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Abstract

We propose a novel Bayesian variable selection approach that identifies a set of features

associated with a semicontinuous response. We used a two-part model where one of the

models is a logit model that estimates the probability of zero responses while the other

model is a log-normal model that estimates responses greater than zero (positive values).

Stochastic Search Variable Selection (SSVS) procedure is used to randomly sample the

indicator variables for variable selection which in turn searches the space of feature subsets

and identifies the most promising features in the model. For the logistic model, a data

augmentation approach is used to sample from the posterior density. We impose a spike-

and-slab prior for the regression effects where the unselected covariates take on a prior mass

at zero while the selected covariates follow a normal distribution (including the intercept

and clinical covariates). Since the joint posterior density had no closed form, we employed

the techniques of the Markov Chain Monte Carlo (MCMC) to sample from the posterior

distribution. Simulation studies are used to assess the performance of the proposed method.

We computed the average area under the receiver operating characteristic curve (AUC) to

assess variable selection and compared it with competing methods. We also assessed the

convergence diagnosis of our MCMC algorithm by computing the potential scale reduction

factor and correlations between the marginal posterior probabilities. We finally apply our

method to the coronary artery disease (CAD) data where the aim is to select important genes

associated with the CAD index. This data consists of clinical covariates and gene expressions.

Keywords: Bayesian variable selection, coronary artery disease, Markov Chain Monte Carlo,

Stochastic Search Variable Selection.
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Chapter 1

Introduction

1.1 Background of the study

Variable selection techniques play an essential role in regression modelling, most especially

in the context of high dimensional data analysis (a situation where the available observations

are less than the number of covariates or risk factors related to a disease or outcome).

Some of the Frequentist variable selection methods include the stepwise selection procedure

(Peduzzi et al., 1980), forward (Bendel and Afifi, 1976), backward selection procedures

(Derksen and Keselman, 1992) and methods based on penalized likelihood, such as the

Least Absolute Shrinkage and Selection Operator (LASSO) method (Tibshirani, 1996), Ridge

regression (Hoerl and Kennard, 1970), Elastic Net (Zou and Hastie, 2005), and the non-

concave penalized likelihood approach (Fan and Li, 2002). In the Bayesian framework,

Volinsky et al. (1997) have proposed the use of Bayesian model averaging, where a set of

likely models chosen with the leaps-and-bound algorithm are fitted one at a time. More

recent Bayesian approaches have been proposed (see section (2.4) for more details).

It is assumed that some sets of genes usually influence the disease state through their

pathways (Li and Chekouo, 2021) and most selection methods of predicting these groups or

multiple pathways is complex when outcome and nature of data involved is semicontinuous

with high dimensionality. Therefore, the need to develop highly efficient and reliable method

of selection due to the high dimensional nature of gene expression data. A widely used

procedure for identifying genes related to survival outcomes consists of fitting univariate Cox

models on each gene and selecting those that pass a threshold for significance (Rosenwald
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et al., 2002). Different approaches using partial least squares (Nguyen and Rocke, 2002; Park

et al., 2002) or principal components analysis (Li and Gui, 2004) have also been proposed.

These methods select linear combinations of genes rather than the original variables (Sha

et al., 2006).

In this study, we propose a Bayesian variable selection approach that identifies a set of

important features associated with coronary artery disease (using semicontinuous response).

We also explored the performance of the proposed model in comparison with some existing

Bayesian and Frequentist approaches. This study used the two-part model proposed by

Duan et al. (1983) where the first part is a binary model for event of having zero or positive

values and the second part is a linear model. we also used a similar Stochastic Search

Variable Selection (SSVS) approach introduced by George and McCulloch (1993, 1997) to

select significant covariates. The SSVS procedure was used to randomly sample indicator

variables for variable selection (more on this is explained in the methodology section of this

study). The SSVS approach can also be seen in the context of Bayesian model averaging

(Raftery et al. (1997) and Hoeting et al. (1999)). A very close method to this is that proposed

by Sha et al. (2006) but they used log-normal and log-t models for the analysis of microarray

data with censored outcomes and selected features independently while we used logistic model

and log-normal models with application to semicontinuous response and selected features

both independently and the same set of features.

1.2 Motivation

The two-part model is convenient for analysing longitudinal semicontinuous data and has

inspired numerous extensions and variations (Amemiya, 1973; Belotti et al., 2015; Campbell,

2019; Gronau, 1974; Heckman, 1974, 1979; Olsen and Schafer, 2001). To the best of my

knowledge, there is not yet a variable selection method for semicontinuous response. We

therefore propose a Bayesian two-part model for variable selection that identifies important

features and compared the performance to other existing methods. It is expected that this

approach would optimise the selection process of genes that actually contribute significantly

to coronary artery disease (CAD) with better prediction capabilities.
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1.3 Aim and Objectives

Aim:

The aim of this study is to develop a Bayesian variable selection approach that can accurately

handle high dimensional data with a semicontinuous response by identifying and selecting

significant covariates or features.

The objectives of this study are:

(i.) To develop Bayesian variable selection model that can identify clinical covariates and

genes associated with coronary artery disease (CAD) in the context of high dimensionality.

(ii.) To evaluate the performance of our approach using some model diagnostic metrics.

1.4 Organization of the thesis

The rest of the study is organized as follows. In Chapter 1 we present the background

of study, motivation, aim and objectives. Chapter 2 is on the review of literature and

approaches to modelling semicontinuous data, existing Frequentist and Bayesian methods

for high dimensional data analysis as well as the challenges and findings. Chapter 3 is about

the Bayesian methodological framework for our proposed method, while Chapter 4 presents

the simulation studies, model diagnostics, and comparison to existing methods. Chapter 5

is on the application to coronary artery disease (CAD) data. Finally, the summary, and

conclusion is given in Chapter 6.
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Chapter 2

Literature Review

2.1 About Thomas Bayes and Bayesian framework

Thomas Bayes from whom the term Bayes’ theorem got its name, was born in 1701 in

Hertfordshire. He was an English Statistician, Philosopher and Presbyterian minister who

is known for formulating the Bayes’ theorem. He attended the University of Edinburgh to

study logic and theology from 1719 until around 1721. Bayes never published what would have

become his most famous accomplishment. His works and findings on probability theory were

obtained from his notes, edited, and published after his death by Richard Price (Bellhouse,

2004).

Bayes’ theorem (also known as Bayes’ rule) describes the probability of an event based on

prior knowledge of conditions that might be related to the event (Zalta, 2008).

Mathematically, let θ be a parameter with probability P (θ), let y be i.i.d random samples

with probability density function P (y|θ). Then, the conditional probability of θ given y is

expressed as

P (θ|y) = P (y|θ)P (θ)

P (y)
=

P (y|θ)P (θ)∫
θ
P (y|θ)P (θ) dθ

, (2.1.1)

Equation (2.1.1) is known as Bayes’ rule for a continuous random variable, y, this is also

applicable to discrete random variables with some changes to the expression of the denominator.
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2.2 Review of literatures on modelling semicontinuous

data

Semicontinuous data consist of mixture of zero values and continuously distributed positive

values (Wang et al., 2020). Examples of semicontinuous data are: observations of total rainfall

(many days don’t have rainfall), household expenditures (some household spend nothing on

a certain commodity), annual medical cost (a portion of the population has zero medical

expense) etc. (Min and Agresti, 2002). This type of data has received lots of attention

in the literature due to its occurrence under different settings and appropriate analysis to

obtain accurate estimates and inferences (Yiu and Tom, 2018). Given the mixture of zero

and non-zero values, it was intuitive to view the semicontinuous outcome as arising from

two different stochastic processes. One process, referred to as the binary part, indicates if

the outcome is zero or not, and the second referred to as the continuous part, determines

the positive values conditional on the outcome being non-zero. Semicontinuous data are

typically analysed using two-part models wherein the zero process and the continuous values

are modelled separately using logistic regression for the binary part and log-normal for the

continuous part to ensure prediction of positive values (Yiu and Tom, 2018) whereas, in this

study we modelled separately and together. Jaffa et al. (2018) proposed two frameworks;

the first is two-part mixed models with either correlated or non-correlated random effects in

both parts and the other is based on the two-part marginal models to analyse longitudinal

semicontinuous data.

Tobin (1958) proposed a censored regression model to describe household expenditures on

durable goods, known as the Tobit model. Amemiya (1973), Gronau (1974), and Heckman

(1974, 1979) proposed different models which are generalizations of the Tobit model, by

extending it to a two-part model. Duan et al. (1983) proposed a two-part model to fit data

on expenditures for medical care that uses equations to separate the modelling into two stages

(the first stage is binary model while the second stage is a log-normal distribution). Jørgensen

(1987); Jorgensen (1997) proposed a compound poisson exponential dispersion model for

semicontinuous data. Saei et al. (1996) applied an ordinal response model that requires

grouping the response outcomes into categories. Powell (1986) proposed semicontinuous

parametric estimation for the Tobit model using Symmetrically Trimmed Least Squares
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(STLS) estimator. Chang and Pocock (2000) applied the cumulative logit model for modelling

the amount of personnel care for the elderly. This model has the capability to handle the

clumping at zero and positive outcomes. Min and Agresti (2002) reviewed various methods by

which “Nonnegative data with clumping at zero” can be analysed, cases where the response

for the non-zero observations is continuous and when it is discrete, reviewed existing models

for analyzing cross-sectional data and summarized extensions for repeated measurement

analysis (e.g. longitudinal studies). Some of the models mentioned by Min and Agresti (2002)

for modelling semicontinuous data includes; Tobit models, Two-part models, sample selection

models, compound poisson exponential dispersion models and ordinal threshold models. They

also reviewed models for Zero-Inflated data as Zero-Inflated discrete distribution models,

Hurdle models, Finite mixture models and Neyman Type A distribution models. Karlsson

and Laitila (2014) suggested a finite mixture of Tobit models for estimation of regression

models with a censored response variable, stating the interesting features of their proposed

estimator as having the potential to yield valid estimates in cases with a high degree of

censoring.

2.3 Review of literatures on Frequentist variable selection

model in the context of high dimensionality

The common strategies for the selection of important features include the best subset selection,

stepwise (Peduzzi et al., 1980), forward (Bendel and Afifi, 1976), and backward selection

procedures, which are all combinatorial (Derksen and Keselman, 1992). The backward

selection can only be used when the number of features or covariates, p is less than the

number of observations or sample size, n. Since the first model is considered as the model

that contains all possible covariates i.e., the full model. Variables are excluded from the

model according to an “exit” criterion with an exclusion threshold for p-values associated

with individual coefficients. In contrast, the forward and stepwise procedures starts with a

model that contains only a single covariate and the other covariates are subsequently added to

the model according to an “entry” criterion of similar nature to that of backward selection. In

backward selection, a backward step is performed when a variable is entered into the model.

The inverse computational burden of these methods severely limits their applicability to large
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datasets encountered in research.

Here, we use the work of Johnstone and Titterington (2009) to explain the statistical change

or development from simple linear model to high dimensional nature. Let yi be a response,

xi is a predictor, n is observations such that i is each individual from 1 to n, then the simple

linear model can be written as

yi = β0 + β1xi + ϵi, (2.3.1)

where ϵi ∼ N(0, σ2), the error component is independently and identically distributed normal

with mean 0 and variance σ2. The mean relationship between the response and predictor

follows a straight line with intercept β0 and coefficient of xi as β1. The two parameters are

unknown and need to be estimated, here n >> p. It is very convenient to write in matrix

form as

y = Xβ + e (2.3.2)

where y is an n × 1 vector, X is known as the design matrix with n × p dimension, β

is the vector of parameters in model in equation (2.3.1) with p = 2 dimensions, while e

is n × 1 variance-covariance matrix which can be either homoscedastic (equal variance) or

heteroscedasticity (non-equal variance) form.

The common approach to estimate equation (2.3.1) will be to use the least square or maximum

likelihood approach. Using the least square approach, β̂ is known as the minimizer of the

sum of squares function as shown in equation (2.3.3) below;

β̂ = argmin
β

∑
i

(yi − β0 − β1xi)
2 , (2.3.3)

The matrix form in equation (2.3.2), this can be written in terms of the Euclidean or ℓ2 norm

as

β̂ = argmin
β

∥y −Xβ∥22, (2.3.4)

The distribution assumption about e implies that y ∼ Nn (Xβ, σ2I), where Nn denotes an n

- variate multivariate normal distribution with mean vector Xβ, covariate matrix σ2I, where

I is an n× n identity matrix, σ2 is residual variance, and ∥y −Xβ∥22 =
∑
i

(
yi − x⊤

i β1

)2
.

The probability function for y is then

P (y|X,β) =
{(

2πσ2
)}−n

2 exp

{
−∥y −Xβ∥22

2σ2

}
(2.3.5)
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The data provided y and X when viewed as a function of the parameters is now called

the likelihood function and β̂ in equation (2.3.6) is called the maximum likelihood estimate

denoted by MLE for short form.

