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ABSTRACT 

Object-based contrast enhancement is a recently developed image 

processing technique which aims at improving the visibility of objects or 

features in images. The underlying concept is to identify objects in the image 

based on an object-defining criterion, hence the name "object-based 

contrast enhancement". The contrast of each object in the image with respect 

to its background is computed and replaced with a new increased value 

through a contrast transfer function, and the output pixel value is computed 

accordingly. 

This thesis presents a detailed study on the object-based enhancement 

technique, with the main focus being placed on the development of a 

mathematical model for contrast, accurate object- and background-region 

growing techniques based upon the contrast model, the synthesis of optimal 

contrast functions, and dynamic range control. The differences between the 

objectbased method and other well-established enhancement techniques 

are also analyzed and demonstrated by applications to a number of test 

images including mammograms. The object-based technique is found to be 

more effective than others in terms of whole-object enhancement, especially 

for low-contrast objects. 
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Chapter 1 

INTRODUCTION 

1.1 MOTIVATION 

Digital contrast enhancement is a field of image processing that aims at, 

improving the visibility of features in images. The features could be coarse 

objects or fine details. The spectrum of contrast enhancement techniques is 

broad, covering spatial- and frequency-domain operations, global and local 

techniques, point operations and histogram-based transformations, and 

numerous variations and combinations of the above. A summary. of these 

techniques and their usefulness will be described in Chapter 2. 

Object-based contrast enhancement is a spatial-domain, local technique 

that aims at enhancing objects or features in images as whole entities, 

rather than enhancing only edges of the objects. The underlying concept is 

to identify objects in the given image based on an object-defining criterion. 

Initial developments in this direction were made by Gordon and Rangayyan 

[1] to enhance features present in mammograms (x-ray images of human 
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breasts), specifically to identify clusters of calcification deposits that are 

associated with breast cancer. Among radiological images, the mammogram 

is one of the most difficult to interpret due to the low-contrast, small-size 

nature of malignant features; however, it is currently considered the most 

effective tool to detect nonpalpable cancer and early-stage cancer [2, 3, 4, 

5]. For this reason, continuing research work is being conducted in this 

direction to enhance features in mammograms [6, 7, 8, 9, 10,11], and to 

analyze the shapes of diagnostic features [12]. 

The object-based contrast enhancement algorithm "basically proceeds as 

follows: each object in the image is identified, its contrast is computed, a 

new contrast value is obtained through a contrast transfer function, and the 

object is assigned a new pixel value. Previous implementations of this 

method [1, 8] suffer from inaccurate approximation of objects and -severe 

dynamic range expansion. The present thesis work was initiated to improve 

the technique and to make it a more 'generalized tool which could be 

applicable to a broad range of images. 

1.2 THESIS OBJECTIVES 

With regard to the development of the object-based contrast 

enhancement technique, the specific objectives of the thesis are as follows: 
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1. To develop a general mathematical model for object contrast as 

perceived. by the human visual system,. and a simplified model for 

low-contrast objects. 

2. To establish 'object-region growing criteria based on the simplified 

contrast model. 

3. To implement accurate object- and background-region growing 

techniques. 

4. To evaluate the effectiveness of the region-growing criteria in noisy 

images. 

5. To establish the required conditions for enhancement in terms of object 

size and background brightness variation. 

6. To develop a new approach to optimize contrast enhancement 

functions, i.e., the synthesis of piecewise-linear enhancement 

functions. 

7. To control the dynamic range expansion in the enhanced image. 
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1.3 THESIS OUTLINE 

The objectives described in Section 1.2 are covered in this thesis as 

below: 

• Chapter 2 discusses the concept of subjective contrast (i.e., as 

perceived by the human visual system), and how it can be modeled and 

defined mathematically. Contrast enhancement techniques are 

evaluated on the basis of visual contrast definition, with a focus on the 

enhancement of objects as whole entities. 

* Chapters 3 covers the object- and background-region growing 

techniques (objectives 2 to 4). 

• Chapter 4 describes in • detail the steps of the object-based 

enhancement operation, including objectives 5 to 7. 

• Chapter 5 illustrates the application of the algorithm to images of 

various types. 

• Finally, Chapter 6 summarizes what the thesis has achieved as well as 

areas that could be improved in the future. 
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Chapter 2 

CONTRAST MODELING 

AND EVALUATION OF 

CONTRAST, ENHANCEMENT 

TECHNIQUES 

In this chapter, a mathematical model for the subjective contrast (as 

perceived by 'the human -visual system) is first established. The contrast. 

enhancement techniques currently available are next evaluated in terms of. 

object contrast enhancement based on the foundation of the contrast 'model. 

Finally, the object-based enhancement method is introduced.and compared 

with other techniques at the conceptual level. 

In this thesis, an image is represented by a two-dimensional function 

f(x,y), or simply f(P), where. x and y are the rectangular coordinates of pixels 

in the image, and P represents the pixel at location (x,y). f(x,y) is referred to 

as the pixel value, or brightness value, or gray level at location (x,y) in the 

image. All input pixel values are assumed to be integers and greater than 

zero. 
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21 CONTRAST MODELING 

In general terms, contrast refers to the difference in luminance between 

an object and its surrounding. in this thesis, an emphasis is placed on the 

subjective contrast, i.e., the psychovisual perception of the brightness 

difference. 

The contrast sensitivity of the human visual system is characterized by 

examining the visibility of a uniform object placed in the center of a uniform 

background. The brightness difference between the object and its background 

is increased or decreased until the object becomes barely visible. The result 

is the well-known Weber's law, which states that for an object of brightness B 

to be distinguishable from .the background of brightness (B+dB), the relative 

difference, dB/B must be greater than a threshold value, which stays constant 

at about 2% for brightness levels ranging from 1 to 1000 Ft. Lambert [13, 

14]. The just-noticeable threshold is also referred to as the Weber's ratio. 

Based on the Weber's law, if the relative brightness difference 1dB/BI 

between an object and its background is small and close to the Weber's ratio, 

the object contrast c can be approximately modeled as being proportional to 

1dB/BI: 
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C  yldB/BI, (2.1) 

where y is a positive proportionality constant. Equation (2.1) is thus valid for 

brightness levels ranging from 1 to 1000 Ft. Lambert. 

It is well known that the human visual system can adapt to an enormous 

range of brightness levels; however, it cannot operate over such a wide range 

simultaneously [13, 14]. Instead, it can simultaneously discriminate only 

brightness levels of a smaller range centered around an overall intensity that 

it adapts to under the given set of conditions. This phenomenon is known as 

the brightness adaptation, and the adapted intensity B. is called the 

brightness-adaptation level. 

As mentioned earlier, Weber's law applies, to an object surrounded by a 

single background of brightness close to that of the object, in which case the 

adaptation level is approximately equal to the object (and background) 

brightness, i.e., Ba B. As the adaptation level deviates from the object 

brightness, the just-noticeable threshold will vary accordingly. This effect can 

be examined by placing an object and its small background in another larger 

background such that the adaptation level now is approximately equal to the 

brightness of the larger background. The relative brightness difference dB/B 

between the object and its background is increased or decreased until the 
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object becomes just visible, and the procedure is repeated for different values 

of Ba. The just-noticeable threshold is found to increase above the 2% 

value as the object brightness deviates from the adaptation level. More 

specifically, the just-noticeable threshold rI is a logarithmic function of 

B/Ba [13]: 

'ii 0.02 + 51 log (B/B,,) I (2.2) 

where 6 is a positive proportionality constant. 

By the same token, as the object brightness becomes more different from 

the adaptation level, the object contrast decreases. Based on (2.2), the 

contrast can be approximately modeled as a logarithmic function of B/Ba. The' 

contrast model (2.1) is modified to account for the effect of the adaptation. 

level as follows: 

c •y 1dB/BI - ? I log (B/B,,) I, (2.3) 

where ? is a positive proportionality constant. Similar to (2.1), Equation (2.3) 

is valid for small values of 1dB/BI and for brightness levels between 1 and 

1000 Ft. Lambert. 
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In a complicated image, as the eyes roam about the scene, the 

adaptation level does not remain the same; instead, it fluctuates in the same 

direction as the average brightness of the local scene. Thus it is necessary to 

obtain a method for estimating the adaptation levels for different objects.in 

an image. Further study on the adaptation level, however, is beyond the 

scope of this thesis, and its effects on contrast will be ignored. The result of 

this simplification is that the final enhancement may not be satisfactory for 

objects with brightness being considerably different from the adaptation level. 

The main focus of this thesis is the enhancement for low-co ntrast.objects 

only; high-contrast objects are already visible and require less or no 

enhancement. For this reason, the use of the contrast models (2.1)or. (2.3) 

can be extended for values of 1dB/BI which are higher than 2% but much 

smaller than unity. For high values of 1dB/BI, the contrast models suffer some 

inaccuracy, which in turn affects the level of enhancement; nevertheless, this 

effect is not important since the object contrast is already high relatively. 

From the foregoing discussion, the contrast model (2.1) will be used later 

in the thesis for contrast enhancement. If y is chosen to be unity, (2.1) 

becomes 

cIdB/BI. (2.4) 



10 

If the object and the background are uniform and their brightness values 

are equal to. Pob and Pbg, respectively, by (2.4), the object contrast can be 

defined by either one of the two following equations: 

I Pob - Pbg I 
c=   

c= 

Po b 

I Pob - Pbg I 

Pbg 

(2.5a) 

(2.5b) 

For low contrast, Pob and Pbg are nearly equal and the two definitions yield 

almost the same result. To normalize contrast to the range [0, 1], c can be 

defined as [1] 

I Pob - Pbg I 
C=   

Pob + Pbg 

For low-level contrast, Pob Pbg. This gives 

1 IPob Pbg I 
c-

2 Po b 

1 IPob Pbgl 

2 Pbg 

(2.6) 

(2.7) 
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The normalized contrast defined in (2.6) is thus proportional to the relative 

brightness difference with a scaling factor of 0.5. The definition in (2.6) will 

be used throughout the rest of the thesis. 

