 

.435 

.582 

.709 

.2341-2351 

.323 

.459 

.576 

.680 

.3381 

.483 

.662 

.764 

.228 

.329 

.427 

.575 

.651 

.234 

.333 

.441 

.679 

.810 

.244 
I .321J 
I .427f 

.544 

.651 

.235 

.3371 

.466 

.670 

.835 

.253 

.332 

.420 

.576 

.638 



Table 46 

A Comparison of the Sampling Distribution of the A-D Type of Statistic 
Using the Methods in (4.1.2) 

x 

0.3 
0.6 
0.9 
1.2 
1.5 
2.0 
3.5 
5.5 
7.5 
9.5 
11.5 
13.5 
15.5 
17.5 
19.5 
21.5 
23.5 

NORMAL DISTRIBUTION 

n = 50 

F1(x) 

.035 

.226 

.430 

.551 
• 668 
.792 
947 
• 983 
993 
996 
• 998 
999 
• 999 

1.000 

F2(x) 

.071 

.362 

.595 

.723 

.816 
• 887 
.972 
994 
.999 
• 999 

1.000 

F3(x) 

.052 

.307 

.533 
676 
.769 
867 
.970 
• 989 
• 997 

1.000 

n = 100 

GAMMA DISTRIBUTION 

F1(x) 

.053 

.318 

.545 
• 687 
. 796 
• 892 
• 987 

1.000 

F2(x) 

.062 
• 346 
.579 
.705 
• 808 
.895 
• 987 

1.000 

F3 (x) 

.048 
275 
.496 
.654 
.764 
.871 
.971 
996 
998 
*999 

* 

n = 50 

F1(x) 

.012 

.325 

.512 

.644 

.727 

.822 
• 936 
.974 
.988 
993 
.993 
994 
.995 
995 
• 996 
• 996 
• 996 

* 

F2 (x) 

070 
.314 
.515 
.654 
.726 
.819 
.922 
• 963 
.978 
• 988 
988 
• 990 
.991 
• 992 
• 995 
995 
.996 

* 

F3(x) 

• 059 
• 285 
.487 
.639 
.714 
• 825 
949 
.979 
988 
.993 
• 995 
• 995 
995 
• 996 
997 
.997 
997 

* 

n = 100 

F1(x) 

.053 

.298 

.515 

.654 

.746 
845 
.959 
.991 
994 
994 
• 996 
.997 
• 997 
.997 
• 998 
.998 
.998 

* 

F2(x) 

.061 
• 292 
.500 
• 635 
.738 
.831 
.952 
• 987 
.991 
.994 
995 
• 996 
• 996 
.996 
• 996 
• 997 
997 

* 

F3(x) 

.048 

.304 

.527 

.670 

.776 
• 868 
.976 
994 
.997 
• 998 
.998 
998 
• 998 
• 998 
998 
• 998 

1.000 



Table 4.6 (continued) 

X 

0.3 
0.6 
0.9 
1.2 
1.5 
2.0 
3.5 
5.5 
7.5 
9.5 
11.5 
13.5 
15.5 
17.5 
19.5 
21.5 
23.5 

NORMAL DISTRIBUTION 

n = 150 

F1(x) 

• 048 
348 
.565 
.714 
825 
.911 
.979 
998 
• 999 

1.000 

F2(x) 

.062 
• 368 
.594 
739 
• 836 
.912 
• 985 
• 996 
• 999 
999 
999 
999 
• 999 
• 999 
999 

1.000 

F3(x) 

.041 

.307 

.523 
• 682 
797 
891 
979 
• 996 
999 
• 999 
999 
• 999 
• 999 
999 
• 999 
• 999 

1.000 

n = 200 

GAMMA DISTRIBUTION 

n = 150 

F1(x) 

043 
• 328 
.560 
• 726 
.827 
• 906 
977 
995 
998 
• 999 

* 

F 2 

.058 
335 
.592 
• 835 
• 915 
• 988 
998 
999 

* 

F3(x) 

.060 

.296 

.552 
803 
892 
• 972 
• 997 
• 998 
999 

* 

F1(x) 

.069 

.318 

.518 
668 
.751 
• 866 
• 965 
• 989 
• 996 
• 996 
996 
• 996 
998 
• 998 
998 
• 998 
• 999 

* 

F2(x) 

.063 
• 332 
.535 
• 689 
.777 
.871 
978 
994 
• 997 
.999 
• 999 
• 999 

1.000 

F3(x) 

.061 

.339 
• 555 
.712 
• 795 
885 
973 
• 994 
• 998 
999 

1.000 

n = 200 

F1(x) 

.050 

.304 

.500 
• 659 
762 
.857 
.966 
989 
• 995 
998 
998 
• 998 
998 

1.000 

F2(x) 

.064 

.317 

.529 
672 
763 
903 
975 
993 
999 

1.000 

F3(x) 

.064 

.312 

.551 
696 
• 797 
.900 
• 978 
996 
• 999 

1.000 

* Extreme values have been discarded 
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Figure 4.6 

An IGP Printout for the Plot of the Data Given in 
Table 4.6 for the A-D Type of Statistic. 

when n = 200 
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Table 4.7 

Estimated Percentage Points of the A-D Type of Statistic 
for Commonly Used Significance Level i-p 

i-p 

true 
value 

NORMAL DISTRIBUTION 

= 50 n = 100 

GAMMA DISTRIBUTION 

n = 50 

-1 '-1 I -i -1 

F (p) Fi(P)(F2(P) F1 (p) F2 (p) 

.10 11.93312.30512.079 2.048 2.034 

.05 2.492 2,97012.736 2.737 2.597 

.01 j3.857 5.54114.433 4.066 3.605 

n = 100 

F1(p) F2 (p)F1(p) F2 (p) 

2.7751 2.841 2.409 2.573 
3.916 4.495 3.306 3.445 
7.942 12.963 5.262 7.113 

NORMAL DISTRIBUTION 

i-p 

true 
value 

n = 150 

-1 

F (p) 

n = 200 

GAMMA DISTRIBUTION 

n = 150 n = 200 

F1 (p) F2 (p) F1(p) F2 (p) I F1 (p) F2 (p) F1(p) F2(p) 

.10 1.933111.904 1.892 1.961 11.869 2.22112.23012.32912.181 

.05 2.492 2.404 2.469 2.716 2.413 2.976 2.770 3.134 2.851 

.01 13.857 4.399 3.752 4.762 3.693 6.075 4.898 5.792 4.800 
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