β̂ = argmax
β

P (y|Xβ) (2.3.6)

It can be seen that β̂ satisfies X⊤Xβ̂ and β̂ =
(
X⊤X

)−1
X⊤y. From this it can be seen

that X⊤X is invertible i.e., the inverse form exist, then if the model is correct β̂ is said to

be distributed

β̂ = Np

(
β, σ2

(
X⊤X

)−1
)

(2.3.7)

where σ2
(
X⊤X

)−1
is the variance-covariance matrix, equation (2.3.7) is also applicable for

estimating multiple linear regression where n >> p.

It is worth noting that for the analysis of the simple linear model, n ≥ p must hold

else
(
X⊤X

)
is singular and the parameters would not be estimable. Also, using MLE

approach when p is fixed, the asymptomatic theory becomes invalid. Now, what if p > n or

p >> n? The usual approach will be to use Regularization method which is also known as

Penalized Least Squares or Penalized Maximum Likelihood. Let’s start with the earliest

which is the Ridge regression introduced by Hoerl and Kennard (1970) in which β can

be estimated using β̂Ridge = Sλ2X
⊤y, where Sλ2 =

(
X⊤X + λ2I

)−1
, λ2 is called the

ridge parameter or regularization constant. After some derivations, it was inferred that

β̂Ridge ∼ Np

(
Sλ2X

⊤Xβ, σ2Sλ2

(
X⊤X

)
Sλ2

)
. Johnstone and Titterington (2009) noted

that the estimator β̂Ridge is biased, but it can be calculated as λ2 increases, bias increases

but variance decreases which makes it acceptable. The matrix X⊤X + λ2I of order p × p

is invertible in this case but there is still a problem when data contains lots of zeros. It has

been proven that if there are so many number of predictors, it is often known that only a

small number of influential predictors are likely selected. Due to this disadvantage of Ridge

regression, they proceeded to change the penalty function and considered what is called ℓ0

regularization. The problem about implementing this approach of using ℓ0 regularization is

that it leads to unacceptable computational complexity. Therefore, a way out of this difficulty

is to have the penalty function on the ℓ1 norm (LASSO penalty item (Li and Xu, 2008)). The

Least Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani (1996),
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penalizes based on the maximum absolute coefficient across all outcomes for each predictor

∥β∥ = λ

p∑
j=1

|βj|, (2.3.8)

which can be formulated into three as shown below;

(i.) β̂Lasso = argmin
β

{∥y −Xβ∥22 + λ1∥β∥} , for some λ1

(ii.) β̂Lasso minimizes ∥y −Xβ∥22 subject to ∥β∥1 ≤ c1(λ1), and

(iii.) β̂Lasso minimizes ∥β∥1 subject to ∥y −Xβ∥22 ≤ b1(λ1),

This procedure shrinks some coefficients towards zero and sets some to be exactly zero;

thereby combining the favourable features of best subset selection and ridge regression, (Li

and Xu, 2008). The disadvantage of the LASSO approach as pointed out by Ranstam and

Cook (2018) is that the regression coefficients may not be reliably interpretable in terms

of the independent risk factors as the focus is on the best-combined prediction, not on the

accuracy of the estimation and interpretation of the contribution of individual variables.

Li and Xu (2008) also pointed out that the original LASSO cannot make use of more than

n covariates and it is highly sensitive to high correlations among covariates. Johnstone

and Titterington (2009) pointed out that the dual advantage of LASSO is its computational

feasibility and generally leads to sparse solutions. However, Zou (2006) showed that for a fixed

number of parameters p, LASSO in general is not consistent, also showed that the probability

that zero coefficients are estimated as zero is generally less than 1. The Lasso estimate for

the linear regression parameters was interpreted as a Bayesian Posterior mode estimate when

the regression parameters have independent Laplace (double exponential) priors (Park and

Casella, 2008). Zhao and Yu (2006) provided an almost necessary and sufficient condition for

LASSO to be consistent based on the “irrepresentability conditions” on the design matrix;

but the tuning parameter λ required for selection consistency can excessively shrink the

non zero coefficient leading to asymptomatically biased estimates. To alleviate the major

limitations of LASSO, Zhao and Yu (2006) proposed the Adaptive LASSO which makes use

of data dependent weights of the form

Pλ(β) = λ

p∑
j=1

|βj|
|β̂I

j |γ′
(2.3.9)
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where β̂I
j is an initial estimator of βj and γ > 0, large coefficients are shrink less and small

coefficients shrinks more than in the original LASSO. For fixed p, adaptive LASSO yields

selection consistency of non zero estimates of coefficients with asymptotic distribution equal

to that obtained in the model with prior knowledge of the location of zero parameters.

There are other variants to the general LASSO approach, such as the Elastic Net proposed

by Zou and Hastie (2005) with penalty taking the form.

Pλ(β) = λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

|βj|2, (2.3.10)

such that

β̂ElasticNet = argmin
β

{
∥y −Xβ∥22 + λ2∥β∥2 + λ1∥β∥

}
, (2.3.11)

where λ1 and λ2 are tuning parameters. The elastic net method includes the LASSO and

ridge regression when λ1 = λ, λ2 = 0 or λ1 = 0, λ2 = λ. Also, the naive elastic net method

finds an estimator using a two-stage procedure; first for each fixed λ2 it finds the ridge

regression coefficients, and then does a LASSO type shrinkage. This type of estimation

incurs a double amount of shrinkage, which leads to increased bias and poor predictions. To

improve the prediction performance, rescale the coefficients of the naive version of elastic net

by multiplying the estimated coefficients by (1 + λ2) (Zou and Hastie, 2005). The relative

merits of penalization regression techniques is an area of ongoing research.

2.4 Review of literatures on Bayesian variable selection

model in the context of high dimensionality

A lot of research on Bayesian variable selection model has been done and ongoing. This

is a very broad area of research due to so many factors like; type of response or outcome

(for instance our response for this study is semicontinuous), prior choice, types of models

involved, algorithm or methodology and even applicable software. It all depends on the

objectives of the researcher. Let’s take a look at some of the works that has been done in this

area, starting with earlier work to most recent research that used the Bayesian framework

for variable selection.
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2.4.1 Earlier research

As early as 1993, George and McCulloch (1993) proposed a Bayesian procedure for identifying

promising subsets of predictors, this procedure known as the Stochastic Search Variable

Selection (SSVS) consists of the specification of a hierarchical Baye’s mixture prior which

used the data to assign larger posterior probability to the more promising models. The SSVS

has the advantage (very fast and efficient simulation of Gibbs sampler) and more preferred

because it avoids the burden of calculating the posterior probabilities of all 2p, where p is

the number of covariates in a model. In summary, the Gibbs sampler is used to search for

promising models rather than computing the entire posterior (George and McCulloch, 1993).

Furthermore, George and McCulloch (1997) described and compared various hierarchical

mixture prior formations of variable selection uncertainty in normal linear regression models

using related literatures from the works of Carlin and Chib (1995), Chipman (1996), Geweke

(1996) and many more authors that has published related papers (see George and McCulloch

(1997) for more details). YARDIMCI and Aydın (2002) compared Bayesian approaches such

as Zellner, Occam’s Window and Gibbs sampling, in terms of selecting the promising subset

for the variable selection in a linear regression model, they also studied the behaviour using

some classical criteria with different values of β, σ and the prior assumptions. The authors

concluded with the claim that Bayesian approaches can be affected by prior changes, the prior

information is influential in obtaining zero subsets and the Bayesian approaches compared

to the classical behaved better with not very much difference. Sha et al. (2006) proposed

a Bayesian variable selection method that allowed the identification of relevant markers by

jointly assessing sets of genes using the accelerated failure time (AFT) models with log-

normal and log-t distributional assumptions. Their method provided a unified procedure

for the selection of relevant genes and the prediction of survivors’ functions. Tüchler (2008)

presented a Markov Chain Monte Carlo algorithm for both variable covariance selection in

the context of logistic mixed-effects models using the SSVS approach to select explanatory

variables and determine the structure of the random effects covariance matrix. Vannucci

and Stingo (2010) reviewed some Bayesian variable selection methods in linear settings

like regression, classification models and mixture models, they went further to propose

two novel applications that integrate different sources of biological information into the

analysis of experimental data and concluded that their method can handle large number
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of covariates larger than the sample size, but were not specific about how large is this

largeness. The method involved the evaluation of joint effect of sets of variables and the use

of stochastic search techniques to explore the high dimensional variables space just like our

proposed model. The application of Bayesian variables selection methods are very common in

Genomics, Li and Zhang (2010) considered Bayesian variables selection in structured high-

dimensional covariates spaces with applications to Genomics. They defined the situation

of high dimensionality from two perspectives; one is that the dimension of the covariate

space is often much higher than the number of subjects and secondly, the covariate space is

highly structured, and it is desirable to incorporate this structural information into the model

building process. The authors approached the Bayesian framework with the assumption that

the covariates lie on an undirected graph and formulated using prior on the model space

for incorporating structural information. They used simulation studies and application to

DNA sequence data to illustrate their proposed method on two different graph structures.

Lee et al. (2011) conducted a study on using Bayesian variable selection in Semiparametric

survival model for right censored survival data sets. A shrinkage prior obtained from a

scale mixture of normal and gamma distributions on the coefficients that corresponds to

the predictor variables is used to handle cases when the explanatory variables are of high

dimensionality. Their variable selection prior corresponds to the common lasso penalty while

the likelihood function is based on the Cox proportional hazards model framework, where the

cumulative baseline hazard function is modelled a priori and adaptively control the sparsity

of the model. they also developed a fast MCMC algorithm with adaptive jumping rule. Then,

the proposed method was evaluated via simulation studies and application to micro array

data with right censored survival time and compared with other competing models just like

our strategy in this study.

2.4.2 Recent research

Chekouo et al. (2015) proposed a novel Bayesian model to identify microRNAs and the

regulatory networks that are associated with survival time by integrating multiple platforms

into a statistical model to select the most relevant features which is one of the three groups by

which data integration can be categorized according to Daemen et al. (2009). Another novel

Bayesian approach developed by Chekouo et al. (2017) integrates multi-regression models
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to identify a small set of biomarkers that can accurately predict time-to-event outcomes. It

was pointed out that the method fully exploited the amount of available information across

platforms and did not exclude any of the subjects from the analysis. Garcia-Donato and

Forte (2018) proposed Bayesian methods for hypothesis testing, variable selection, and model

averaging in linear models using R, the package is known as BayesVarSel in R environment.

The disadvantage of this is that, it was built only for the context of the linear model where

n >> p and does not apply to high-dimensional cases. The work of Ročková and George

(2018) studied the over-looked aspect of a potential penalized likelihood estimation and the

use of spike-and-slab methodology for Bayesian variable selection. A new class of self-adaptive

penalty functions that arises from a Bayes spike-and-slab formulation was introduced which

is known as the spike-and-slab LASSO. The fully Bayes penalty is similar to the oracle

performance, in the sense that it provided a viable alternative to cross-validation. A variant

of the penalized likelihood approach estimates β is shown below, we will not dwell much on

this in this study

β̂ = argmax
β∈Rp

{
−1

2
∥y −Xβ∥2 + penλ (β)

}
, (2.4.1)

where penλ (β) is a penalty function indexed by penalty parameter λ prioritising solutions

that are suitably disciplined. The work of Gu et al. (2020) used the spike-and-slab Bayesian

variable selection approach in the context of error-prone, self-reported outcomes. The performance

of their approach was studied through simulation studies and application of data obtained

from theWomen’s Health Initiative Single Nucleotide Polymorphisms (SNP) Health Association

Resource, which includes extensive genotypic (>900,000 SNPs) and phenotypic data on 9,873

African American and Hispanic women. Their study showed improved sensitivity when

compared to naive methods that ignores error in the self-reported outcomes, worthy of

note is the conclusion that their variable selection accuracy reduced when the outcome is

ascertained by error-prone self-reports but better when compared to approaches that neglect

to account for the error-prone nature of self-reports. Koop and Korobilis (2020) proposed a

variational Bayes algorithm for computationally efficient posterior and predictive inference

in time- varying parameter (TVP) models. Their algorithm was evaluated numerically using

synthetic data and its computational advantages were established using US microeconomic

data. They discovered that the regression models that combined time-varying parameters

with the information in many predictors have the potential to improve the prediction of
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price inflation (outcome) over a number of alternative predicting models. More recent

studies by Kundu et al. (2021) extended the global-local shrinkage idea to a scenario of

modelling multiple response variables simultaneously. This approach explored situations of

multiple outcome models like multiple regression or seemingly unrelated regression using the

Bayesian method. They also went further to state the differences in their framework and

that proposed by Bai and Ghosh (2018), see Kundu et al. (2021) for more details. Also,

Li and Chekouo (2021) proposed a Bayesian hierarchical model for group selection problem

when the group structure in known. The authors used the spike-and-slab priors for regression

coefficient with the assumption that the slab component is from the family of non-local priors.

They concluded that the proposed Bayesian approach using non-local prior enhances group

selection performance which behaved better than those with local prior.