2.2 EVALUATION OF CONTRAST ENHANCEMENT TECHNIQUES 

2.2.1 Classification of Contrast Enhancement Techniques 

Contrast enhancement techniques are grouped into two main classes: 

spatial-domain and frequency-domain operations. Spatial-domain operations 

deal with pixel values, whereas frequency-domain operations deal.with the 

Fourier spectrum of the image. Well-known frequency-domain enhancement 

techniques are high-pass filtering and homormophic transformations that 

enhance high-frequency details and image sharpness [13]. 

Spatial-domain enhancement techniques are further classified into 3 

categories: point-operation, histogram-based, and local-neighborhood 

techniques. The first type is based on linear gray level mapping and includes 

contrast stretching and windowing techniques [13]. The histogram-based 

technique is a non-linear gray level mapping procedure that is based on a 

transformation of the histogram of the given image. Common histogram 

techniques are histogram equalization and histogram modification [13]. The 
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local-neighborhood technique operates upon an m x n neighborhood of the 

input pixel. A common application of this type is the enhancement of edges. -

and high-frequency details [15, 16, 17]. Common operators are gradient-

type filters which extract edges, and the unsharp masking operator, which 

enhances fine details [18, 19]. 

The point-operation and histogram techniques mentioned above are 

global in that the transformation is based upon the gray level distribution of 

the entire image. In general, they may fail to enhance local details,. which 

may have little influence on the global transformation. To overcome this 

problem, the image is broken down into sub-images, and a separate 

transformation is applied to each sub-image. This gives rise to the 

local-processing counterparts, including local contrast stretching [20, 21.], and 

local histogram equalization and modification [22, 23, 24]. 

2.2.2 Global Contrast Stretching 

Contrast stretching, or simply stretching, is a spatial-domain mapping 

that linearly rescales input values so that the output values will occupy a 

specified larger range. If the input image f(x, y) is bounded 'within the range 

'umax], and the output image bounded within [outmin, outmax], the 

required stretching transformation is 
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g(x,y) = kf(x,y) + b, (2.8) 

where 

OUtmax - OUtrn in 

k =   > 1, (2.9) 
1 max - 1flmin 

and 

b=out - (2.10) 

The parameter k defined in (2.9) is a measure of dynamic range 

expansion. Using the contrast definition (2.6), an expression for the contrast 

gain, g, can be obtained. Assuming f(P2) > f(P1), the input contrast 

corresponding to two pixels P1 and P2 is 

f (P) —f (P1) 
ci n =   

f (P2) +f (P1) 

and the output contrast is 

cout = 

g(P2)—g(PO k(f(P2) —f(P1)) 

g(P2)+g(P1) k(f(P2) +f(P1)) +2 b 

cout can be expressed in terms of c1 as 
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(f (P2) —f (P1) ) I (f(P2) + f (P1) 
cout = 

2b 
1+ 

k ( f (P2) + f (P1) ) 

2b 
1+ 

k ( f(P2) + f (P1) ) 

which leads to an expression for the contrast gain, g: 

1 
gc = c0 t I Ci n = 

1+ 
2b 

k (f(P2) +f (P1) ) 

Substituting (2.9) and (2.10) for k and b in (2.11), yields 

1 
= 

1+ 
2 ( (outmin 1k) in) 

f (P2) + f (P1) 

(2.11) 

(2.12) 

It is seen from (2.12) that the contrast gainis an increasing function of the 

dynamic range expansion measure, k. For contrast enhancement, gc must be 

greater than unity. This requires 
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k> (out / in, 1 ). (2.13) 

Hence to obtain contrast enhancement, k must be large enough to satisfy 

(2.13). This corresponds to dynamic range expansion. On the other hand, if k 

is small and does not satisfy (2.13), the contrast is decreased. This 

corresponds to dynamic range compression. 

For contrast stretching to work, however, the output range must stay 

within the available range of the display equipment so that no clipping occurs. 

The main disadvantage of the stretching technique is that if the input range is 

already close to the display range, only negligible enhancement is obtained. 

Another method often used to enhance contrast is windowing, which 

maps a certain sub-range of gray levels in the input image to a larger range, 

usually the available display range. In this case, features of gray levels within 

this sub-range are enhanced, while those outside it will be clipped. The 

stretching technique described earlier is a special case of windowing in that it 

maps the entire range, rather than a sub-range, of the input image. The 

disadvantage of windowing is that features are not enhanced equally, and 

multiple operations may be needed for different windows to bring out all 

features. 
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2.2.3 Global Histogram-Based Techniques 

Histogram equalization is another common enhancement technique. It is 

basically a non-linear gray level transformation that tends to equalize the 

occurrences of all gray" levels, producing a more uniform gray level histogram 

and maximum first-order entropy [13]. Under histogram equalization, an 

input gray level is transformed to a normalized output value (in the [0,1] 

range) equal to the cumulative distribution function of the input image 

evaluated at that input value. If the input image contains N pixels of M 

discrete values Po, Pi, ... PM-1, with each value pi occurring n1 times, i.e., 

with a probability of qj = n1/N, the normalized output values{ s0, i,.•., SM-i } 

generated by the histogram-based technique will be 

sj q1,O≤j≤M. (2.14) 

From (2.6) and (2.14), the contrast between two output values sj and 5j+k is 

c= 
9ik - Si 

5i+k Si j+k i 
+q1 

1=0 1=0 

(2.15) 
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For low contrast, Sj+k Si, and (2.15) becomes 

C 
1 

2 

qj+i +... 

qo+ ... +qj 
(2.16) 

Equation (2.16) shows that the output contrast is a function of the 

occurrences of the input pixel values and therefore is totally unrelated to the 

input pixel values and input contrast. The direction and amount of contrast 

change depend on the shape of the histogram of the input image. In other 

words, this technique may increase the visibility of certain low-contrast 

objects and, at the same time, have the opposite effect on others. There is 

no guarantee that all low-contrast details are enhanced. This limits the 

usefulness of the technique. 

Histogram modification is more general than histogram equalization. The 

desired histogram of the enhanced image is first specified, and the required 

gray level transformation is then determined. This technique requires in 

advance a knowledge of the desired histogram. Compared to histogram 

equalization, it may result in more satisfactory images at the expense of 

multiple trials. In terms of object contrast enhancement, it suffers the same 

drawback as histogram equalization. 
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2.2.4 Localization of Global Transformations 

Local contrast stretching is a technique that stretches the pixel values in 

an m x n pixel window using the local minimum and maximum of the 

windowed area [19, 20]. To reduce the amount of computation, the local 

extrema can be estimated using bilinear interpolation [20]. This method, 

however, is found to produce artifacts such as the average values of regions 

being brought closer together, and the manifestation of false regions in the 

presence of sharp gray level transition between two adjacent regions [20]. 

Local histogram equalization operates upon the local histogram of a 

pre-specified neighborhood centered at the input pixel. The gray level 

transformation derived from this local operation is used to compute the 

output pixel value. Approximation methods that speed up the operation have 

also been developed such as Adaptive Histogram Equalization and Moving 

Histogram Equalization [22, 23]. These methods calculate the output pixel 

values by bilinearly interpolating values that are obtained from a number of 

transformations. The local histogram techniques in general provide stronger 

contrast enhancement effect than their global counterparts because the 

localized histograms are adapted to local properties and occupy a smaller 

gray level range. However, they generate different kinds of artifacts 

depending on the interpolation method used, and, similar to the global, 
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histogram techniques, may still result in the loss of local details [23]. 

2.2.5 Local-Neighborhood Techniques 

Unsharp masking is a common processing technique that enhances 

high-frequency details using local statistics. The input image f(x,y) is thought 

of as a linear combination of low-frequency and high-frequency components. 

The low-frequency component is taken as the average pixel value m(x,y) of a 

neighborhood centered at f(x,y), and the high-frequency component is taken 

as ( f(x,y) - m(x,y) ). The output pixel g(x,y) is related to the input pixel f(x,y) 

by the following relationship [15, 16, 17]: 

g(x,y) = A [f(x,y) - m(x,y)] + m(x,y), (2.17) 

where A is the enhancement gain factor for the high-frequency component. 

Increasing A will have the effect of amplifying the local gray level variations. 

It can easily be shown that for objects larger than the neighborhood size, 

unsharp masking does not affect all the pixels. in the objects. This is 

illustrated in Figure 2-1, which shows an object at location (xl, yl) 

encompassing the square neighborhood. The neighborhood is uniform 

because it is contained within the uniform object. Hence m(xl, yl) = f(xl, yl). 

From (2.17), g(xl, yl) = f(xl, yl) = m(xl, yl) regardless of A, i.e., the pixel 
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value at (xl, yl) is unchanged. 

Location (xl.y13 

Object 

Neighborhood 

Figure 2-1 Illustration of an object encompassing the neighborhood used.in 
unsharp masking operation 

To make the local operations more effective, local statistics may be used 

to influence the parameters of the operatiohs [15, 16, 19]. This gives rise to 

locally adaptive techniques, in which the operation parameters are adapted to 

local statistics. For example, the gain function A in the unsharp masking 

technique can be made inversely proportional to the standard deviation of the 

neighborhood. Since the standard deviation represents local contrast, the 

main effect will be high contrast gain for low-contrast features and low gain 

for high-contrast features. 
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23 OBJECT-BASED CONTRAST ENHANCEMENT 

As mentioned in Chapter A, the object-based contrast enhancement 

technique is a spatial-domain, local operation whose aim is to enhance 

objects as whole entities rather than enhancing only edges of the objects. For 

each pixel, the processing algorithm consists of five main steps [1, 8, 9, 10]: 

1. Identify the object at the pixel location if it does exist. 

• 2. Select a representative background. 