2.5 Markov Chain Monte Carlo (MCMC) method

The Metropolis algorithm was introduced by Metropolis et al. (1953). The algorithm was

generalized by Hastings (1970), but it gained recognition after the publication of Gelfand and

Smith (1990) on MCMC became widely used in statistics most especially Bayesian statistics.

Robert and Casella (2011) contains more on the history of MCMC and Monte Carlo methods.

A lot of research has been done using the MCMC method (Gelfand et al., 1990; Gelfand and

Smith, 1990; Geman and Geman, 1984; Hastings, 1970; Tanner and Wong, 1987). MCMC

method is a used for sampling from probability disributions using Markov Chains. High

Performance Computing (HPC) capabilities has increased recently based on this and user-

friendly software such as the different programs based on the programming language BUGS

(Spiegelhalter et al., 2003), R, Python, Matlab, SAS etc. These developments boosted the

use of Bayesian data analyses, particularly in genetics and ecology (Korner-Nievergelt et al.,

2015). A number of modifications and extensions of MCMC methods have appeared since

the 1990s.

The following illustration of MCMC methods is inspired by the work of Lesaffre and

Lawson (2012), a Bayesian biostatistics textbook. Let y be the response variable, x be a

random variable with probability density function P (x|θ), and θ be the parameter vector.
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Markov chain can be in two forms, namely; discrete-time Markov chain and continuous-time

Markov chain depending on if the random variable is on a countable state space or continuous.

The Gibbs sampler

Gibbs sampler was introduced by Geman and Geman (1984) in the context of image processing.

They assumed that the intensity of the pixels in an image have a Gibbs distribution, which

is a classical distribution in statistical mechanics. Since this distribution is analytically

intractable involving easily a million unknowns. Geman and Geman developed a sampling

algorithm to explore the distribution. However, the Gibbs sampler became only popular in

the statistical world when Gelfand and Smith (1990) showed its ability to tackle complex

estimation problems in Bayesian framework. The approach is based on the property that

the joint posterior P (θ1, θ2|y) is completely determined by the marginal P (θ2|y) and the

conditional posterior P (θ1|θ2, y) distribution. A sample from P (θ1, θ2|y) is then obtained by

sampling first from the marginal posterior distribution P (θ2|y) yielding a sampled value θ̃2 and

then from the conditional P (θ1|θ̃2, y) yielding θ̃1 and hence (θ̃1, θ̃2) is also obtained. The Gibbs

sampler, on the other hand, uses the property that (under fairly general regularity conditions)

a multivariate distribution is uniquely determined by its conditional distributions (Lesaffre

and Lawson, 2012). The Gibbs sampler algorithm is initialized by setting starting values

for the parameters, say θ
(0)
1 , θ

(0)
2 , θ

(0)
3 , · · · , θ(0)p and then ‘explores’ the posterior distribution

by generating θ
(s)
1 , θ

(s)
2 , · · · , θ(s)p , (s = 1, 2, · · · , S) in a sequential manner (S is the desired

number of iterations). Therefore, given θ
(0)
1 , θ

(0)
2 , θ

(0)
3 , · · · , θ(0)p at iteration sth, the (s + 1)th

value for each of the parameters is generated according to the following iterative scheme:

� Sample θ
(s+1)
1 from P (θ1|y, θ(s)2 , θ

(s)
3 , · · · , θ(s)p )

� Sample θ
(s+1)
2 from P (θ2|y, θ(s+1)

1 , θ
(s)
3 , θ

(s)
4 , · · · , θ(s)p )

...
...

� Sample θ
(s+1)
p from P (θp|y, θ(s+1)

1 , θ
(s+1)
2 , · · · , θ(s+1)

p−1 )

� Repeat the above steps from the beginning till S iterations are achieved.

The chain has the Markov property which means that given θ(s),θ(s+1) is independent of

θ(s−1),θ(s−2), etc. In a probabilistic notation, P (θ(s+1)|θ(s),θ(s−1), · · · ,y) = P (θ(s+1)|θ(s),y).
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After a certain step, the samples from Gibbs sampler can be regarded as a sample from

the joint posterior distribution of θ. Then, the first parts of the Gibbs sampler is discarded

(known as burn-in period), a set of samples drawn from P (θ|y) is used for Bayesian inference.

The Metropolis algorithm

Let density q is be the proposal density and the proposal density evaluated in θ∗ at iteration

s is denoted as q(θ|θ(s)). Say a Markov chain is at the current state θ(s) at the sth iteration

when exploring the posterior distribution. The general idea behind the Metropolis algorithm

goes as follows. The next state in the chain, θ∗, is sampled from a density q having its

central location at θ(s). However, θ∗ is only a proposal for the new position (if it were

automatically the next value we would be exploring q and not the posterior). The new

position will always be accepted when it is located in an area of higher posterior mass,

otherwise accepted with a certain probability. Positions with a lower posterior mass will

also be visited otherwise the algorithm would be searching for the (posterior) mode and

not exploring the posterior distribution. The probability of accepting the proposed position

should be taken such that, after burn-in period, the Markov chain explores P (θ|y). When the

proposal density is symmetric, i.e. q(θ∗|θ(s)) = q(θ(s)|θ∗), which is known as the Metropolis

algorithm. A popular choice for q is the multivariate normal distribution or multivariate

t-distribution with mean equal to the current state θ(s) and a pre-specified covariance matrix

Σ.We sample θ∗ from N(θ(s),Σ) at the sth iteration to obtain the proposed subsequent value.

Obviously, the location parameter θ(s) of the proposal density changes with s. Furthermore,

like the acceptance-rejection algorithm, an appropriate decision rule is needed to either accept

or reject the ‘proposed’ θ∗. Upon acceptance, θ∗ becomes the next value in the Markov chain,

i.e. θ(s+1) = θ∗ and proceed to θ∗. If rejected we remain at the current state θ(s), hence

θ(s+) = θ(s). The probability of accepting the proposed value depends on the posterior

distribution. When the candidate lies in a region of the posterior distribution with a higher

value, i.e. when P (θ∗|y)/P (θ(s)|y) > 1, then the move will always be made and hence θ(s+1) =

θ∗. In contrast, when the candidate value lies a region of the posterior distribution with a

lower value, i.e. when P (θ∗|y)/P (θ(s)|y) < 1, then the move will be made with probability

α = P (θ∗|y)/P (θ(s)|y), and then θ(s+1) = θ∗ with probability α. This procedure ensures that
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the posterior distribution will be ‘visited’ more often at regions where the posterior likelihood

is relatively higher.

Therefore, when the chain is at the current state θ(s), the Metropolis algorithm samples the

chain values as follows:

� Sample a candidate θ∗ from the symmetric proposal density q(θ∗|θ), with q(θ|θ(s)).

� The next value θ(s+1) will be equal to

– θ∗ with probability α(θ(s),θ∗) (accept proposal),

– θ(s) otherwise (reject proposal), with

α(θ(s),θ∗) = min

{
P (y|θ∗)P (θ∗)

P (y|θ(s))P (θ(s))
, 1

}
, (2.5.1)

where the function α(θ(s),θ∗) is called the probability of a move.

The Metropolis-Hastings algorithm

Recall that for the Metropolis algorithm, the proposal density q(θ∗|θ(s)) is symmetric. In

some instances, it might be appropriate to choose an asymmetric proposal density. In that

case, moving from θ to θ∗ is not as easy as moving in the opposite direction. To ensure that

the posterior distribution is equally accessible in all corners, the asymmetric nature of the

proposal density needs to be compensated for. Hastings (1970) extended Metropolis’ proposal

to an asymmetric proposal density and the approach is referred to as the MH algorithm. The

first step in the MH algorithm is to suggest a candidate for a move. At the sth step θ∗ will

be sampled from q. As in the Metropolis algorithm, one needs to decide whether to ‘move’ or

to ‘stay’. However, in order to ensure that the posterior distribution will be explored equally

well in all directions, one should compensate for the fact that moving from θ(s) to θ∗ is easier

or more difficult than in the opposite direction. This is done by changing the probability of

making a move at the sth iteration, as follows:

� Sample a candidate θ∗ from the symmetric proposal density q(θ∗|θ), with θ = θ(s).

� The next value θ(s+1) will be equal to

– θ∗ with probability α(θ(s),θ∗) (accept proposal),
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– θ(s) otherwise (reject proposal), with

α(θ(s),θ∗) = min

{
P (θ∗|y)q(θ(s)|θ∗)

P (θ(s)|y)q(θ∗|θ(s))
, 1

}
, (2.5.2)

where the function α(θ(s),θ∗) is called the probability of a move.

The change in acceptance probability was needed in order to ensure that the probability of

moving from θ to θ∗ is equal to the probability of the opposite move. This is called the

reversibility condition, and the resulting chain is called a reversible Markov chain. There

are other generalizations of the Metropolis-Hastings algorithm which includes; Independent

Metropolis-Hastings, Random-Walk Metropolis-Hastings and Metropolis Within-Gibbs algorithm

(Koop et al., 2007).
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Chapter 3

Methodology

3.1 Introduction

In this chapter, we describe the types of models and methods used in this study. It also shows

the Bayesian framework developed and MCMC algorithm as incorporated in the simulation

studies and the application to coronary artery disease (CAD) data.

3.2 Model and Bayesian framework

The Bayesian approach applies the concept of the Bayes’ rule by specifying a prior

probability, P (θ) and then include the data (Likelihood), P (y|θ) to obtain updated information

known as the Posterior density, P (θ|y) , which provides posterior probability on which

Bayesian Inference depends. Hence, the Bayesian would express equation (2.1.1) as

P (θ|y) ∝ P (y|θ)P (θ) ,

Posterior ∝ Likelihood× Prior. (3.2.1)

3.2.1 Two-part model

We employed the two-part model proposed by Duan et al. (1983) for this study. This type

of model has several appealing properties, including a well-behaved likelihood function and

more appropriate interpretations than the Tobit and Heckman models if the zeros are true

values (Heckman, 1974, 1979; Min and Agresti, 2002; Tobin, 1958). Also, it addresses the
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data in their original form, simple to fit, and relatively simple to interpret (Min and Agresti,

2002).

The first part is a binary model for event of having zero or positive values, such as the

logistic regression model, let p1 be the total number of features (including the intercept

and clinical covariates) in the logistic regression model,

logit(P (yi = 0)) = x⊤
1iβ1, (3.2.2)

where x1i = (1, x1i2, · · · , x1ip1)
⊤ is the vector of p1 covariates associated with subject i, i =

1, · · · , n (including the intercept and clinical covariates) and β1 = (β10, β11, · · · , β1p1)
⊤ is the

vector of parameters in the logistic regression model including the intercept and coefficients

of clinical covariates.

Let p2 be the total number of features including the intercept and clinical covariates in the

linear regression model. Conditional on a positive value, the second part assumes a log-

normal distribution or linear model; that is

log(yi|yi > 0) = x⊤
2iβ2 + ei, (3.2.3)

where ei ∼ N(0, σ2) is the random component, x2i = (1, x2i2, · · · , x2ip2)
⊤ is the vector

of p2 covariates for subject i, i = 1, · · · , n2 such that yi > 0 (including the intercept

and clinical covariates), log(yi|yi > 0) is the log-response variable for positive values, and

β2 = (β20, β21, · · · , β2p2)
⊤ is the vector of parameters in the linear model which includes the

intercept and coefficients of clinical covariates. The vector of covariates x1i and x2i are the

same for this study but may be assumed to be different.

Let y∗ be n2 × 1 vector of the observed log-responses given that yi > 0. Let pc be the

number of the clinical covariates, then we denote Xc = Xc
1 = Xc

2 as the n × pc clinical

covariates (e.g. age, sex, height, body mass index (bmi) etc.) in the combined, logistic,

and linear models respectively. These clinical covariates are included in the design matrix

for the logistic and linear models of this study. Let X2 be the n × p2 design matrix of

covariates in the linear model and X∗
2 be the n2 × p2 of observed covariates (including the

intercept and clinical covariates) that corresponds to the log-response of positive values, that

is X∗
2 = {x2i, i = 1, · · · , n, yi > 0} obtained from X2 in the linear model, then equation

(3.2.2) and (3.2.3) can be expressed in matrix form as

P (yi = 0) =
ex

⊤
1iβ1

1 + ex
⊤
1iβ1

, i = 1, · · · , n (3.2.4)
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and

y∗ = X∗
2β2 + e, (3.2.5)

where β1, and β2 are the p1×1 and p2×1 vectors of the regression coefficients (including the

intercept and coefficients of clinical covariates) respectively and the error component follows

a multivariate normal distribution, e ∼ N(0,Σ), with mean vector 0 and variance-covariance

matrix, Σ = σ2In2 corresponding to the residual variance in the linear model.

3.2.2 Likelihood function

The density of an observation can be written as

f (yi) = πiI(yi = 0)× (1− πi) I(yi > 0)f (yi|yi > 0) , for yi ≥ 0, i = 1, · · · , n.

where πi = P (yi = 0), the probability of having zero observations, 1− πi = P (yi > 0), is the

probability of having positive observations, f (yi|yi > 0) is the probability density of yi given

positive response observations, while I(yi = 0) and I(yi > 0) are the indicator variables for

yi = 0 and yi > 0 respectively.

Then the joint likelihood is given by;

L
(
β1, β2, σ

2
)
=
∏
yi=0

P (yi = 0)

[∏
yi>0

P (yi > 0)f (yi|yi > 0)

]
,

substituting we have;

L (β1, β2,Σ) = P (y|β1, β2, σ
2,X) =

∏
yi=0

[
ex

⊤
1iβ1

1 + ex
⊤
1iβ1

] ∏
yi>0

[
1

1 + ex
⊤
1iβ1

]
×
(

1√
2π

)n2

|Σ|−
1
2 exp

{
−1

2

(
y∗ −X∗

2β2

)⊤
Σ−1

(
y∗ −X∗

2β2

)}
. (3.2.6)

as P (yi > 0) = 1/(1 + ex
⊤
1iβ1) = 1−P (yi = 0) , where X = X1 = X2 to represent the set of

covariates in the logistic and linear models for the above equation in (3.2.6), which are not

different in this study.

Let the total number of features, p = p1 = p2. We denote the vectors of indicator variables

associated withX1 andX∗
2 by z(1) = (z

(1)
pc+2, · · · , z

(1)
p ) and z(2) = (z

(2)
pc+2, · · · , z

(2)
p ) respectively,

where pc is the number of clinical covariates. Each time the indicator variable z
(1)
j takes the

value one, the corresponding effect β1j, is selected (j = pc + 2, pc + 3, · · · , p), otherwise β1j
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is not selected in the logistic model (the same is applicable to β2j in the linear model). Let

Xc = Xc
1 = Xc

2 be the design matrix that contains pc clinical covariates that will not be

subject to model selection and would always be constant or included in the indicator vectors

z(1) and z(2). The superscript and subscript 1 and 2 refers to the logistic and linear model

respectively.

3.2.3 Prior distribution

Given z(1) and z(2), the vector of indicator variables for the regression parameters in the

logistic and linear models respectively, we imposed prior distributions on the parameters;

β1,β2, z
(1), z(2), q1, q2, and σ2 as follows;

3.2.3.1 Spike-and-slab prior for regression coefficients

The spike-and-slab prior (Mitchell and Beauchamp, 1988) assume that the components of

regression parameters are independent, each having a mixture of two prior distributions: one

highly concentrated on zero i.e., the probability of a particular coefficient in the model to be

zero (the spike) and the other is the prior distribution for the selected regression coefficients

(the slab).

(i.) Given z
(1)
j ∼ Bernoulli(q1), where the parameter q1 is the probability of selecting

important features in the logistic model, we impose a spike-and-slab prior on β1j by,

β1j|z(1)j , σ2
β1

∼
(
1− z

(1)
j

)
δ0(β1j) + z

(1)
j N

(
0, σ2

β1

)
, (3.2.7)

where δ0(.) is a Dirac delta function whose value is zero everywhere except at zero

and whose integral over the entire real line is one (Dirac, 1981). When feature j is

not selected (z
(1)
j = 0), then β1j = 0 (spike component), while the prior on β1j follows

a normal distribution with prior mean 0 and variance σ2
β1

when feature j is selected,

i.e., z
(1)
j = 1 (slab component) (Fang et al., 2020). σ2

β1
is the prior dispersion that

corresponds to the selected feature j = pc + 2, · · · , p in the logistic model. Also, we

imposed a normal distribution with mean 0 and variance σ2
β1pc

as the prior on the

intercept and clinical covariates (β10,β1pc)
⊤, where β1pc = (β1j, j = 2, · · · , pc + 1)

effects of clinical covariates in the logistic model.
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(ii.) Similarly, z
(2)
j ∼ Bernoulli(q2), where the parameter q2 is the probability of selecting

important features in the linear model, then the spike-and-slab prior imposed on β2j is

β2j|z(2)j , σ2 ∼
(
1− z

(2)
j

)
δ0(β2j) + z

(2)
j N

(
0, σ2s20

)
, (3.2.8)

Similarly, when feature j is not selected (z
(2)
j = 0), then β2j = 0 (spike component)

while the prior on β2j follows a normal distribution with prior mean 0 and variance

σ2s20 when feature j is selected (z
(2)
j = 1). σ2 is the error variance and s20 is prior

variance that corresponds to selected feature β2j in the linear model. Also, we imposed

a normal distribution with mean 0 and variance σ2s20pc as the prior on the intercept and

clinical covariates (β20,β2pc)
⊤, where β2pc = (β2j, j = 2, · · · , pc + 1) effects of clinical

covariates in the linear model.

3.2.3.2 Prior distributions for other parameters

(iii.) For σ2, let σ2 ∼ IG(ν0/2, ν0σ
2
0/2), an inverse-gamma distribution with shape parameter

ν0/2 and scale parameter ν0σ
2
0/2, where the parameters ν0, σ

2
0 are pre-specified.

P (σ2) =

(
ν0σ2

0

2

) ν0
2

Γ(ν0
2
)

(
σ2
)− ν0

2
−1

exp

{
−ν0σ

2
0

2σ2

}
. (3.2.9)

(iv.) Prior on q1 with the prior density denoted by P (q1): Let q1 be the probability of

selecting important features in the logistic model, and the prior of q1 ∼ Beta(a, b) with

parameters a and b, the prior on q1 is expressed as

P (q1) =
1

β(a, b)
qa−1
1 (1− q1)

b−1 ; 0 ≤ q1 ≤ 1. (3.2.10)

where β(a, b) is a beta function with shape parameters a, b > 0.

(v.) Prior on q2 with the prior density denoted by P (q2): Similarly, let q2 be the probability

of selecting important features in the linear model, and the prior of q2 ∼ Beta(a2, b2)

with parameters a2 and b2. the prior on q2 is expressed as

P (q2) =
1

β(a2, b2)
qa2−1
2 (1− q2)

b2−1 ; 0 ≤ q2 ≤ 1. (3.2.11)

where β(a2, b2) is a beta function with shape parameters a2, b2 > 0.
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(vi.) Let P (z(1)) be the prior density of z(1), independent bernoulli distributions with

probability of selecting important features q1 defined as

P (z(1)) =

p1∏
j=1

q
z
(1)
j

1 (1− q1)
1−z

(1)
j = q

p1∑
j=1

z
(1)
j

1 (1− q1)

p1∑
j=1

(1− z
(1)
j )

, (3.2.12)

(vii.) Also, the prior density of z(2) denoted by P (z(2)), independent bernoulli distributions

with probability of selecting important features q2 is gievn by

P (z(2)) =

p2∏
j=1

q
z
(2)
j

2 (1− q2)
1−z

(2)
j = q

p2∑
j=1

z
(2)
j

2 (1− q2)

p2∑
j=1

(1− z
(2)
j )

, (3.2.13)

3.2.4 Posterior distribution

Let y be the vector of observed response and X = X1 = X2. The joint posterior density of

β1z,β2z, and σ2 can be expressed as

P (β1z,β2z, σ
2|y, z(1), z(2),X) ∝ P (y|β1z,β2z, z

(1), z(2), σ2,X)P (β1z,β2z, σ
2|z(1), z(2))

∝ P (y|β1z,β2z, z
(1), z(2), σ2,X)P (β2z|σ2, z(2))P (β1z|z(1))P (σ2|z(2)).

(3.2.14)

Since the joint posterior density in equation (3.2.14) does not have a closed or known form

(see appendix A.5 for the marginal probability distribution of β1z,β2z, and σ2), we proceed

to obtain the full conditionals of β1z,β2z, and σ2, then estimate using the Markov Chain

Monte Carlo (MCMC) technique (see literature section 2.5 for more details).

3.2.4.1 The Full Conditional Density of β2z|σ2, z(2),y:

The full conditional density of β2z|σ2, z(2),y is obtained as follows, (derivation related to

this, is shown in appendix A.1)

β2z|σ2, z(2),y ∼ MVN(µβ,Σβ), (3.2.15)

where β2z is the vector of
{
β2j, z

(2)
j = 1

}
follows a multivariate normal distribution with

mean vector µβ and variance-covariance matrix Σβ for selected covariates (features) i.e.,
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z
(2)
j = 1.

Σβ = σ2
(
X∗⊤

2z X∗
2z +Σ−1

02z

)−1

µβ =
(
X∗⊤

2z X∗
2z +Σ−1

02z

)−1 (
X∗⊤

2z y∗ +Σ−1
02zβ0z

)
.

where X∗
2z is the matrix of selected covariates (including the intercept and clinical covariates)

from the design matrix X2 when z
(2)
j = 1 and corresponds to positive log-response y∗, β0z is

the prior mean vector of
{
β2j, z

(2)
j = 1

}
and σ2Σ02z = σ2diag

(
s20pcIpc+1, s

2
0Ip2z

)
is the prior

variance-covariance matrix corresponding to the selected covariates (including the intercept

and clinical covariates) when z
(2)
j = 1, where p2z = #

{
j = pc + 2, · · · , p, when, z(2)j = 1

}
.

Also, β2j = 0 for non-selected covariates (features) i.e., z
(2)
j = 0, and j ≥ pc + 2. Note that,

s20 in equation (3.2.8) is the diagonal variance of the prior variance-covariance matrix Σ02z

when the features are selected (z
(2)
j = 1). σ2s20 is the prior variance that corresponds to the

selected feature j = pc + 2, · · · , p in the linear model.

3.2.4.2 The Marginal Posterior Density of σ2|z(2),y:

To obtain the marginal posterior density P (σ2|z(2),y) (full conditionals), we integrate out

β2z (Appendix A.2).

P (σ2|z(2),y) ∝ (σ2)−
νn
2
−1 exp

{
−νnσ

2
n

2σ2

}
, (3.2.16)

where

Σb =
(
X∗⊤

2z X∗
2z +Σ−1

02z

)−1

µb =
(
X∗⊤

2z X∗
2z +Σ−1

02z

)−1 (
X∗⊤

2z y∗ +Σ−1
02zβ0z

)
νn = ν0 + n2

σ2
n =

1

νn

(
ν0σ

2
0 + y∗⊤y∗ + β⊤

0zΣ
−1
02zβ0z − µ⊤

b Σ
−1
b µb

)
.

Therefore, σ2|z(2),y ∼ IG(νn
2
, νnσ

2
n

2
) or ρ2 = (1/σ2)|z(2),y ∼ Gamma(νn

2
, νnσ

2
n

2
), an Inverse-

Gamma (νn
2
, νnσ

2
n

2
) density.

3.2.5 Data Augmentation approach for Logistic model

Since there is no closed form of the posterior density of β1z|y, z(1)
j , X1 and due to the logistic

model involved, the usual approach will be to use a Metropolis-Hastings algorithm to sample
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β1z. We used the data augmentation approach by the introduction of latent variables (Scott,

2004) and interpretation of the logistic model in terms of utilities (McFadden et al., 1973).

Recall, the centered parameterization model

P (yi = 0) =
ex

⊤
1iβ1

1 + ex
⊤
1iβ1

. (3.2.17)

We follow the work of Tüchler (2008) and applied a two-step data augmentation to equation

(3.2.17) to obtain a normal linear regression model.

Step 1: the data augmentation step removes the nonlinearity of model (3.2.17) by defining for

each observation, latent utilities for choosing categories 0 and positive values (i.e. > 0)

respectively as introduced by Scott (2004). Let the utilities for choosing 0 be denoted

by ui and the utilities for choosing positive values be u1i, which follows a standard type

I extreme value distribution and are independent of any of the model parameters as

tabulated below (Tüchler, 2008).

Table 3.1: Components of the normal mixture approximation of type I extreme value error

εi (Tüchler, 2008)

r 1 2 3 4 5 6 7 8 9 10

ηr .004 0.040 .168 .147 .125 .101 .104 0.116 .107 .088

µr 5.09 3.29 1.82 1.24 .76 0.39 .04 -.31 -.67 -1.06

σ2
r 4.5 2.02 1.1 .42 .2 .11 .08 .08 .09 .15

Then,

ui = x⊤
1iβ1 + µri + εi, (3.2.18)

where ui is the utilities for choosing 0 and the utilities for choosing positive values

be u1i, the following relationship holds, yi = 0 iff ui > u1i and yi > 0 iff ui < u1i.

Model (3.2.18) is linear with respect to the regression parameters. µri is the mean

group indicator r = 1, · · · , 10 for i = 1, · · · , n observations and the error is normally

distributed εi ∼ N(µri , σ
2
ri
) with values of mean µri and variance σ2

ri
in Table 3.1.
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Step 2: Introduce for each error term, an indicator ri ∈ {1, · · · , 10} (Tüchler, 2008). Approximate

the type I extreme value error εi by the following mixture of normal distribution

p(εi) = exp(−εi − e−εi) ≈
10∑
r=1

ηrfN(εi;µr, σ
2
r). (3.2.19)

such an approximation was proposed by Frühwirth-Schnatter and Wagner (2006) and

applied by Fruehwirth-Schnatter and Frühwirth (2007) in the context of log-linear

models. Given these indicators, the model error is normally distributed εi ∼ N(µri , σ
2
ri
).