3. Compute the contrast of the object with respect to the background. 

4. Determine the new enhanced contrast by means of a contrast transfer• 

function. 

5. Compute the output pixel value corresponding to the new contrast. 

Compared to other techniques, the object-based enhancement method 

has several potential advantages: 
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• The amount of enhancement, which depends on the local contrast, is 

not limited by the global extrema as in the case of global stretching. 

• Unlike the histogram-based techniques, there is no loss of local 

objects. 

• Artifacts such as those generated in local stretching and local histogram 

techniques do not exist. 

• Whole-object enhancement is achieved as opposed to edge 

enhancement seen in local-neighborhood techniques. 

The five processing steps in the object-based enhancement operation will 

be discussed later in detail, .with steps 1 and 2 covered in Chapter 3, and the 

rest covered in Chapter 4. Application results for a number of test images will 

be presented. in Chapter 5 to illustrate the usefulness of the object-based 

technique and the differences between various techniques. 
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2.4 SUMMARY 

A general mathematical model for subjective contrast was established, 

and an approximate model was developed for the case of low-contrast 

• objects whose brightness levels are not too different from the brightness-

adaptation level. The common enhancement techniques were described and 

evaluated in terms of object contrast enhancement. At the conceptual level, 

the object-based technique was shown to be more effective than others. 

Deviations from the simplified contrast model caused by extreme brightness 

conditions outside the applicable range of the Weber's law , and by the 

adaptation-brightness level were not studied in detail here; these topics, 

however, are important and need further investigation. 
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Chapter 3 

REGION-GROWING 

TECHNIQUES 

3.1 INTRODUCTION 

This chapter discusses techniques to grow object and background regions 

required in the object-based contrast enhancement process. In this thesis, a. 

region is understood as a connected set of pixels, and an object is defined 

as a connected region that is fairly uniform in brightness. Region growing is 

the procedure of grouping pixels or sub-regions of pixels into larger regions: 

A region-growing algorithm is characterized by its pixel-grouping technique 

and region-growing criterion. The pixel- grouping technique is the method by 

which pixels are selected for being examined if they should be included in the 

region. The examination is based upon an inclusion condition, which is 

referred to as region-growing criterion. For the purpose of growing uniform 

regions, it is necessary to define the uniformity of an object in a 

mathematical form, based upon which region-growing criteria can be 

developed. 
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The concepts of connectivity and connected regions, or simply regions, 

are summarized in the next section, followed by a description of the 

region-growing techniques that have been used in the past. The last two 

sections discuss respectively the object- and background-region growing 

techniques that are suitable for the object-based enhancement process. 

3.2 DEFINITIONS OF CONNECTED REGIONS AND OBJECTS 

The concept of connectivity between pixels is important in defining the 

boundaries of regions in an image. Its ramification is expressed through the 

following definitions [13]: 

! Two pixels are said to be connected if they are neighbors of each other. 

The pixel located at (i,j) is said to be 4-connected to the four pixels at 

locations (i, j-1), (i, j+1), (i-i, j), and (i+1, j), and 8-connectedto the 8 

pixels at (i, j-1 ), (i, j+1 ), (i-1, j), (41, j), (i-1, j-1 ), (i-1, j+1), (i+1,j-1 ), 

and (i+1, j+1). Hence there are two types of connectivity, 4-connectivity 

and 8-connectivity. The term "connectivity" when used alone may refer 

to either type or both and should always be clearly specified. 

• Pixels P and Q are said to be connected if there exists a path 

(No P,...,Nm Q) such that N i is connected to N_ 1, for 1 ≤ i ≤ m. 
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A set of pixels R is said to be a connected region if every pair of pixels 

in R is connected: 

In this thesis, an object is defined as a connected region of which every 

pixel must satisfy the specified uniformity criterion. The connectivity can be 

either 4-connected or 8-connected. 

3.3 REVIEW OF REGION-GROWING TECHNIQUES 

Region-growing techniques have been used in the past mainly for 

segmenting an image [13, 25, 26]. Image segmentation is the task of 

partitioning the given image into non-overlapping, connected sub-regions R1, 

R27 ...,R such that each sub-region satisfies a region-defining criterion, and 

the union of any adjoining sub-regions does not. The region-defining criteria 

and the pixel-grouping techniques that have been used in the past are 

described next. 

A region-growing criterion is often based on a definition of uniformity of a 

region. One common criterion defines a region R as a uniform one if 

(3.1) 
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where m and a are the gray level mean and standard deviation of R 

respectively, and L is some chosen threshold. Another criterion defines region 

R in image f(P) (P represents a pixel) as a uniform one if [25] 

max I f(P) L m I <t (3.2) 

PER 

where m is the average value of R, and t is some positive threshold value. 

There are two common pixel-grouping techniques that have been used in 

the past; they are pixel aggregation and split-and-merge techniqu e's [13, 25]. 

In pixel aggregation, region growing starts from a seed pixel. The algorithm 

examines each of the four- or eight-connected neighboring pixels of each 

boundary pixel of the existing region to determine if it can be included into 

the region without violating the region-growing criterion. The process 

continues until no more pixels can be included or a certain stopping condition 

is satisfied. 

The split-and-merge technique has been used mainly for segmenting an 

image. Image segmentation is the task of partitioning an image into 

non-overlapping, connected sub-regions R1, ..., R such that [13, 25] 
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(R1) = TRUE for I E [1,n], and (3.3) 

(D(Ri uR) = FALSE for  #J, i c= [1, n], j € [1, n], (3.4) 

where 1 is some logical region-defining criterion. The split-and-merge 

technique initially divides the image into an arbitrary set of non-overlapping 

connected sub-regions, then merges or splits the sub-regions in such a way 

that each resultant partition satisfies (3.3) and (3.4). At each intermediate 

step, the algorithm will split region R into four non-overlapping quadrants if 

(R1) = FALSE, and merge any adjacent regions Ri and Rj if (R1 u R) = 

TRUE. The process stops when no further merging or splitting is possible. 

Numerous techniques have been, developed to implement the. 

split-and-merge algorithm [13, 25]. 

3.4 OBJECT-REGION GROWING TECHNIQUES 

In the early development of the object-based enhancement technique, 

the object at each pixel location was approximated by a square centered at 

the pixel [1]. The square object region was grown step by step' in size, and its 

contrast was computed. The background was chosen to be the region 

bounded between the square object region and a larger square of the same 

center. The region-growing process for each pixel ceased when the contrast 
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stopped to increase. The main drawback of this approach is that the 

square-shape approximation does not truthfully represent objects of varying 

shapes. This causes errors in both the object and background approximations 

and consequently results in the distortion of object shapes. A more accurate 

method of growing object regions based on a suitable definition of uniformity 

is essential to avoid the distortion. 

In the following sub-sections, two region-growing criteria are first 

developed based upon the contrast model presented in Chapter 2, followed 

by a comparison of the effectiveness of the two criteria. Finally, 

pixel-grouping techniques that are suitable for the region-growing criteria 

are discussed. 

3.41 Object-Region Growing Criteria 

To find an object-region growing criterion suitable for contrast 

enhancement; the definition of uniformity must be linked to the concept of 

contrast. A uniform region can be interpreted as having extremely small 

internal contrast, i.e., with negligible relative contrast between any two points 

in the region. 
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In light of the contrast definition provided in Section 2.1, it can be proved 

that the region-growing criterion (3.2) is not suitable for contrast 

enhancement application. If P1 and Pj are any points in the uniform region 

defined by (3.2), it follows that 

m - t ≤ f(P1) ≤ m +t, 

I f(P) - f(P) ≤ (m + t) - (m - t), 

or 

I f(P)- f(Pj)I ≤2t. 

By (2.6), the contrast between P1 and P, c, is 

f(P1) - f(P) 

Cjj 

f(P1) + f(P) 

From (3.5) to (3.7), it is seen that cjj is limited by an upper bound: 

2t 
cij  

2(m- t) 

or 

(3.5) 

(3.6) 

(3.7) 
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cii ≤ 
m - t 

(3.8) 

Since.cij represents the internal contrast between any two points in the 

region, the maximum allowed internal contrast forthe region, 01ntmax is 

'thus 

Ci nt  = t / (rn- t). 

Cj nt_max 

(3.9) 

is a strong function ofthe average value of the region, m. .As m 

decreases, Ci nt_max' increases, and, the corresponding region will look less 

uniform. Hence the criterion (3.2) fails to produce regions of similar uniformity 

for a wide range of gray scale. 

The criterion (3.2) must be modified to be consistent with the perceived 

contrast, especially in the low contrast range. Specifically, the relative -not 

the absolute- brightness difference between the pixel and the average 

brightness is to be compared against a 'positive threshold value T. The 

resulting condition is referred to as criterion A and is expressed below: 
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Criterion A: 

f(P) - m 

<T. (A) 

m 

Since m > 0, this condition is equivalent to 

I f(P) - m I ≤ mT. (Al) 

The selection of T is based on the allowed intrinsic brightness variations 

within objects. To find the maximum intrinsic variation, (Al) is first expanded 

to the equivalent form: 

m (1 - T) ≤ f(P) ≤ m (1 +T). (3.10) 

The object pixel values are thus bounded by an upper and lower limit as seen 

in (3.10). The maximum intrinsic contrast, Cintifiax, will be that between 

these two limits: 

Cjntmax = 

I m(1+T)- m(l -T) I 

M (1 +T) + m (1 -T) 
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Cjntmax = T. (3.11) 

Hence, the threshold T clearly divides the contrast range into two classes, 

with the lower range associated with intrinsic contrast which remains 

unchanged, and the higher one associated with object contrast which is to be 

enhanced. The equation (3.11) is used to select the threshold T based on a 

given value of c nt_max. 