Including all the utilities ui and indicators Ri = ri; i = 1, 2, · · · , n, then the linear

regression model (3.2.18) in matrix form is expressed as;

u = X1β1 + µ+ ε, ε ∼ N(0,Σn). (3.2.20)

where u
n×1

=


u1

u2
...

un

, X1
n×p1

=


1 x12 . . . x1p1

1 x22 . . . x2p1
...

...
. . .

...

1 xn2 . . . xnp1

, β1
p1×1

=


β10

β11
...

β1p1

, µ
n×1

=


µ1

µ2

...

µn

,

ε
n×1

=


ε1

ε2
...

εn

.

In summary, after introducing indicator variable z(1), the posterior density of β1z|u, z(1),R

is obtained using the data augmentation approach for the logistic model, we sampled

ui by method of generating exponential variates (equation 3.2.22) which is then used

to obtain the latent indicators, R. The latent indicators, R, is obtained from full

conditional, P (Ri = r|ui, λi) by generating probabilities that an individual i belongs to

a group cluster r which is used as the group label to randomly obtain samples for µ

and Σn that is then used to sample from the full conditional density of β1z|u, z(1),R

as shown in equation (3.2.25), where r = 1, · · · , 10 is the group indicator in Table 3.1

for individual i = 1, · · · , n observations and λi = exp(x⊤
1ziβ1z) is the exponential of

the linear predictor, x1zi is the p1z vector of selected feature for individual i, where p1z

is the number of selected features in the logistic model.
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3.2.5.1 To Sample the Latent Utilities, u|β1,

Let the exponential of the linear predictor, λi = exp(x⊤
1ziβ1z), where x1zi is the

p1z vector of selected feature for individual i, i = 1, · · · , n. The errors in equation

(3.2.18) are approximated by the mixture normal distributions with parameters given

in Table 3.1, then conditional on λi, the latent utilities ui are derived from Exponential

distributions of the form,

exp(−ui) ∼ Exponential(λi + 1), if yi = 0,

exp(−ui) ∼ Exponential(λi + 1) + Exponential(λi), if yi > 0. (3.2.21)

Therefore, we sample the utilities by writing an algorithm for the expression (appendix

A.4)

ui = − log

(
− log(Di)

λi + 1
− log(D∗

i )

λi

I(yi > 0)

)
, (3.2.22)

whereDi andD∗
i are uniform(0, 1) random variables and I(yi > 0) denotes the indicator

function for positive log-response values. Equation (3.2.22) is obtained by using the

method of generating exponential variates, other methods can be found in Knuth (1998)

and Devroye (1986).

3.2.5.2 To Sample the Latent Indicators, R from P (Ri = r|ui, λi),

Conditional on the latent utilities ui and the exponential of the linear predictor λi =

exp(x⊤
1ziβ1z). The Latent Indicator,R is obtained by sampling the component indicators

Ri for individual i from the discrete density in Table 3.1 for r = 1, · · · , 10 using equation

(3.2.24) below.

The prior on the Latent Indicators R,

P (Ri = r) = ηr, r = 1, · · · , 10, ∀ i = 1, · · · , n, i.e. P (Ri = 1) = η1 = 0.004, · · · , P (Ri =

10) = η10 = 0.088.

The full conditional density for sampling the latent indicators, R is given by

P (Ri = r|ui, λi) ∝ P (ui|Ri, λi)P (Ri = r)

∝ 1

σr

√
2π

exp

{
− 1

2σ2
r

(ui − log λi − µr)
2

}
× ηr

P (Ri = r|ui, λi) ∝ ϕ(ui; log λi − µr, σ
2
r)× ηr. (3.2.23)
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where ϕ is the probability density function of the normal distribution with mean log λi+

µr and variance σ2
r . Taking log of both sides, we have

logP (Ri = r|ui, λi) = Constant− log σr −
1

2σ2
r

(ui − log λi − µr)
2 + log ηr. (3.2.24)

Exponent of equation (3.2.24) is then normalized to generate probabilities that an

individual belongs to a cluster group r = 1, · · · , 10 e.g. (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) gives an

index or group label r = 2 for an individual i. This is used to sample from the posterior

density of β1z|u, z(1),R as shown in equation (3.2.25) below with the values of µ and

Σn randomly chosen from Table 3.1 based on the group label assigned by the latent

indicator, R.

3.2.5.3 The Full Conditional Density of β1z|u, z(1),R,

The full conditional density, β1z|u, z(1),R is given by (appendix A.3)

P (β1z|u, z(1),R) ∝ exp

{
−1

2
(β1z − bn)

⊤B−1
n (β1z − bn)

}
, (3.2.25)

where β1z is the vector of β1j when covariates are selected (z
(1)
j = 1), and β1j = 0 when

covariates are not selected (z
(1)
j = 0) and j ≥ pc + 2.

µ = µr1 , · · · , µrn ,

Σn = diag
{
σ2
r1
, σ2

r2
, · · · , σ2

rn

}
,

Bn =
(
B−1

0z1
+X⊤

1zΣ
−1
n X1z

)−1
,

bn = Bn

(
B−1

0z1
b0z1 +X⊤

1zΣ
−1
n (u− µ)

)
.

where b0z1 is the prior mean vector of zeros and B0z1 = diag
(
σ2
β1pc

Ipc+1, σ
2
β1
Ip1z

)
is the prior

variance-covariance matrix corresponding to the selected covariates (including the intercept

and clinical covariates) when z
(1)
j = 1, where p1z = #

{
j = pc + 2, · · · , p, when, z(1)j = 1

}
.

X1z is the matrix of selected covariates (including the intercept and clinical covariates) from

the design matrixX1 that corresponds to z
(1)
j = 1 in the logistic model. Therefore, we sample

directly from the posterior density of β1z|u, z(1),R ∼ MVN(bn,Bn) when z
(1)
j = 1, and 0

otherwise.
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3.3 Variable Selection Method

Here, we obtained the full conditional densities of z(1) and z(2), then applied the Stochastic

Search Variable Selection (SSVS) procedure. The SSVS procedure is used to randomly

sample the indicator variables from its full conditional by searching the space of feature

subsets and identifying the most promising features in the logistic and linear models. In this

study we applied the SSVS procedure based on two assumptions. First, is to select features

independently from each model (Method 1: Linear and Logistic). Secondly, we assumed

that the same set of features are sampled from both models involved (Method 2: Combined

model where the indicator variables z(1) = z(2)). The SSVS procedure is shown in the

MCMC Algorithm section where z(1) and z(2) is updated (section 3.4).

3.3.1 Full Conditional Density of Indicator Variable, z(1) and z(2)

for Method 1

Method 1: Assume that the features/covariates are selected independently from

the logistic and linear models. To sample z(1) from the logistic model we need to sample

from the joint density (z(1),β1z).

P (z(1),β1z|u, q1) ∝ P (β1z|u, z(1))P (z(1)|u, q1),

where P (z(1)|u, q1) is the marginal of z(1) after integrating out β1z.

3.3.1.1 To Sample z(1) from P (z(1)|u, q1),

Firstly, we sample z(1) ∼ P (z(1)|u, q1) ∝ P (u|z(1),Σn)P (z(1)), after integrating out β1z.

The likelihood, P (u|z(1),Σn) is obtained as follows using the spike-and-slab prior defined on

β1j in equation(3.2.7);

recall, u = X1β1 + µ+ ϵ, ϵ ∼ N(0,Σn), (3.3.1)

P (u|z(1),Σn) = (2π)−
n
2 |Σbb|−

1
2 exp

{
−1

2
(u− µbb)

⊤Σ−1
bb (u− µbb)

}
, (3.3.2)
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where

µbb = E(u) = X1zb0z1 + µ,

Σbb = V ar(u) = X1zB0z1X
⊤
1z +Σn,

µ = µr1 , · · · , µrn ,

Σn = diag
{
σ2
r1
, σ2

r2
, · · · , σ2

rn

}
,

where b0z1 is the prior mean vector of zeros and B0z1 = diag
(
σ2
β1pc

Ipc+1, σ
2
β1
Ip1z

)
is the prior

variance-covariance matrix corresponding to the selected covariates (including the intercept

and clinical covariates) when z
(1)
j = 1, where p1z = #

{
j = pc + 2, · · · , p, when, z(1)j = 1

}
.

X1z is the matrix of selected covariates (including intercept and clinical covariates) from the

design matrix X1 that corresponds to z
(1)
j = 1 in the logistic model, therefore, u|z(1),Σn ∼

MVN(µbb, Σbb), a multivariate normal distribution with mean µbb and variance-covariance

matrix Σbb.

Then, we sample z(1) ∼ P (z(1)|u, q1) ∝ P (u|z(1),Σn)P (z(1)). The logarithm of the

marginal density of z(1) is then given by

logP (z(1)|u, q1) = Const. + logP (u|z(1),Σn) + logP (z(1))

logP (z(1)|u, q1) = Const.− n

2
log(2π)− 1

2
log |Σbb| −

1

2
(u− µbb)

⊤Σ−1
bb (u− µbb)

+

p1∑
j=1

z
(1)
j log q1 +

p1∑
j=1

(1− z
(1)
j ) log(1− q1). (3.3.3)

Therefore, we sample z(1) from the full conditional, P (z(1)|u, q1), which is proportional to

the exponent of equation (3.3.3).
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3.3.1.2 To Sample q1 from Full Conditional P (q1|z(1)),

The full conditional to sample q1 is given by

P (q1|z(1)) ∝ P (z(1)|q1)P (q1) (3.3.4)

∝ q

p1∑
j=1

z
(1)
j

1 (1− q1)

p1∑
j=1

(1− z
(1)
j )

× 1

β(a, b)
qa−1
1 (1− q1)

b−1

∝ q


p1∑
j=1

z
(1)
j + a

−1

1 (1− q1)


p1∑
j=1

(1− z
(1)
j ) + b

−1

P (q1|z(1)) ∝ 1

β(a∗, b∗)
qa

∗−1
1 (1− q1)

b∗−1 (3.3.5)

Where a∗ =

p1∑
j=1

z
(1)
j + a, b∗ =

p1∑
j=1

(1− z
(1)
j ) + b.

Therefore, we sample q1|z(1) from a Beta(a∗, b∗), beta distribution with parameters a∗ and

b∗.

3.3.1.3 To Sample z(2) from P (z(2)|y∗, σ2, q2),

Similarly, to sample z(2) ∼ P (z(2)|y∗, σ2, q2) ∝ P (y∗|z(2), σ2, q2)P (z(2)). The full conditional

density of z(2)|y∗, σ2, q2 is obtained as follows;

recall,

y∗ = X∗
2zβ2z + e, (3.3.6)

where the error component, e ∼ N(0, σ2In2), and σ2In2 is the variance-covariance matrix

corresponding to the residual variance in the linear model.

Obtaining the likelihood P (y∗|β2z,X
∗
2z) is similar to obtaining P (y∗|z(2), σ2, q2) by introducing

indicator variable z(2) into P (y∗|β2z,X
∗
2z). As defined earlier X∗

2z is the matrix of selected

covariates from the design matrixX2 that corresponds to z
(2)
j = 1 and positive log response in

the linear model, β0z is the prior mean vector of zeros and σ2Σ02z = σ2diag
(
s20pcIpc+1, s

2
0Ip2z

)
is the prior variance-covariance matrix corresponding to the selected covariates when z

(2)
j = 1.

Then using the spike-and-slab prior on β2j in equation (3.2.8), the likelihood of y∗|z(2), σ2 is

obtained by,

P (y∗|z(2), σ2) = (2π)−
n2
2 |ΣBB|−

1
2 exp

{
−1

2
(y∗ − µBB)

⊤Σ−1
BB (y∗ − µBB)

}
, (3.3.7)
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where

Σ02z = diag
(
s20pcIpc+1, s

2
0Ip2z

)
,

µBB = E(y∗) = X∗
2zβ0z,

ΣBB = V ar(y∗) = X∗
2zσ

2Σ−1
02zX

∗⊤
2z + σ2In2 ,

which implies that y∗|z(2), σ2 ∼ MVN(µBB, ΣBB), a multivariate normal distribution with

mean µBB and variance-covariance matrix ΣBB corresponding to the selected covariates

when z
(2)
j = 1 and 0 otherwise in the linear model.

Then, the logarithm of the marginal density of z(2) is then given by

logP (z(2)|y∗, σ2, q2) = Const. + logP (y∗|z(2), σ2) + logP (z(2))

logP (z(2)|y∗, σ2, q2) = Const.− n2

2
log (2π)− 1

2
log |ΣBB| −

1

2
(y∗ − µBB)

⊤Σ−1
BB (y∗ − µBB)

+

p2∑
j=1

z
(2)
j log q2 +

p2∑
j=1

(1− z
(2)
j ) log(1− q2). (3.3.8)

Therefore, we sample z(2) from the full conditional, P (z(2)|y∗, σ2, q2), which is proportional

to the exponent of equation (3.3.8).