The criterion (A), which makes use of the average value of the region, 

may not be effective in the case of low-contrast objects with blurred 

boundaries. The main reason is the fact that the average value m is 

continuously updated after the inclusion of each intermediate pixel in the 

case of the pixel-aggregation technique, or after the forming of each new 

sub-region in the case of split-and-merge technique, making the criterion 

itself continuously changing. If m varies toward the background value, the net 

effect could be the inclusion of the background pixels in the object region. 

This is illustrated by the image in Figure 3-1, which shows a low-contrast 

object of value 100 at locations (i=2, j=2) and (i=3, j=2) over a background of 

value 103, with boundary pixels of value 102. 
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Figure 3-1 Illustration of a low-contrast object with blurred boundary 

If region growing starts at location (2, 2), by using (A) with T = 2%, the 

neighboring pixels with a value of 102 will be included in the object region. As 

the process continues, more and more neighboring pixels are included, 

increasing the average value m of the object region. When the background 

pixels of value 103 are reached, m is 101.7. Based on (A), the background 

pixels of value 103 will be included in the object region. The criterion (A) thus 

fails to detect the object due to the transitional gray levels in the boundary. 
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In real images, the boundaries of the objects are often blurred, especially 

after the image undergoes a noise filtering operation such as mean or 

median filtering [13]. In such a case, to make the region-growing algorithm 

more effective for low-contrast objects, the average value m in (A) should be 

replaced by the starting pixel value f(P). The modified criterion, referred to 

as criterion B, is 

Criterion B: 

f(P) - f(P5) 

(B) 

f(P) 

If the input image is corrupted with additive random noise, both (A). and 

(B) may cause distortion to objects. In the following discussion, the probability 

of distorting objects in the case of (A) is determined first, and the result is 

then generalized for (B). To simplify the analysis, three assumptions are 

made: (1) the intrinsic brightness variations within each object are caused 

solely by noise, (2) the noise has a Gaussian distribution with a mean of zero 

and standard deviation a, and (3) the object size is large enough such that 

its computed average value m can be considered as its true no-noise 

average. For the ease of calculation, a new variable z is introduced: 
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z = f(P)- M. (3.12) 

The probability density function of the noise, v(z), is 

exp(-z2 / (2oQ)) 

v(z) =   (3.13) 

The probability , that the noise-corrupted value of f(P) differs from m by more 

than a positive value z1 is given by 

prob (I f(P) - ml > z1) = prob ( IzI> zi) (3.14) 

prob (lf(P)- ml >z1) = prob (z<-z1)+ prob (z>z1) 

(3.15) 

The first integral accounts for negative noise, and the second accounts for 

positive noise. The two integrals are equal because of the symmetry of the 

Gaussian probability density function about z=O, giving 
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+00 

exp(-z2/ (2o2)) 

prob (I f(P) - m > z1) = 2 

zi 

dz. (3.16) 

The right-hand side of Equation (3.16) is known as the complementary error 

function, ertc (z1 I (i12 o)): 

prob (l'f(P)- ml > z1)=erfc(z1/ (/)). (3.17) 

Applying the above result to the uniform criterion (Al) yields the following 

error probabilities: 

• The probability that an object pixel P is excluded from the object as a 

result of the added noise is 

prob (lf(P) - ml > mT) = erfc (mT / (/)). (3.18) 

• The probability that an object of size N is distorted as a result of one or 

more excluded pixels is 
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€2 = 1 - (1 - €1)N (3.19) 

€2 = 1 - (1 - eric (mT / (y/U)))N . (3.20) 

If €1 <<1, (3.19) can be approximated' by 

€2 1 - (1 - N€1) = N €1 = N eric (mT / (/ a)). (3.21) 

Figure 3-2 shows the probability density function for the case a = 2. 'Error €i 

is illustrated for the case z1 = mT = 3. This error is equal to 

= prob (I f(P) - m > 3) = v (z) dz + 

-00 

+00 

v (z) dz 

3 

and is shown as the shaded area in Figure 3-2. Numerical values of €1 and 

€2 are listed in Table 3-1 for several values of mT/a and N. 

From the above results, it is seen that the probability of causing distortion 

to an object is a decreasing function of mT/a and increasing function of 

object size N. If T is selected based on (3.11) for a given maximum intrinsic 

contrast, the detection of objects will be-subject to an error €2, as given by 
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Figure 3-2 Illustration of €i (the shaded area) associated with criterion (A) 

for the case mT = 3 and a =2 

TABLE 3-1 Numerical values of €1 and €2 as functions of mT/a and N 

mT/a 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

€1 0.317 0.134 0.04 0.012 0.003 0.0005 0.0001 

€2 @ N=20 0.9995 0.9995 0.61 0.22 0.058 0.01 0.002 

€2 @ N=50 1.0 0.9992 0.91 0.45 0.14 0.025 0.005 

€2 @ N=100 1.0 1.0 0.99 0.70 0.26 0.049 0.01 
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(3.20). On the other hand, if €2 is given, Equation (3.20) will dictate the value 

of T. If c1 nt_max and €2 are both given and both are small, it may not be 

possible to obtain a threshold value that will satisfy (3.10) and (3.20) 

simultaneously. In this case, it is necessary to first apply a noise filtering 

operation to reduce the noise deviation. The other parameters, m and N, 

are fixed for a given input image and therefore are not controllable. 

It can be shown that (B) is more sensitive to additive random noise than 

(A) because, with (B), pixels are now compared to the starting pixel rather 

than to the average value of the object region. The probability that the 

noise-corrupted value of f(P) differs from f(P) by more than a positive value 

z1 is re-written as 

prob (If(P) - f(P)l > z1) = prob (If(P) - m + m - f(P5)J > zi) 

= prob (lz + m - f(P) I > zi). 

f(P3) can be greater or smaller than m. In the following calculation, it is 

assumed that f(P) is greater than m; similar calculation can be carried out 

for the other case. 

prob (If(P) - f(P)I > z1) = prob (Iz- (f(P) - m )I > zl) 
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prob (If(P) - f(P5)I > z) = prob (z<f(P)- m- z1)+ 

prob (z > f(P) - m + z1) 

00 

v (z) dz. (322) 

f(P)-m+z1 

The result in (3.22) is used to calculate the probability of the object pixel P 

being excluded from the object region: 

el = prob (If(P) - >mT) 

f(P)-m-mT - -00 

v(z) dz + v (z) dz. 

-00 f(P)-m+mT 

(3.23) 

Figure 3-3 illustrates error €1 for the case z1 = mT = 3, f(P) - m = 2, and 

= 2. From (3.23), ei is equal to 
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Figure 3-3 Illustration of.€i (the shaded area) associated with criterion (B) 

for the case f(P)-m=2,mT=3, and y=2 

€1 = v (z) dz, 

5 

which is shown as the shaded area. Two observations can be made from the 
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illustrations in Figures 3-2 and 3-3. First, €i increases as f(P) departs from 

m. Secondly, if f(P) is equal to m, ei is the same for both criteria (A) and 

(B). This means that in general €i is higher for (B) than for (A). In other 

words, (B) is more sensitive to noise than (A). 

Based on the foregoing analysis, the rules for selecting the criterion for 

various conditions are summarized below. 

1. If the image is noise-free and does not contain low-contrast, 

blurred-boundary objects, either (A) or (B) may be used. 

2. If the image is noise-free and contains low-contrast, blurred-boundary 

objects, (B) should be used to increase the effectiveness of the 

algorithm. 

• 3. If the image is noisy and does not contain low-contrast, 

blurred-boundary objects, (A) should be used. If the distortion of 

objects is not acceptable, a noise filtering must be applied prior to 

contrast enhancement. 

4. If the image is noisy and contains low-contrast, blurred-boundary 

objects, (B) must be used and a noise filtering operation must be 
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applied prior to contrast enhancement. 

Conditions on object size  

Under the influence of noise, objects tend to be broken down into smaller 

ones. To reduce noise amplification, one can impose a lower limit on the 

object area. If the object area is smaller than the lower limit, it will not be 

considered as a true object and will not be enhanced. The condition for 

enhancement is 

oa > oamjn (3.24) 

where oa is the object area, and oam i n is the minimum allowed object area. 

Since region growing is started from every pixel location, object pixels and 

background pixels alike, a problem arises as to whether the grown region 

should be considered as object or background. Usually, the background 

regions spread over large areas in the image. If one attempts to grow an 

object region from a background pixel, the grown region will be very large. 

Therefore, it is useful to define a maximum object area above which the 

region will be considered as background. This also saves processing time as 

the region growing process stops when the region reaches the maximum 
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area. The maximum object area should be chosen accordingly to cover the 

largest object present in the image. A necessary condition for accepting an 

object is thus 

oa < oamax (3.25) 

where oamax is the maximum allowed object area. The condition (3.25) acts 

as another stopping condition for the region-growing process besides the 

inclusion criterion. By combining (3.24) and (3.25), the enhancement 

condition based on object size becomes 

oamjn < oa < oa, ax. (3.26) 

3.4.2 Pixel-Grouping Techniques for Object Regions 

In the preceding section, it was mentioned that pixel aggregation and 

split-and-merge techniques are two possible pixel-grouping methods. The 

technique can only be used if it is suitable to the chosen region-growing 

criterion. The suitability of the techniques to both region-growing criteria (A) 

and (B) is examined below. 
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• The pixel aggregation technique is ideal for (B), whereas the 

split-and-merge technique is not suitable to (B). The split-and-merge 

technique, which is region-based, can identify regions and their 

properties, but it cannot be related to a specific pixel such as the seed 

pixel P as required by (B). 

• Both techniques are suitable to (A), even though the split-and-merge 

technique is a better choice. In pixel aggregation, at the start of the 

region-growing process, the object is small and, as a result, the 

average value of the object is estimated from a small sample of pixels 

and is thus not accurate. The split-and-merge technique starts from 

larger regions and therefore gives more accurate estimates for the 

average values of the objects. 

The implementation of the split-and-merge technique is beyond the 

scope of this thesis. The implementation of the pixel-aggregation technique 

is described next. 

Pixel-aggregation technique  

The pixel aggregation technique can be used to grow object regions 

based on the uniformity criteria (A) or (B). Starting from the pixel being 
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processed as a seed, the algorithm examines the neighboring pixels and 

selectively includes the pixels into the object region based on (A) or (B). If (A) 

is used, the average gray level of the region is updated after the inclusion of 

each new pixel. The same process is repeated for each of four- or eight-

connected neighboring pixels of the currently grown region until no more 

pixels can be included. The growing process involves both spatial connectivity 

and pixel values. 

The pixel aggregation technique can be implemented elegantly in a 

compact form by the use of a recursive function. A typical implementation is 

shown below. The function, called expand _object, has the task of growing 

the object existing at location (ii, ji) by examining the intermediate pixel 

P(i, j) which is 8-connected to the currently grown region. 

expand—object (I, j, ii, ji) 

if oa <oamax and P(i, j) satisfies the chosen inclusion criterion ((A) or (B)) 

mark P(i, j) as object pixel 

increment oa 

update m if (A) is used 

if (i-i is valid) expand_object(i-1, j, ii, ji) 

if (41 is valid) expand_object(i+1, j, ii, ji) 

if (j-1 is valid) expand_object(i, j-1, ii, ji) 
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if (j+1 is valid) expand_object(i, j-i.1, ii, ji) 

if (i-i and j-1 are valid) expand object(i-1, j-1, ii, ji) 

if (1+1 and j-1. are valid) expand_object(i+1, j-1, ii, ji) 

if (i-i and j+1 are valid) expand_object(i-1, j+1, ii, ji) 

if (1+1 and j+1 are valid) expand_object(i+1, j+1, ii, ji) 

else 

mark P(i, j) as boundary pixel 

end if 

end expand—object 

For 4-connected objects, the last four if-statements are omitted. Before 

the function is called, the parameters oa and m are initialized to 0. If the 

recursive feature is not allowed by the chosen computer programming 

language, it can be realized by using "stack" or "queue" data structure [25, 

27]. If oamax is too large, the computer may encounter the stack overflow 

problem. Again, this problem can be avoided by using the stack or queue 

implementation. 
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3.5 BACKGROUND-REGION GROWING TECHNIQUES 

After an object region is defined, the next step is to find the immediate 

background of the object. This step is needed to determine the average 

background gray level, which is required for determining the object contrast. 

To obtain the best background representation, the background region is 

chosen as a layer of constant width surrounding the object boundary. It was 

found experimentally that a width of 2 to 4 pixels would sufficiently present 

the background for human eyes. A larger width would make contrast a global 

measure and destroy, the advantages of local adaptation. Similar to object 

region growing, the pixel aggregation method can be used here to grow 

background regions, but the inclusion criterion for the background is based 

only on the connectivity of pixels and not on the pixel values. 

An algorithm to grow the background region, called expand background, 

is described next. The algorithm starts from the boundary pixels that were 

identified by the expand—object function described in Section 3.4.2. For 

convenience, the boundary pixels are referred to as layer-U background 

pixels. The function adds layers of pixels to the background region, one layer 

at a time; pixels of layer w are those that do not belong to the object and are 

8-connected to those in layer (w-1). If 4-connectivity is used, the last 4 

if-statements are omitted. The total number of layers is equal to the chosen 
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background width, bg_width. The pseudocode of the algorithm is described 

below. 

expand_background 

undo the marking for all previously marked background pixels 

for w from 1 to bg_width 

for each background pixel P(i, j) of layer (w-1) 

if (i-i is valid and P(i-1, j) is not marked) 

mark P(i-1, j) as layer-w background pixel 

if (i+1 is valid and P(i+1, j) is not marked) 

mark P(i+1, j) as layer-w background pixel 

if (j-1 is valid and P(i, j-1) is not marked) 

mark P(i, j-1) as layer-w background pixel 

if (j+1 is valid and P(i, j+1) is not marked) 

mark P(i, j-i-1) as layer-w background pixel 

if (i-i and j-1 are valid and P(i-1, j-1) is not marked) 

mark P(i-1, j-1) as layer-w background pixel 

if (1+1 and j-1 are valid and P(i+1, j-1) is not marked) 

mark P(i+1, j-1) as layer-w background pixel 

if (i-i and j+1 are valid and P(i-1, j+1) is not marked) 

mark P(i-1, j+1) as layer-w background pixel 

if (i-i-i and j+1 are valid and P(i+1, j+1) is not marked) 
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mark P(i+1, j+1) as layer-w background pixel 

end for each layer 

increment w 

end for w 

end expand—background 

Figure 3-4 illustrates three examples of 2-pixel wide, 8-connected 

background regions for various shapes of objects, using the above algorithm. 

The background pixels usually surround the object as seen in all three 

examples in Figure 3-4, but the object may also surround background pixels 

as seen in the right-most example. 

3.6 SUMMARY 

In this chapter, a number of important concepts has been defined 

including connectivity, brightness uniformity, regions, and objects. Based on 

the foundation of the contrast model developed in Chapter 2, two object-

region growing criteria, (A) and (B), were established, and their effectiveness 

and usefulness were compared. Two pixel-grouping techniques applicable to 

the region-growing criteria were discussed, namely the pixel-aggregation and 

split-and-merge techniques, but only the implementation of the first one was 
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Figure 3-4 Examples of background regions 

examined in detail. Finally, the selection of a representative background for 

each object was covered. The topics that are omitted in this chapter but 

deserve further attention are the development of the split-and-merge 

technique for contrast enhancement application, and possible improvements 

in the case of noisy images. 
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Chapter 4 

OBJECT-BASED 

CONTRAST ENHANCEMENT 

This chapter discusses the processing steps involved in the object-based 

contrast enhancement operation after the object and background regions are 

defined. The first three sections describe the computation of background 

values, original and enhanced contrast values, and output pixel values, 

respectively. The dynamic range of the output image is an important issue 

and covered in a separate section. The properties of the contrast functions 

and a synthesis approach to the design of the contrast function are also 

examined. 

4.1 BACKGROUND VALUES AND BACKGROUND CONDITIONS FOR 

ENHANCEMENT 

In the object contrast definition (2.6), a condition on the uniformity of the 

background was assumed. In real images, this is not always the case. For a 

widely-varying background, the object contrast becomes ambiguous, and 
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contrast enhancement is not possible. On the other hand, if the background 

is fairly uniform, it is possible to define the object contrast based on a 

representative background value which could be taken to be the mean or 

median of the background region. In this case, the object contrast definition 

(2.6) becomes 

I  (Po b) - tbg (f (Po b)) I 
c= 

f (Po ) + tbg (f (Po b)) 
(4.1) 

where tb g(f(Pob)) is either the mean or median of the background region 

corresponding to the object region grown from pixel Pob in image f(P). 

The uniformity of the background at pixel P0b can be represented by the 

ratio of the standard deviation, abg(f(Pob)), to the mean or median of the 

background, u)g(f(POb)). For object contrast enhancement, this ratio must be 

less than the allowed maximum background fluctuation, bf 8 , i.e., 

19b  (f (Po b)) 

Pbg (f(Pob)) 
≤ bfmax. (4.2) 

Equation (4.2) is the background uniformity condition for enhancement. 
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42 COMPUTATION OF ORIGINAL AND ENHANCED OBJECT CONTRAST 

The computation of object contrast varies slightly depending on the 

region-growing criterion used. If (A) is used, the object contrast 

corresponding to pixel Ps is 

I Jiob (f (Po b)) - 9b  (f(Pob)) I 
C =  ,, (4.3) 

i-lob (f (Po b)) + 9b  (f(Pob)) 

where b(f(Pob)) denotes theaverage value of the object region at pixel Pob 

in the image f(P). If (B) is used, the object contrast becomes 

If (Ps) - 1bg (f (Ps )) I 
c= 

f (Ps) + tg (f(P)) 
(4.4) 

After the input object contrast is determined, the output contrast can be 

readily computed through a contrast function h(c): 

c' = h(c), (4.5) 

where c and c' are the original and enhanced contrast respectively. 
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The contrast function only applies to "true" objects, i.e. with sizes within 

the predetermined limits described in (3.26). The grown region will be 

considered as noise if it is too small, and as part of the background if it is 

too large. In both cases, the object brightness remains the same under the 

enhancement operation. 

4.3 COMPUTATION OF OUTPUT PIXEL VALUES 

With respect to the output image g(P), the new enhanced contrast c' is 

expressed as 

19 (Pob) - f.tt,g (g(P0b)) 
c' = h(c) =   , (4.6) 

g (Pob) + jlbg (g(P0b)) 

where g(P0 ) and ttg(g(Pob)) are respectively the object pixel value and the 

mean (or median) of the background region at pixel Pob in the output image 

g(P). If c' and ibg(g(Pob)) are known, g(P0b) can be computed from (4.6). 