3.3.1.4 To Sample q2 from Full Conditional P (q2|z(2)),

Similarly, let q2 be the probability parameter for selecting significant features/covariates in

the linear model. The full conditional, P (q2|z(2)) ∝ P (z(2)|q2)P (q2) is

P (q2|z(2)) =
1

β(a∗2, b
∗
2)
q
a∗2−1
2 (1− q2)

b∗2−1 , (3.3.9)

where a∗2 =

p2∑
j=1

z
(2)
j + a2, b∗2 =

p2∑
j=1

(1− z
(2)
j ) + b2.

Therefore, we sample q2|z(2) from ∼ Beta(a∗2, b
∗
2), beta distribution with parameters a∗2 and

b∗2.

3.3.2 Full Conditional Density of Indicator Variable, z(1) and z(2)

for Method 2: Combined Model such that z(1) = z(2)

Method 2: This is also known as the combined model i.e., we assume that the same

features/covariates z(1) = z(2) are selected from the logistic and linear model.

Let z = z(1) = z(2) for simplicity.
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3.3.2.1 To Sample z from P (z|u,y∗, σ2, q)

The full conditional of z|u,y∗, σ2, q combines the likelihood of the logistic and linear model

P (u|y, z) and P (y∗|z, σ2) respectively and prior of z, P (z|q) as shown below;

P
(
z|u,y∗, σ2, q

)
∝ P (u|y, z)P (y∗|z, σ2)P (z|q) (3.3.10)

where z = z(1) = z(2). In log form we have

logP
(
z|u,y∗, σ2, q

)
= Const. + logP (u|y, z) + logP (y∗|z, σ2) + logP (z|q)

logP
(
z|u,y∗, σ2, q

)
= Const. + logMVN(X1zb0z1 + µ, X1zB0z1X

⊤
1z +Σn)

+ logMVN(X∗
2zβ0z, X∗

2zσ
2Σ−1

02zX
∗⊤
2z + σ2In2)

+

p1∑
j=1

zj log q +

p1∑
j=1

(1− zj) log(1− q). (3.3.11)

Therefore, we sample z from the full conditional, P (z|u,y∗, σ2, q), which is proportional to

the exponent of equation (3.3.11).

3.3.2.2 To Sample q from Full Conditional P (q|z)

Since the assumption is that we have the same set of covariates in the logistic and linear model,

let q = q1 = q2 be the probability of selecting common or same significant features/covariates

in the logistic and linear model respectively, they will have the same prior of q ∼ Beta(a, b),

then the full conditional is also the same as that of q1|z(1), and q2|z(2) which can be expressed

as

q|z ∼ Beta(a∗, b∗), (3.3.12)

where a∗ =

p1∑
j=1

zj + a and b∗ =

p1∑
j=1

(1− zj) + b.

Therefore, we sample q|z from a Beta(a∗, b∗), beta distribution with parameters a∗ and b∗.

3.4 The MCMC Algorithm

Steps to Sample from the Full Conditionals of β2, β1, q1, q2, σ2, u, R, z(1), and

z(2).

Initialize σ2(s), β1
(s), q

(s)
1 , q

(s)
2 , z(1)(s), z(2)(s),R, we also incorporated the two Methods

under study for z(1) and z(2), where s = 1, 2, · · · , S desired number of iterations.
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For Method 1:

• For the Linear regression model

i. Update σ2: sample σ2(s+1) ∼ IG(νn
2
, νnσ

2
n

2
),

ii. Update q2: sample q2|z(2) ∼ Beta(a∗2, b
∗
2),

iii. Update z(2): sample z(2) ∼ P (z(2)|y∗, σ2, q2), i.e., from its full conditional.

Using Stochastic Search Variable Selection (SSVS) method by randomly choosing

either of the following:

a. Add/delete: randomly pick one of the p2 indices in z(2) and switch their

values from 0 to 1, or 1 to 0.

b. Swap: pick independently and at random, a 0 and a 1 in z(2) and switch

their values.

The proposed z(2)∗ is accepted with probability

min

{
1,

P (z(2)∗|y∗, σ2, q2)

P (z(2)|y∗, σ2, q2)

}
= min

{
1,

P (y∗|z(2)∗, σ2)P (z(2)∗)

P (y∗|z(2), σ2)P (z(2))

}
,

for the linear model.

iv. Update β2: sample β
(s+1)
2z ∼ MVN(µβ,Σβ), where Σβ depends on σ2(s+1), and

β
(s+1)
2z corresponds to the selected covariates when z

(2)
j = 1, while β2j = 0 when

z
(2)
j = 0 in the linear model.

• For the Logistic regression model

v. Update u: sample the Latent Utilities, u from

ui = − log

(
− log(Di)

λi + 1
− log(D∗

i )

λi

I(yi > 0)

)
.

vi. Update R: sample the Latent Indicators, R from P (Ri = r|ui, λi),

logP (Ri = r|ui, λi) = Constant− log σr −
1

2σ2
r

(ui − log λi − µr)
2 + log ηr.

vii. Update q1: sample q1|z(1) ∼ Beta(a∗, b∗),

viii. Update z(1): sample z(1) ∼ P (z(1)|u, q1), i.e., from its full conditional. Using

the Stochastic Search Variable Selection (SSVS) method by randomly choosing

either of the following:
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a. Add/delete: randomly pick one of the p1 indices in z(1) and switch their

values from 0 to 1, or 1 to 0.

b. Swap: pick independently and at random, a 0 and a 1 in z(1) and switch

their values.

The proposed z(1)∗ is accepted with probability

min

{
1,

P (z(1)∗|u, q1)
P (z(1)|u, q1)

}
= min

{
1,

P (u|y, z(1)∗)P (z(1)∗)

P (u|y, z(1))P (z(1))

}
,

for the logistic-model,

ix. Update β1: sample β
(s+1)
1z ∼ MVN(bn,Bn) for β

(s+1)
1z which corresponds to the

selected covariates z
(2)
j = 1, while β1j = 0 when z

(2)
j = 0 in the logistic model.

� Repeat (i.) to (ix.) until the desired number of iterations is achieved.

� For Method 2: The Combined Model where it is assumed that z(1) = z(2), we only

need to sample q = q1 ∼ Beta(a∗, b∗) and the proposal z∗ is accepted with probability

min

{
1,

P (z∗|u,y∗, σ2, q)

P (z|u,y∗, σ2, q)

}
= min

{
1,

P (u,y∗|z∗)P (z∗|q)
P (u,y∗|z)P (z|q)

}
.
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Chapter 4

Simulation Study

In this chapter, we used simulation studies to assess the performance of our proposed approach,

generated data based on the various scenarios of features, p and sample sizes, n, set hyperparameters

and initial values for our Markov Chain Monte Carlo (MCMC) algorithm. Furthermore, we

assessed the MCMC algorithm for convergence and compared our approach to some existing

variable selection approaches (Frequentist and Bayesian), followed by the discussion of the

findings.

4.1 Description of simulation study data

We generated the set of covariates and 3 clinical covariates independently from N (0, 1) , a

standard normal distribution with mean 0, and variance 1 for the logistic and linear models

respectively. Then chose 20 (out of p features) as important features. These data simulation

was done for n = 500 and n = 300 observations (sample size) with respect to various features

or covariates p = 1000, 500, 200, and 50. This data simulation was replicated 10 times to

obtain 10 different datasets used in this study. Let X = X1 = X2, we expect to have

high marginal posterior probabilities (MPP) (P (z
(ℓ)
j = 1|X,y), ℓ = 1, 2, j = 1, · · · , p), for

selected features and lower probabilities for the non selected features in the model. For the
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true models, we pre-specified true values of ones and zeros for the parameters βℓj, (ℓ = 1, 2).

True values of βℓj = 1 for selected features, z
(ℓ)
j = 1 and non selected features, βℓj = 0, for

z
(ℓ)
j = 0 in the logistic and linear models, this is to assess the predictive performance of our

proposed approach. The probability of success based on the two-part model of this study

is computed by P (yi = 0|X1) = ex
⊤
1iβ1/(1 + ex

⊤
1iβ1), and used to obtain the zero response

data, y from a binomial distribution for the logistic model, the positive response data is

obtained by using the linear model in equation (3.2.3), where the random component, ei is

sampled from a normal distribution with mean 0 and variance 0.25. Then, the semicontinuous

response y is obtained by combining the zeros and positive values which mimics the real-life

type of semicontinuous response data. Because our aim is to examine the performance of

the proposed method (method 2: combined model) in the context of high dimensional data

analysis, most of our focus will be on the cases where the number of features is larger than

the sample size, i.e., p >> n to monitor the performance of our approach.

4.2 Hyperparameter Setting

To run the MCMC algorithm for both the simulated data and observed data we set hyperparameter

values as follows. For the spike-and-slab prior imposed on β1j in the logistic regression model,

we set the prior mean vector b0z1 = (01, · · · , 0p)⊤, equal variance, σ2
β1pc

= σ2
β1

= 0.5, identity

matrix Ip1z such that the prior variance-covariance matrix B0z1 = diag
(
σ2
β1pc

Ipc+1, σ
2
β1
Ip1z

)
when z

(1)
j = 1 while the prior on β1j = 0 when features are not selected, z

(1)
j = 0. Similarly,

for the spike-and-slab prior imposed on β2j in the linear regression model, we set the prior

mean vector β0z2 = (01, · · · , 0p)⊤, prior variance s20pc = s20 = 0.5, σ2 is the error variance

which is unknown, and the prior variance-covariance matrix on β2j, which is σ2Σ02z =
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σ2diag
(
s20pcIpc+1, s

2
0Ip2z

)
corresponding to the selected covariates when z

(2)
j = 1 and β1j = 0

when features are not selected, z
(2)
j = 0. For the inverse-gamma prior on σ2; we set ν0 = 1,

σ2
0 = 0.25, and assume a Beta distribution Beta(a, b) and Beta(a2, b2) on q1 and q2, the

probability of selecting important features from the logistic and linear models respectively.

The values of a, b, a2, and b2 are set such that there is a 10% chance or probability of selecting

important features from the logistic and linear models. Lastly, the values of ηr, µr, andσ
2
r in

Table 3.1 is used in the data augmentation section.

4.3 Setting Initial Values for the MCMC Algorithm

We set initial values for β1z,σ
2, q1 = a/(a + b), q2 = a2/(a2 + b2), randomly sampled z(1)

and z(2) independently from a Binomial distribution with p trials and probability of selecting

important features q1 and q2 i.e., Bin(p, qℓ), ℓ = 1, 2, with respect to the logistic and linear

models. After the initial values for z
(1)
j and z

(2)
j indicator variable has been randomly sampled,

we selected the initial covariates that correspond to these indicator variable z
(1)
j = 1 and

z
(2)
j = 0, then obtained initial values of the regression effects, X1z and X∗

2z for the logistic

and linear models respectively. We ran the MCMC algorithm across ten different chains

for each simulated data using 300,000 iterations, and discarded the first 30,000 samples to

remove the effect of the initial values (burn-in period). The latent indicators, R is used

to sample the latent utilities, u. The following R packages are used for the evaluation of

our proposed approach and to obtain the average AUC and standard error (SE) values of

the competing models to compare with our method; coda, AUC, mvtnorm, HDInterval,

glmnet, mombf, corrplot. Due to the complexity and high computation involved, the

Advanced Research Computing (ARC) cluster of the High Performance Computing (HPC)
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platform of the University of Calgary is used to run our R codes.

4.4 Competing Methods

Using the simulated data with respect to the various scenarios, we compared the proposed

approach to some existing models (Table 4.1 and Table 4.2) which includes the Least Absolute

Shrinkage and Selection Operator (LASSO) regression of the logistic and linear form, Elastic

Net logistic and linear form, and the mombf: Moment and inverse moment Bayes factors, an R

package introduced by Rossell et al. (2014). The mombf approach is only applicable to linear

model, not appropriate for logistic form in high dimensional settings. For the LASSO and

Elastic Net regression models we used the glmnet() function in the glmnet R package to fit

the logistic and linear models by specifying a family of binomial and gaussian respectively,

while the response of the logistic model was recoded to reflect binary (0 for response with

zeros, (yi = 0) and 1 for positive response (yi > 0)). Instead of choosing an optimal λ, we

fit the LASSO and Elastic Net models for each lambda such that each time a coefficient is

selected, it is classified as 1 and 0 otherwise, these resulted in vector of zeros and ones that

was used to compute the inclusion probabilities. We compared these inclusion probabilities

(probability of selection) with the true values of z
(ℓ)
j , ℓ = 1, 2, j = 1, · · · , p to obtain the

area under the receiver operating characteristic curve (AUC) values for each data simulation

and averaged it to obtain the average AUC and standard error (SE) shown in Table 4.1 and

Table 4.2. For this sudy, the Elastic Net penalty is controlled by α = 0.5, and bridges the gap

between LASSO regression (α = 1) and Ridge regression (α = 0). The tuning parameter λ

controls the overall strength of the penalty (Friedman et al., 2010). Using the mombf approach

(not suitable for logistic form), model selection and parameter estimation is based on non-
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local prior. After calling the mombf library in R, we used the function modelSelection() to

fit the model by specifying the appropriate prior and initial values as required by the function,

then the inclusion probabilities are extracted using fittedmodel$margpp. These inclusion

probabilities are then compared to the true values of z
(ℓ)
j , ℓ = 1, 2, j = 1, · · · , p to obtain the

AUC values for each data simulation and averaged to obtain the average AUC and standard

error (SE) shown in Table 4.1 and Table 4.2. In mombf, routines are provided to evaluate

prior densities, distribution functions, quantiles and modes, compute Bayes factors, marginal

densities and to perform variable selection in regression set ups. The inclusion probabilities

in mombf are refined using Rao-Blackwellization (Forte et al., 2018).