Unfortunately, tI g(g(Pob)) is not always known. There are two possible 

cases: 

Case 1: The background pixels are left unchanged under the enhancement 

operation. This occurs when the background does not contains any parts of 
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other enhanced objects. In this case, p,g(f(Pob)) = jtbg(g(Pob)). Equation (4.6) 

becomes 

Ig (Po )- 1bg (f(Pob))I 
C' = h(c) =   . (4.7) 

g (Po b) + jibg (f(Pob)) 

With both c' and pbg(f(Pob)) known, g(P0b) can be computed from (4.7): 

1bg (f (Po b)) (1+c') 
g(P0b) = 

g(P0b) = 

1 - C' 

pg(f (Po b)) (1 - c') 

1 + C' 

if  (Pob) ≥ p (f(P0b)), (4.8a) 

jf f (Po ) ≤ pbg (f (Po b)). (4.8b) 

Case 2: If the background region contains parts of other objects and if the 

pixels in these objects are changed under the enhancement operation, then 

jlbg(g(Pob)) :;- jiig(f(Po)). In this case, jibg(g(Pob)) is not known and it is not 

possible to compute g(P0b) based on (4.6). To resolve this problem, g(P0b) is 

estimated in two or more steps: 

Step 1 J11g(g(Pob)) is assumed to be equal to pg(f(Pob)), and g(P0b) is 

estimated using (4.8). With this approximation, the enhanced contrast 

in the output image might be less than the predetermined value. The 
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output image obtained in this manner is considered as an intermediate 

result which will be processed further in the next step. The desirable 

contrast values are kept as the targets for all steps. 

Step 2: The output image obtained from step 1 is subjected to a 

second contrast enhancement operation. In this operation, the object is 

re-constructed based on the original input image. This is necessary to 

ensure that the constructed objects are identical to the ones in step 1 

for all pixels. The contrast for each object is computed, compared with 

the predetermined value, and. increased accordingly, if necessary, 

toward the target value. Step 2 is repeated until all objects obtain equal 

or better contrast than their target values. 

The iterative processing method described above will also account for 

changes of background values in the case of "nested" objects, i.e., objects 

located within others. In this situation, an outer object will form the 

background for the inner one. If the outer pixel values are changed in a 

direction to reduce the contrast of the inner object, the second iterative 

processing will detect this influence and adjust the inner pixel values to 

achieve the desirable contrast. 
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Reducing processing time 

The number of required iterations can be reduced if a relaxed stopping 

condition is set up to terminate the process whenever the contrast values are 

found to be close to the target values within a certain tolerance for a certain 

percentage of objects. To further reduce the processing time, once an object 

region is grown, the output values for a number of pixels of the object region 

are calculated. This reduces the overall number of region-growing operations. 

If the criterion (A) is used, all pixels in the region can be processed at the 

same time, whereas if (B) is used, only pixels of values equal to f(P) can be 

processed. If the object size falls beyond the allowable range, the object 

pixels remain unchanged, and all of them can be processed at the same 

time. 

4.4 CONDITIONS FOR CONTRAST FUNCTIONS 

This section discusses the conditions that a contrast function must satisfy 

• to ensure proper enhancement. First, the contrast function must map the 

input contrast in the [0,1] range to the output contrast in the same range, 

i.e., 

0 ≤ h(c) ≤ 1, for 0 ≤ c ≤ 1. (4.9) 



60 

Secondly, for contrast enhancement, the contrast function must satisfy 

h(c)≥c, for 0≤c≤1. (4.10) 

Thirdly, the contrast function should not enhance the internal gray level 

fluctuations within any object. Since the contrast corresponding to internal 

fluctuations is smaller than T, as shown in (3.11), the corresponding condition 

..for the contrast function is 

h(c) = c, for c ≤ T. (4.11) 

The criteria (4.9) to (4.11) form the minimum set of conditions for the 

contrast function. A direct result of the above conditions is that if h1(c) and 

h2 (c) are two valid contrast functions satisfying (4.9)to (4.11), their weighted 

linear combination a hi (c) + (1 -cc)h2 (C), 0 ≤ cc ≤ 1, is also a valid contrast 

function. This result will be used later in the next section. 

Besides the above conditions, there are other practical considerations that 

need to be dealt with to ensure the effectiveness of the enhancement 

operation. One such consideration is the dynamic range, i.e., the pixel value 

range of the output image. The next section discusses how the dynamic 

range can be controlled to increase the effectiveness of the enhancement 
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operation. 

4.5 DYNAMIC RANGE CONSIDERATION 

Dynamic range is an important issue that one must consider in evaluating 

the effectiveness of contrast enhancement techniques. Dynamic range 

expansion has the effect of increasing the contrast; however, if the output 

range goes beyond the available range of the display equipment, clipping will 

occur. If this is the case, the output image must be scaled back to the display 

range by applying gray level compression, which, as shown in Section 2.2.2, 

will reduce the contrast. For a meaningful comparison of contrast 

enhancement techniques, the original and enhanced images must be scaled 

to the same range. 

The contrast gain of the gray level compression or stretching was 

expressed in (2.12). If the contrast gain is close to unity, and f(Pob) f(Pbg), 

(2.12) can be written as 

1 - ( (Out, n 1k) - in, in ) /f (Pob) (4.12) 

where k is expressed in (2.9). For compression, the contrast gain is less than 

unity. Equation (4.12) shows that objects of higher gray levels are less 
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affected by compression. For bright objects, the contrast increase obtained 

from the object-based enhancement operation usually outweighs the contrast 

decrease caused by compression, so that the combined effect of the two 

operations is a net contrast increase. For dark objects, the net change could 

be an increase or decrease. For objects whose contrast values are unchanged 

under the object-based enhancement operation, the net change is a 

decrease. Furthermore, if most objects in the image are unchanged, the 

overall contrast of the image will be reduced. In general, the dynamic range 

expansion needs to be curtailed to a reasonable level to ensure that the final 

contrast change is an increase for the enhanced objects, and the overall 

contrast of the image is not severely degraded. This need is especially true 

for images that contain objects in the lower end of the gray scale. 

To suppress dynamic range expansion, unnecessary enhancement 

operations (such as those for high-contrast objects) that result directly in 

output values exceeding the desirable range should be avoided. Unnecessary 

enhancement that does not directly cause dynamic range expansion can still. 

do so indirectly as in the case of objects whose backgrounds contain parts of 

other objects. This is illustrated in Figure 4-1, which shows an object A 

whose .background contains part of object B. Changing B value will cause the 

background value of A to change, and this necessitates a re-adjustment of A 

value if the enhanced contrast of A is to be kept the same as in the case of 
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not changing B value. The re-adjustment of A value may result in dynamic 

range expansion. This means that if B already has high contrast, its value 

should be kept unchanged to prevent possible dynamic range expansion. To 

summarize, all unnecessary enhancement operations should be avoided in 

order to reduce dynamic range expansion. 

I 

Object B._/' \ 

Object R 

Background of A 

Figure 4-1 Illustration of a background containing part of another object 

To avoid unnecessary enhancement, the contrast function should have a 

contrast enhancement regulation effect, i.e., it should provide high gain for 

low contrast and low gain for high contrast. The slope of the function should 

be steep in the low-contrast range and become less so as the contrast 

increases. Furthermore, as the input contrast approaches a certain maximum 

value, cmax, the output contrast should be kept the same as the original 
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contrast; i.e., 

h(c)=c ifc≥q ax . (4.13) 

If the contrast of an object is in the low range and if the corresponding 

output pixel value falls beyond the available range, contrast enhancement is 

still needed at the expense of dynamic range expansion. In this case, to 

suppress the range expansion while still achieving enhancement, the contrast 

gain can be made adaptive to the amount by which the output value extends 

beyond the available range. The larger the extent, the smaller the contrast 

gain should be. To implement this feature, a combination of two contrast 

functions could be used with one function producing strong enhancement and 

the other producing weaker effect. The net output contrast will be a linearly 

weighted combination of the two contrast values produced by the functions: 

c0 =ct W(c) + (1 - a) h(c), (4.14) 

where c0 is the output contrast, h(c) and W(c) are the strong and weak 

contrast functions respectively, and a is some increasing function of the 

relative difference P of the output pixel value with respect to the extrema of 

the available range. As P increases, a also increases, causing the combined 

contrast to be weighted toward the weak function. 13 can be expressed as 
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follows: 

Pst - availmax 
f3 

availmax 

avail - Ps  

avail 

If Pst > availmax, S (4.15a) 

if Pst <availmin, (4.15b) 

13 = 0 if avail fl ≤ Ps  ≤ availmax, (4.15c) 

where Pst is the output value corresponding to the strong contrast function, 

and avail,, j,, and availmax are the minimum and maximum of the available 

range, respectively. The available range could be the input range or the 

display range. Three potential cases arise as follows: 

1. 13 = 0: availmin ≤ Pst ≤ availmax. The strong function should be used 

since the output range does not stretch beyond the available range in 

this case. Hence cout = h(c). From (4.14), a = 0. 

2. 13 = 13max 13inax is the maximum possible value of 13, for the strong 

contrast function. In this case, the weak function should replace the 

contrast function entirely. Hence cut q ut = h'(c). From (4.14), a = 1. 
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3. 0 ≤ 3 ≤ 3rnax In this case, a is a function of I. If a linear function is 

chosen for aas 

a=a+b, (4.16) 

then a and b can be solved by using the two initial conditions for a in 

the first two cases: (1) a = 0 if P = 0, and (2) a = 1 if P = l3max. The 

result is a = l/13inax 

respect to 3 are 

a = / I3max, 

and b = 0. The final expressions of cc and cout with 

(4.17) 

( f3/3rnax ) h' (c) + (1 ( 13/umax )) h (c). (4.18) 

With a chosen as above, the weak contrast function represents the 

contrast gain limit as P approaches its maximum value. Hence, the 

parameter cmax of the weak function should be chosen properly to provide 

sufficient dynamic range constraint for this limiting case. If the combined 

contrast is not satisfactory, successive enhancement operations can be 

applied until a desirable image is obtained. 
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As mentioned earlier, the available range could be chosen to be the input 

range or the display range, with the input range usually smaller thanthe 

display range. If the input range is used, the dynamic range control takes 

effect sooner, resulting in less dynamic range expansion, but also less 

enhancement for objects of extreme brightness. The opposite effect holds 

true if the display range is used. 

4.6 CONTRAST FUNCTION SYNTHESIS 

In earlier attempts, simple contrast functions such as sqrt(c), 1 -, exp(-3c), 

ln(1 +3c), tanh(2c), and tanh(3c) were used [1, 8]. These functions were 

proposed for use with the square-shaped object approximation technique 

described in Chapter 2. They satisfy criteria (4.9) and (4.10); however, they 

result in severe dynamic range expansion. Another drawback associated with 

the functions expressed in simple arithmetic forms such as the above is the 

difficulty in obtaining the desirable enhancement regulation over the entire 

contrast range [0,1]. To overcome these problems, one could synthesize the 

contrast function in a piecewise linear fashion. Such a function could be 

easily tailored to satisfy all criteria (4.9) to (4.12) and to obtain the desirable 

enhancement regulation and dynamic range control over the entire contrast 

range. 
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Figure 4-2 Examples of strong and weak contrast functions 

0.25 

Figure 4-2 shows examples of strong and weak piecewie linear contrast 

functions. These functions satisfy the requirements (4.9) to (4.11). The 

contrast ranges over which the functions produce any enhancement are: 

[Cs rn in, Cs_max] = [0.02, 0.215] for the strong function and [c 51 , Csrnax] 

[0.02, 0.114] for the weak function. For each function, the lower bound is 

equal to the threshold T to satisfy (4.11), and the upper bound is the 
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parameter Cmax described in (4.13). Outside the enhancement range, the 

slope of the contrast function is unity. I3max is 0.17 and 0.085 for the strong 

and weak functions, respectively. Figure 4-3 shows the contrast gains for 

both functions. 
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Figure 4-3 Contrast gains for the functions shown in Figure 4-2 
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Figure 4-4 Contrast function outputs plotted against input object pixel value 
for the case Pbg=220 

Figures 4-4 and 4-5 show the effect of combining the contrast functions 

as described in (4.14). Figure 4-4 plots the output contrast values obtained 

from the strong, weak, and the combined contrast functions against the 

object pixel value for a background value of 220, with availmin and avail, ax 

taken to be 1 and 255 respectively. Figure 4-5 plots the corresponding 
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Figure 4-5 Output pixel values of contrast functions plotted against input 
object pixel value for the case Pbg=220 

output pixel values obtained from the strong, weak, and combined contrast 

functions. If the output pixel value obtained from the strong function is less 

than 255, the combined contrast function is identical to the strong function as 

shown in the left-hand side portions of the curves. Otherwise, as the output 

value increases above 255, the contrast function is adjusted more toward the 
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weak function (Figure 4-4), and the increase in the output value is lessened 

(Figure 4-5). Figure 4-4 also shows that the combined contrast curve always 

stays above the input contrast curve, which means that contrast 

enhancement is guaranteed under dynamic range control. Hence, a trade-off 

between contrast enhancement and dynamic range restriction has been 

obtained by combining the contrast functions. 

4.7 SUMMARY 

In this chapter, the steps involved in the object-based contrast 

enhancement operation were described in detail along with the explanation of 

the related parameters. The requirements and the synthesis of the contrast 

functions were discussed and illustrated with examples. A method for 

reducing the dynamic range expansion was presented to reduce the adverse 

effect on contrast caused by subsequent gray level compression: The 

object-based enhancement procedure involves a great deal of processing 

and computation; several ways of reducing the processing time were 

discussed, even though more research in this area may provide further 

improvement. 
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Chapter 5 

RESULTS 

51 INTRODUCTION 

This chapter demonstrates the usefulness of the object-based 

enhancement concept and the effectiveness of the algorithms developed in 

the thesis. The object-based enhancement outputs for four test images are 

evaluated and compared with those obtained from other techniques including 

global stretching, global histogram equalization, and local-neighborhood. 

unsharp masking. The local stretching and local histogram-equalized outputs 

are not available for comparison, but their effectiveness can be assessed 

based on the results obtained from their global counterparts and the 

theoretical evaluation discussed in Chapter 2. 

The scope of the applications presented here is limited to the following 

conditions: 
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• The input image contains no noise. Although the noise influence was 

examined theoretically in Chapter 3, a thorough investigation requires a 

significant amount of work that cannot be accommodated in this thesis. 

• Only the region-growing criterion (B) and the pixel aggregation 

technique are demonstrated, while the criterion (A) and the split-and-

merge technique are not. In Chapter 3, it was shown that for no-noise 

applications, the criterion (B) is more effective than (A) in the detection 

of-low-contrast, blurred-boundary objects, and that pixel aggregation is 

the suitable pixel grouping technique for (B). The use of (B) also implies 

that the effects of the brightness-adaptation level and extreme 

brightness conditions on contrast, as described in Chapter 2, are 

ignored. 

The next section presents and evaluates the results, and the subsequent 

section provides concluding remarks. 

5.2 RESULTS 

This section presents four sets of results. In the first set, the input is a 

digitally synthesized image containing objects of varying sizes, shapes, and 

contrast levels. In the second set, the input image is a phantom of 



75 

calcification seen in mammograms. In the third set, the input image shows a 

portion of a mammogram that contains clusters of calcification. Finally, in the 

fourth set, the input image is that of a clock taken under poor lighting 

conditions. The widths and heights of the input images vary from 80 to 101 

pixels. 

Eight-connected object and background regions are used for all images 

(Refer to the functions expand—object and expand—background in Chapter 3). 

For convenience, the same contrast functions and the same enhancement 

parameters are used throughout unless otherwise specified. The weak and 

strong contrast functions shown in Figure 4-2 are used along with the 

following enhancement parameters: 

T.= 2% 

oa 

oamax 

=1 

= 500 

bg_Width = 2 

bfmax 20% 

As mentioned in Section 4.5, there are two versions of object-based 

enhancement outputs depending on whether the available range is chosen as 

the input or display range. If the input range is used, the dynamic range 
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control will be stricter at the expense of less enhancement for objects of 

extreme brightness. The opposite is true if the display range is -used. For all 

output images, the display range is from 0 to 255, and the available range is 

chosen to be the input range unless otherwise specified. Both output versions 

will be shown in some cases to illustrate their differences. 

To reduce the number of iterations, the condition on re-processing has 

been relaxed to account for only pixels whose actual contrast values are less 

than 90% of their targets. Most of the output images presented are 

processed only once, but those corresponding to a number of processing 

iterations are also shown in some cases to illustrate the differences. 

The object-based enhancement outputs are compared against the global 

stretching and local-neighborhood unsharp masking outputs on the same 

gray level range. The unsharp masking procedure used here is operated 

upon a 3 x 3 neighborhood and a gain constant of 2 (Refer to (2.17)). The 

pixels around the borders of the unsharp masking output images are set to 0. 
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5.2.1 Synthesized Image 

The synthesized image is shown in Figure 5-la. It contains uniform 

objects of varying sizes, shapes, and contrast levels. The image size is 80 x 

80, and the minimum and maximum values are 80 and 225 respectively. This 

image contains objects scanning a wide range of gray levels. There are two 

low-contrast objects of round shape present in the lower right-hand side 

portion of the image. 

The object-based technique produces an image of gray level range from 

80 to 227, i.e., with almost no dynamic range expansion. It is displayed in 

Figure 5-1 b, after being rescaled to the input rang,e. The contrast regulation 

effect is obvious throughout this image; the lower the contrast, the higher the 

contrast gain is. Applying the enhancement operation again to, the image in 

Figure 5-1 b results in an output with even stronger enhancement as shown in 

Figure 5-ic, after being scaled down to the input range from its original 

range of 80 to 228. 

For comparison, Figure 5-1 d shows the histogram-equalized image, and 

Figure 5-1 e shows the output obtained from the local-neighborhood unsharp 

masking technique. Both of these figures were rescaled to the input range. 

While the two low-contrast objects become more visible in the object-based 
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Figure 5-1 Results for the synthesized image 

(a) Input image; (b) Object-based enhancement output; 

(c) Result of two successive object-based enhancement operations; 

(d) Histogram-equalized output; (e) Unsharp masking output. 

All five images have the same gray level range. 
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enhancement output, they become less so in the histogram-equalized image. 

The unsharp masking output shows only edge enhancement in the form of 

bright highlights around the boundaries of the objects. For the synthesized 

image, the results thus have shown that the object-based technique is more 

effective than global stretching, global histogram equalization, and local-

neighborhood unsharp masking in terms of whole-object enhancement. 

5.2.2 Calcification-Phantom Image 

The calcification-phantom image, shown in Figure 5-2a, contains clusters 

of, bright small objects that represent the calcification seen in mammograms. 

This is a nearly binary image, with a size of 90 x 90, and minimum and 

maximum values of 74 and 190 respectively. 