4.5 Results

Tables 4.1 and 4.2 showed the average AUC and standard error (SE) values obtained using

simulation studies to assess the proposed approach (novel: BVS Combined - Semicontinuous,

usual: BVS Logistic - Semicontinuous, and BVS Linear - Semicontinuous) and some existing

Frequentist and Bayesian variable selection models with semicontinuous responses.

In section (4.5.1), we assessed the agreement of the results of the marginal posterior probabilities

(MPP) among the 10 chains by evaluating the correlation coefficients between the marginal

posterior probabilities for variable selection (Chekouo et al., 2017; Li and Chekouo, 2021;

Stingo et al., 2011). After the assessment of convergence of our MCMC algorithm (see

4.5.1), we used 10 replicated data simulations, obtained the marginal posterior probabilities,

P (z
(ℓ)
j = 1|X,y), ℓ = 1, 2 using one of the chains and compared to their respective true

values of z
(ℓ)
j to obtain the AUC values which is averaged to obtain the average AUC, while

the standard error (SE) is obtained by diving the standard deviation of AUCs by the square
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root of the number of AUCs (ten). The values of the average AUC and standard error (SE)

for other competing models is obtained in similar fashion based on their respective algorithm

and methodology (more details in section (4.4)). The AUC values ranges from 0 to 1, high

AUC values of 1 (100%) means that the model has 100% prediction accuracy while AUC

values of 0 (0%) means that the model has a poor prediction accuracy (Li and Chekouo,

2021). Lower values of the standard error (SE) signify good performance of the model. It is

therefore observed that our proposed approach (BVS Combined - Semicontinuous) has higher

prediction accuracy when compared to other approaches. Our proposed method performed

well in all scenarios, selecting all relevant important features as well as good estimates,

lower standard errors and higher AUC values compared to other variable selection models as

summarized in Tables 4.1 and 4.2.

Lastly, in section 4.5.2, we set a benchmark of 0.5 to signify that a feature is selected (≥ 0.5)

and less than 0.5 as non-selected features for each method and scenario. The marginal

posterior probabilities (MPP) plots for each method and scenario are shown in section 4.5.2

and the remaining in appendix B.3, which is the usual approach in practice since the model

space is quite large and the posterior mode may be encountered only a few times in the

MCMC runs (Chekouo et al., 2015; Sha et al., 2006). These plots of the marginal posterior

probabilities does not include the intercept and clinical covariates because they will always

be included in the model. In all scenarios, the marginal posterior probabilities (MPP)

obtained using the proposed method indicate that the relevant features returned probability

of inclusion values that are very close to 1 while that of the non-selected features are very

close to zero. It was observed that the MPP values of the combined method behaved better

than that of method 1 (as shown in section 4.5.2 and B.3).
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Table 4.1: n = 300 for different features p, 20 important features. The best values in bold.

p Model Method AUC (SE)

50 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

50 Logistic BVS Logistic - Semicontinuous 0.9955 (0.0029)

50 Linear BVS Linear - Semicontinuous 1.0000 (0.0000)

50 Logistic Lasso Logistic 0.9833 (0.0029)

50 Linear Lasso Linear 0.9160 (0.0150)

50 Logistic Elastic Net Logistic 0.9813 (0.0033)

50 Linear Elastic Net Linear 0.9036 (0.0174)

50 Linear **mombf Linear 0.9957 (0.0029)

200 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

200 Logistic BVS Logistic - Semicontinuous 0.9902 (0.0029)

200 Linear BVS Linear - Semicontinuous 1.0000 (0.0000)

200 Logistic Lasso Logistic 0.9777 (0.0057)

200 Linear Lasso Linear 0.8691 (0.0153)

200 Logistic Elastic Net Logistic 0.9765 (0.0053)

200 Linear Elastic Net Linear 0.8591 (0.0151)

200 Linear **mombf Linear 0.7313 (0.0505)

500 Combined BVS Combined - Semicontinuous 0.9990 (0.0008)

500 Logistic BVS Logistic - Semicontinuous 0.9653 (0.0088)

500 Linear BVS Linear - Semicontinuous 0.9755 (0.0096)

500 Logistic Lasso Logistic 0.9668 (0.0070)

500 Linear Lasso Linear 0.8018 (0.0223)

500 Logistic Elastic Net Logistic 0.9672 (0.0057)

500 Linear Elastic Net Linear 0.8051 (0.0207)

500 Linear **mombf Linear 0.6035 (0.0222)

1000 Combined BVS Combined - Semicontinuous 0.9750 (0.0168)

1000 Logistic BVS Logistic - Semicontinuous 0.9535 (0.0091)

1000 Linear BVS Linear - Semicontinuous 0.9692 (0.0093)

1000 Logistic Lasso Logistic 0.9593 (0.0090)

1000 Linear Lasso Linear 0.7263 (0.0157)

1000 Logistic Elastic Net Logistic 0.9541 (0.0104)

1000 Linear Elastic Net Linear 0.7289 (0.0174)

1000 Linear **mombf Linear 0.6307 (0.0188)

** method is not applicable to logistic
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Table 4.2: n = 500 for different features p, 20 important features. The best values in bold.

p Model Method AUC (SE)

50 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

50 Logistic BVS Logistic - Semicontinuous 0.9981 (0.0002)

50 Linear BVS Linear - Semicontinuous 1.0000 (0.0000)

50 Logistic Lasso Logistic 0.9970 (0.0014)

50 Linear Lasso Linear 0.9663 (0.0084)

50 Logistic Elastic Net Logistic 0.9963 (0.0017)

50 Linear Elastic Net Linear 0.9642 (0.0078)

50 Linear **mombf Linear 1.0000 (0.0000)

200 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

200 Logistic BVS Logistic - Semicontinuous 0.9999 (0.0001)

200 Linear BVS Linear - Semicontinuous 1.0000 (0.0000)

200 Logistic Lasso Logistic 0.9965 (0.0008)

200 Linear Lasso Linear 0.9726 (0.0027)

200 Logistic Elastic Net Logistic 0.9946 (0.0012)

200 Linear Elastic Net Linear 0.9667 (0.0033)

200 Linear **mombf Linear 1.0000 (0.0000)

500 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

500 Logistic BVS Logistic - Semicontinuous 0.9945 (0.0050)

500 Linear BVS Linear - Semicontinuous 1.0000 (0.0000)

500 Logistic Lasso Logistic 0.9968 (0.0007)

500 Linear Lasso Linear 0.9541 (0.0101)

500 Logistic Elastic Net Logistic 0.9950 (0.0009)

500 Linear Elastic Net Linear 0.9452 (0.0109)

500 Linear **mombf Linear 0.5957 (0.0347)

1000 Combined BVS Combined - Semicontinuous 1.0000 (0.0000)

1000 Logistic BVS Logistic - Semicontinuous 0.9948 (0.0050)

1000 Linear BVS Linear - Semicontinuous 0.9978 (0.0007)

1000 Logistic Lasso Logistic 0.9981 (0.0005)

1000 Linear Lasso Linear 0.8986 (0.0173)

1000 Logistic Elastic Net Logistic 0.9959 (0.0008)

1000 Linear Elastic Net Linear 0.8937 (0.0157)

1000 Linear **mombf Linear 0.6915 (0.0192)

** method is not applicable to logistic
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4.5.1 Convergence Diagnostics on Simulated Data.

In this section, we performed convergence diagnostics on the proposed model using metrics

like; Gelman and Rubin (1992) diagnostics statistic (boxplots) and plots of correlation matrix

that showed the agreement of results across the 10 chains of MCMC algorithm (Chekouo et al.,

2017; Li and Chekouo, 2021; Stingo et al., 2011). The proposed method by Gelman and Rubin

(1992) used a potential scale reduction factor denoted by R̂gelman =

√
ˆV ar(θ)
W

, where ˆV ar (θ)

is the estimated variance of the stationary distribution, θ is parameter of interest, and W is

the mean of the variances of each chain. To interpret; values of R̂gelman around 1 (below or

above) signifies that convergence is attained while high values of R̂gelman, would suggest that

one should run the chains longer to improve convergence to the stationary distribution. A

limitation to this method as pointed out by Gelman and Rubin (1992) is that, multi-modal

target distributions can give iterative simulation algorithms serious problems because the

random walks may take a longer time to move from the region of one mode to another, then

suggested that in such instances, the iterative simulation algorithm may have to be altered in

order to speed up convergence by reparameterizing (Hills and Smith, 1992) or improving the

jumping step in the generalised Metropolis algorithm (Green and Han, 1992). However, recent

Bayesian variable selection studies (Chekouo et al., 2017; Li and Chekouo, 2021; Stingo et al.,

2011) approached assessment of convergence by running the MCMC algorithm with multiple

chains to create plots of correlation matrix. A correlation value of > 0.85 usually signify

that convergence is achieved and there is agreement across the chains of algorithm (Chekouo

et al., 2017). In this study, we also assessed the convergence of our MCMC algorithm by

running the generated data through 10 different chains and obtained the correlations between

the marginal posterior probabilities across these chains. The correlation plot is then used
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to show the convergence z
(ℓ)
j in our MCMC algorithm. It is observed that values of the

correlation as shown in the plots of correlation matrix are > 0.85 (Chekouo et al., 2017).

Therefore, it has been established that our MCMC algorithm converged for all and inference

can be made using any of these chains (more details in the discussion section 4.6).

Method 2: (Combined Model) with the assumption that

the same features are selected from the logistic and linear

model
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Figure 4.1: Plot of correlation across the 10 chains in the combined model when n = 300;

p = 1000
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Figure 4.2: Convergence diagnostic plot of the posterior estimate samples across the 10

chains for β̂1, β̂2, and σ̂
2 when n = 300; p = 1000.
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Figure 4.3: Plot of correlation across the 10 chains in the combined model when n = 500;

p = 1000
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Figure 4.4: Convergence diagnostic plot of the posterior estimate samples across the 10

chains for β̂1, β̂2, and σ̂
2 when n = 500; p = 1000.
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Method 1: with the assumption that features are selected

independently from the logistic and linear model
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Figure 4.5: Plot of correlation across the

10 chains in the logistic model when n =

300; p = 1000
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Figure 4.6: Plot of correlation across the

10 chains in the linear model when n =

300; p = 1000
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Figure 4.8: Plot of correlation across the

10 chains in the logistic model when n =

500; p = 1000
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Figure 4.9: Plot of correlation across the

10 chains in the linear model when n =

500; p = 1000
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Figure 4.10: Convergence diagnostic

plot of the posterior estimate samples

across the 10 chains for β̂1, β̂2, and σ̂
2
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4.5.2 The marginal posterior probability (MPP) or probability of

inclusion

Method 2: MPP using the assumption that the same set

of features are selected.
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Figure 4.11: mpp when n = 300, p =

1000
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Figure 4.12: mpp when n = 500, p =

1000

Figures 4.11 and 4.12 above showed the marginal posterior probability (MPP) or inclusion

probabilities obtained using the combined model (method 2) that assumed same features are

selected from the logistic and linear models (i.e., z(1) = z(2)). We observe that MPP for

when n = 500 and p = 1000 returned lower probabilities of inclusion in comparison with

when n = 300 and p = 1000 while both have similar MPP values that are approximately 1

for the important features. It can be inferred that the scenario under Figure 4.12 behaves

better than that of Figure 4.11.
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Method 1: MPP using the assumption that features are

selected independently.
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Figure 4.13: mpp when n = 300, p =

1000 for the logistic model
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Figure 4.14: mpp when n = 300, p =

1000 for the linear model

Figures 4.13 and 4.14 above gives the marginal posterior probability (MPP) using method

1 with the assumption that features are selected independently from the logistic and linear

models respectively, a scenario of when n = 300, p = 1000. It can be observed that the

inclusion probabilities for the important features of the logistic model (Figure 4.14) have

higher values compared to that of the linear model (Figure 4.13). However, the non-selected

features for the logistic model has lower inclusion probability compared to that of the linear

model.
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Figure 4.15: mpp when n = 500, p =

1000 for the logistic model

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Covariates (Excluding Intercept & Clinical Data)

M
ar

gi
na

l P
ro

ba
bi

lit
y

Figure 4.16: mpp when n = 500, p =

1000 for the linear model

Figures 4.15 and 4.16 above gives the marginal posterior probability (MPP) using method

1 with the assumption that features are selected independently from the logistic and linear

models respectively, a scenario of when n = 500, p = 1000. It can be observed that the

inclusion probabilities for the important features of the logistic model (Figure 4.15) have

higher values compared to that of the linear model (Figure 4.16). However, the non-selected

features for the linear model has lower inclusion probability compared to that of the logistic

model.