Figures 5-2b and 5-2c show the object-based enhancement outputs 

with the available range chosen to be the input and display range; 

respectively. The minimum and maximum values are 70 and 208 for Figure 

5-2b, and 70 and 216 for Figure 5-2c. Using the display range has resulted 

in stronger enhancement for the bright spots at the expense. of more dynamic 

range expansion. 
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For comparison, Figures 5-2d, 5-2e and 5-2f show the output images of 

global stretching, histogram equalization, and unsharp masking techniques, 

respectively. These images have been rescaled to the gray level range of 

Figure 5-2b. Compared to global stretching, the object-based enhancement 

technique has brought out more strongly the brightness variations in several 

bright clusters. The histogram-equalization output appears much brighter and 

enhances the brightness variations in the background, but it does not show 

those in the clusters (The brightness variations in the background are not 

enhanced by the object-based operation because their relative brightness 

differences are less than the threshold T). The unsharp masking output 

shows edge enhancement and some whole-object enhancement for very 

small, bright objects only. 

5.2.3 MammogramImage 

The mammogram image, displayed in Figure 5-3a, shows a portion of a 

mammogram where calcification deposits are present in the form of small 

bright spots. The image size is 100 x 90, and the minimum and maximum 

values are 58 and 255 respectively. 

Since the maximum values of the input and display range are equal, the 

object-based enhancement outputs are the same for both cases when the 
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Figure 5-2 Results for the calcification-phantom image 

(a) Input image; (b) and (C) Object-based enhancement outputs: 

(b) with available range equal to input range, 

(C) with available range equal to display range; 

(d) Global stretching output; (e) Histogram-equalized output; 

(f) Unsharp masking output. Figs b,d,e and f have the same gray level range. 
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available range is chosen to be the input or display range. The output image 

has a minimum and maximum value of 55 and 276 respectively, and is 

displayed in Figure 5-3b after being rescaled to the input range. Another 

output version in which dynamic range control is omitted is shown in Figure 

5-3c, after being rescaled to the input range. The original minimum and 

maximum values for this image are 55 and 291, respectively. It is evident 

that the bright calcification spots have become more visible in Figures 5-3b 

and 5-3c. The difference in enhancement level for the bright, low-contrast 

objects between these two images is calculated below for typical object and 

background values of 240 and 220, respectively. 

The enhancement obtained without dynamic range control is about 1.13 

times stronger than that obtained with dynamic range control, as shown in 

Figure 4-4. The output image in the first case, however, is subject to more 

contrast loss caused by the gray level compression than the one in the latter 

case. The gray level compression is the linear transformation that maps the 

range [55, 291] to [55, 27,6]. The parameter k of this transformation is, 

based on (2.9), 

k = (276 - 55) / (291 - 55) = 0.94. 

The contrast gain of the gray level compression for an object value of 200 is, 
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based on (4.12), 

= - (55 / k - 55) / 200 = 0.98 

Thus the enhancement in Figure 5-3c should be stronger than that in Figure 

5-3b by 1.13 * 0.98 = 1.1 times. The differences between these two figures 

are not visually a5arent because of subtle contrast changes. The other 

reason is the influence of the brightness-adaptation level that effectively 

reduces the perceived contrast of the brighter objects. The above calculation, 

however, has shown that the effects of gray level compression on contrast 

are negligible for bright objects, and dynamic range control can be relaxed for. 

images containing bright objects only. 

The object-based enhancement output obtained after seven processing 

iterations is shown in Figure 5-3d, after being rescaled to the input range. 

The original minimum and maximum values of this image are 55 and 303, 

respectively. The iterative processing affects 11% of the pixels processed in 

the first iteration. The improvements, however, are not visible because of 

further gray level compression and the effect of the adaptation-brightness 

level. 



84 

Figures 5-3e and 5-3f show the histogram-equalized and unsharp 

masking outputs respectively, after being scaled back to the input range. 

Figure 5-3e has a brighter appearance, while Figure 5-3f shows image 

sharpness improvement. Both images, however, fail to bring out the 

calcification features. 

5.2.4 Clock Image 

The clock image, shown in Figure 5-4a, was taken under poor lighting 

conditions. The. image size is 101 x 101, and the minimum and maximum 

pixel values are 79 and 222 respectively. The threshold value T is chosen to 

be 4% to account for brightness variations intrinsic to the features present in 

the image. The output of a single object-based enhancement iteration is 

shown in Figure 5-4b, which has minimum and maximum values of 75 and 

241 respectively. Features such as the numerals, the hour marks, the border 

of the clock, and the lines on the wall appear darker and more visible in the 

output image. 

The result of six processing iterations is shown in Figure 5-4c, after being 

rescaled to the range of Figure 5-4b. The original minimum and maximum 

values of this image are 74 and 267, respectively. The multiple processing 

iterations affect 35% of the pixels processed in the first iteration. The 
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Figure 5-3 Results for the mammogram image: 

(a) Input image; (b) to (d) Object-based enhancement outputs: 

(b) with dynamic range suppression, (C) without dynamic range suppression, 

(d) after seven iterations; (e) Histogram-equalized output; 

(f) Unsharp masking output. 

All outputs have been rescaled to the input range. 
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brightness variations in the bright area by the center of the clock become 

visible as a result of multiple iterations. However, the improvement on the 

dark features are not visible despite of a large percentage of pixels being 

re-processed. The reason is that the contrast changes produced by multiple 

processing iterations are too small to be distinguishable in this case. 

Applying two 'successive object-based enhancement operations produces 

an output with stronger enhancement as shown in Figure 5-4d. The global 

stretching and unsharp masking outputs are shown in Figures 5-4e and 5-4f 

respectively. The images in Figures 5-4d to 5-4f have been rescaled to the 

range of Figure 5-4b for comparison. Compared to the object-based 

enhancement -output, the global stretching output shows less enhancement, 

and the unsharp masking output shows feature sharpness improvement as 

opposed to whole-feature contrast enhancement. 

5.3 CONCLUDING REMARKS 

The effectiveness of the object-based enhancement technique has been 

demonstrated through the results of application to four images. The 

technique was found to be more effective, on the same output range, than 

global stretching, global histogram equalization, and local-neighborhood 

unsharp masking techniques in terms of whole-object enhancement, 
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Figure 5-4: Results for the clock image 

(a) Input image; (b) to (d) Object-based enhancement outputs: 

(b) with one iteration, (C) with six iterations, 

(d) with two successive operations; (e) Global stretching output; 

(f) Unsharp masking output. 

All images from b to f have the same gray level range. 
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especially for low-contrast objects. It provides stronger enhancement 

compared to gray level stretching. It enhances objects locally and regulates 

the level of enhancement, in contrast with histogram equalization, which 

provides strong overall enhancement yet does not guarantee enhancement 

for all objects. The object-based technique enhances objects as whole 

entities as opposed to edge enhancement produced by local-neighborhood 

unsharp masking. The local stretching and local histogram techniques provide 

stronger enhancement than their global counterparts, but at the same time, 

they generate artifacts as a result of joining sub-images together. In general, 

the above comparison still holds for the local stretching and histogram 

techniques. 

The object-based enhancement technique is most useful in applications 

where it is desired to bring out low-contrast details at an enhancement level 

that is not required to be linear. An example is the processing of 

mammograms to bring out the presence of calcification. While only a few 

images are shown here, the technique could be made useful for a variety of 

images by adjusting the operation parameters and the contrast functions 

according to specific needs. 
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Chapter 6 

CONCLUSION 

6.1 CONCLUSION 

This thesis has established the essential algorithms that are required for 

object-based contrast enhancement. Starting from a contrast model, 

accurate object- and background-region growing techniques were developed. 

An effective means was implemented to curtail the dynamic range control 

while still allowing enhancement. The selection of.a proper contrast function 

is important in providing the desired level of enhancement, contrast 

regulation, and dynamic range control; this task has become easier due to 

the piecewise-li near synthesis design approach. 

The effectiveness of the object-based enhancement technique was 

demonstrated through application to a few images. The technique was also, 

compared with others including global stretching, global equalization, their 

local counterparts, and local-neighborhood unsharp masking. The 

comparison was done at the conceptual level and further supported by 
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examining output images. A conclusion can be drawn that the object-based 

technique is the most effective in applications where it Js desired to 

enhance objects or features, especially the low-contrast ones, as whole 

entities, and the enhancement level is not required to be linear. The 

enhancement of the clusters of calcification present in mammograms is one 

of such applications that would benefit from the object- based technique, as 

illustrated in Chapter 5. For a given application, the parameters of the 

object-based technique and the contrast functions can be adjusted to bring 

about the best results. 

Several issues related to the object-based technique were encountered 

and yet were not explored in this thesis due to their complexity. These were 

identified at the end of each chapter and are summarized in the next section. 

6.2 FUTURE IMPROVEMENTS 

Following is a list of items that needs to be addressed to further improve 

the effectiveness of the object-based enhancement technique:. 

• To develop a full contrast model that would account for: (1) the extreme 

brightness conditions under which the Weber's law does not hold and 

the perceived brightness is no longer a linear function of the relative 
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brightness difference, and (2) the influence of the adaptation-brightness 

level of. human visual system on the perceived contrast. Such a model 

will reflect more truthfully the perceived contrast for a wide range of 

gray levels. 

• To implement the region-growing criterion (A) using the split-and-

merge technique. This region-growing scheme is suitable for noisy 

images. 

• To thoroughly investigate the influence of random noise on the 

effectiveness of region-growing criteria (A) and (B), and possibly 

develop new criteria that would work better. 

• To further reduce the processing time. The object-based enhancement 

operation is complicated and time-consuming, and further ways to 

reduce the burden of computation need to be explored. 

The implementation of the above items will certainly increase the 

effectiveness of the technique and widen the scope of applications. 
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