4.6 Discussion

We ran the MCMC algorithm using multiple simulated dataset and obtained the average

AUC and standard error, the latter was also done to obtain results for the competing

models. Table 4.1 and Table 4.2 present results of the various scenarios using simulation
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studies. We observed that the proposed method behaved better than other models in all

scenarios of n = 300, n = 500 with different set of features p = 1000, 500, 200 and 50. Also,

the proposed method has a higher prediction accuracy as the posterior estimates for the

regression parameters are very close to their true values as shown in Table B.3 and Table

B.4 in comparison to Tables B.1 and B.2. Using a threshold of 0.5, we observed that the

probability of selection or inclusion of features (marginal posterior probability (MPP)) in the

last column of Tables B.1, B.2, B.3, and B.4 whose values are larger than 0.5 for selected

features while those non-selected features returned values less than 0.5. This is as expected

and it can be interpreted by saying the selected features are the likely risk factors of an

outcome or disease while the unselected features may not likely be risk factors of an outcome

or disease using a threshold of 0.5 (Rosenwald et al., 2002). This is the usual approach in

Bayesian variable selection methods that involves high dimensional data. Since the values

of the MPP are too large to be presented on a table, the plots of the marginal posterior

probabilities (MPP) is used to visualize the selected and non-selected features as shown in

section 4.5.2 and appendix B.3.

Lastly, we can see that our MCMC algorithm converges based on the correlation plots in

section 4.5.1 and others in appendix B.2 used to investigate the agreement across the 10

different chains for our proposed approach (combined model) and both the logistic and linear

models. It was observed that the combined model converged faster compared to the other

two models, most especially the logistic model. The boxplots give the estimated potential

scale reduction factor, a measure used to assess the convergence of our MCMC algorithm

proposed by (Gelman and Rubin, 1992). However, as it is customary in Bayesian variables

selection, high correlation value of > 0.85 signify that the MCMC algorithm converged and

there is agreement across the chains (Chekouo et al., 2017; Li and Chekouo, 2021; Stingo
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et al., 2011). Inference can therefore be made using any of the chains.
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Chapter 5

Application to coronary artery disease

(CAD) data

Coronary artery disease (also called ischemic heart disease) is the most common types of

cardiovascular disease in Canada. It occurs when a build-up of plaque (atherosclerosis)

narrows the arteries that bring blood to the heart, limiting the amount of oxygen the heart

receives (ischemia). Untreated coronary artery disease can lead to heart attack, stroke, or

death (Mason and Frey, 2018).

Gene expression is the process by which genetic information encoded in DNA is used to

generate gene products (e.g., proteins). A person’s DNA is made up of all the genetic

information needed to build an estimated 20,000 different proteins (Musunuru et al., 2017).

Advances in science have allowed for the discovery and study of many biological markers

(biomarkers) of gene expression (Musunuru et al., 2017). When used alone or, more commonly,

in combination with known risk factors, biomarkers can help predict the possibility of developing

a disease, help diagnose the presence of disease, or determine how a disease will progress in

an individual patient (Musunuru et al., 2017). A phenotype refers to an observable trait.

Technically speaking, even a genotype is a type of a phenotype because it is observable
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(Musunuru et al., 2017).

5.1 Description of coronary artery disease (CAD) data

In this section, we applied the proposed method to coronary artery disease (CAD) data

obtained from the Duke Database for Cardiovascular Disease (DDCD) which provides clinical

data and gene expression data used for analysis. This data was primarily collected from

individuals that took part in the cardiac catheterization study. The CATHeterization GENetics

(CATHGEN) research project is a resource for the investigation of genes associated with

coronary artery disease and related disorders. The project collected peripheral blood samples

from consenting research subjects undergoing cardiac catheterization at Duke University

Medical Center from 2001 through 2011. The data consists of gene expression data and

clinical covariates. The clinical covariates consists of data such as subject ID which is a

unique code assigned to participants, age at enrolment, body mass index (BMI) at enrolment,

history of hypertension of participant, coronary artery disease (CAD) severity index at

enrolment (response or outcome), history of diabetes of participant, history of hyperlipidemia

of participant, number of diseased vessels at enrolment, race of participant defined by population

stratification, sex of participant, history of smoking of participant, participant died, days from

cardiac catheterization to death or last known alive, days from cardiac catheterization to

subsequent myocardial infection, previous history of myocardial infarction, and case control

status of the subject (Table B.6). The gene expression data is made up of 890 expressions

with 48,803 probe IDs which is the identifier that refers to a set of probe pairs selected to

represent expressed sequences on an array. We performed some exploratory data analysis

on the clinical data and removed missing data, also replaced some few missing continuous
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covariates with their mean. We also inspected the gene expression data for missing values and

there was none missing, proceeded to obtain the standard deviation corresponding to each

probe ID and reduced the data by retaining markers with standard deviations ≥ 1.2, then

performed a univariate analysis using the two-part model independently to further reduce

the data by selecting gene expressions with p-value < 0.2. After which, we combined these

set of gene expression data with their respective clinical covariates using the subject ID and

arrived at a dataset that is made up of 421 observation known as the sample size n, and

1,213 set of covariates that includes the clinical covariates, this is known as p according to

the notation format of this study. Therefore we have n = 421 observations and p = 1, 213

covariates which includes the subject ID, the response variable is coronary artery disease

index denoted by CADIndex (semicontinuous response which consist of zeros and positive

values), 11 clinical covariates (13 clinical covariates but Subject ID, and CADIndex excluded

in Table 5.2), and mRNA gene expressions (1200).

Lastly, we applied the proposed approach to these set of data and the results are presented

below.

5.2 Results

In this section, we present the results obtained using the proposed method to predict the likely

risk factors and select significant genes that are associated with the coronary artery disease

(CAD). After setting hyperparameter and initial values as explained in the simulation study

section, we ran the MCMC algorithm with 300,000 iterations and discarded 30,000 (burn-in

period) to remove the effect of initial values. The results obtained from the application of the

proposed approach (Method 2: combined model) is presented below (5.2.1, 5.2.2 and 5.2.3)
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while the results obtained using existing approach (Method 1) is presented in appendix B.4.

The discussion section of this chapter gives more insight on the findings from the analysis

and Gene Set Enrichment Analysis (GSEA) to identify over-represented gene expressions

that may have been produced by the proposed method. The goal of GSEA is to determine

whether members of a gene set tend to occur toward the top (or bottom) of the list, in which

case the gene set is correlated with the phenotypic class distinction (Subramanian et al.,

2005). The Patient characteristics and codebook of the clinical covariates is shown in Tables

B.7 and B.6 respectively.
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5.2.1 Convergence diagnostics on coronary artery disease (CAD)

data.

Method 2: Combined method
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Figure 5.1: Plot of correlation across the 10 chains in the linear model using CAD data.
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Figure 5.2: Convergence diagnostic plot of the posterior estimate samples across the 10

chains for β̂1, β̂2, and, σ̂
2 using CAD data.
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5.2.2 Marginal posterior probabilities (MPP) using coronary artery

disease (CAD) data

Method 2: Combined method
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Figure 5.3: The marginal posterior probability for the logistic model using CAD data.
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5.2.3 Genes associated with coronary artery disease (CAD)

Table 5.1: coronary artery disease (CAD) data: top 20 genes associated with coronary

artery disease using the combined model approach (method 2: selecting the same features

from the logistic and linear model, z
(1)
j = z

(2)
j , j = pc + 2, · · · , p, ℓ = 1, 2 ).

Probe ID Gene Symbol P (z
(ℓ)
j = 1|X,y)

ILMN 1680042 LOC649452 1.00

ILMN 1749792 SORBS1 1.00

ILMN 1792540 AR 1.00

ILMN 1893915 1.00

ILMN 1669577 PRNPIP 1.00

ILMN 1838166 1.00

ILMN 2066088 C1orf64 1.00

ILMN 2328986 SREBF1 1.00

ILMN 1664464 PTGDS 1.00

ILMN 1692056 HS3ST3A1 1.00

ILMN 1819503 1.00

ILMN 1699382 LOC647500 0.99

ILMN 1657888 SALL1 0.99

ILMN 1653980 METTL8 0.99

ILMN 1813280 LOC642222 0.99

ILMN 1800131 LOC652826 0.99

ILMN 1781027 TSNARE1 0.99

ILMN 1752843 GRM4 0.99

ILMN 1693981 SH3TC2 0.99

ILMN 1723674 NKAIN3 0.99

Based on the use of the proposed approach, we observe that about 204 important genes out

of 1,200 gene expressions are associated with coronary artery disease (CAD) and top 20 of
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these genes are shown in Table 5.1 above. In comparison with method 1, we inspect results

from both methods to see if there are genes that are common when we use both approaches.

It was observed that about 202 genes appears to be predicted as associated with coronary

artery disease using both methods but the proposed approach produced a higher marginal

posterior probability (MPP) values compared to method 1 and the logistic regression did

not produce good values because convergence was not achieved. This is seen by carefully

studying Tables 5.1 and B.5.
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Table 5.2: coronary artery disease (CAD) data: the regression effects of clinical covariates

associated with coronary artery disease using the combined model approach (method 2:

selecting the same features from the logistic and linear model, z
(1)
j = z

(2)
j , j = pc + 2, · · · , p,

ℓ = 1, 2 ). The Posterior median (Estimate), 95% Credible Interval (C.I) and 95% Highest

Posterior Density Interval (HPDI) is shown below. If the 95% C.I does not contain the null

hypothesis value 0, the results are statistically significant. It can therefore be inferred that

only AGE is significant in the linear model.

Combined Method

Logistic Model Estimate 95%C.I 95%HPDI

Intercept 0.0860 (-1.2834) - 1.4699 (-1.2650) - 1.4870

AGE -0.1905 (-0.2443) - 0.1390 (-0.2439) - (-0.1387)

BMI -0.1089 (-1.2605) - 0.9777 (-1.2617) - 0.9758

HYPERTENSION -0.2959 (-1.6031) - 1.0046 (-1.6155) - 0.9897

DIABETES -0.2782 (-1.5963) - 1.0520 (-1.5895) - 1.0578

HYPERCHOLESTEROLEMIA -0.5792 (-1.8809) - 0.7598 (-1.8869) - 0.7525

RACE -0.4436 (-1.5574) - 0.6454 (-1.5623) - 0.6393

SEX 0.6252 (-0.7238) - 1.9651 (-0.7402) - 1.9482

SMOKING -0.4384 (-1.7794) - 0.8811 (-1.7870) - 0.8728

DEATH -0.1414 (-1.4687) - 1.1983 (-1.4733) - 1.1916

DDEATH -0.0833 (-1.1795) - 1.0408 (-1.1873) - 1.0324

HXMI -0.6921 (-2.0088) - 0.6216 (-2.0142) - 0.6153

Linear Model Estimate 95%C.I 95%HPDI

Intercept 0.4943 (-0.9615) - 1.9437 (-0.9327) - 1.9720

AGE 0.5720 0.5385 - 0.6076 0.5385 - 0.6076

BMI 0.5382 (-0.1635) - 1.2738 (-0.1593) - 1.2772

HYPERTENSION 0.5751 (-0.5294) - 1.6683 (-0.5338) - 1.6636

DIABETES 0.2693 (-0.8642) - 1.4159 (-0.8780) - 1.4011

HYPERCHOLESTEROLEMIA 0.2309 (-0.8684) - 1.3412 (-0.8573) - 1.3513

RACE 0.3120 (-0.3877) - 1.0176 (-0.3886) - 1.0166

SEX -0.0103 (-1.3276) - 1.3167 (-1.3412) - 1.3016

SMOKING 0.5491 (-0.5640) - 1.6540 (-0.5700) - 1.6469

DEATH 0.3467 (-0.9124) - 1.6150 (-0.9144) - 1.6126

DDEATH -0.6022 (-1.3822) - 0.1958 (-1.3792) - 0.1982

HXMI 0.9478 (-0.1679) - 2.0244 (-0.1685) - 2.0236
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Figure 5.4: Gene regulatory network obtained from WebGestalt (Wang et al., 2013, 2017).

In colour blue are part of the top 20 significant genes shown in Table 5.1 that also appear

after performing Gene Set Enrichment Analysis on the set of important genes obtained from

using our proposed approach. It showed that these genes interact closely with other genes

based on their interactive network with other neighbouring genes.

After the application of the proposed approach to coronary artery disease (CAD) data, the set

of gene symbols of all selected gene expressions are used to perform a Gene Set Enrichment

Analysis to know the characteristics of this association and relationship among other genes

as shown in Figure 5.4. The Gene Set Enrichment Analysis (GSEA) above is done using the
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web application by Wang et al. (2017). We import the .txt file containing the gene symbol of

all the selected gene expressions, then mapped to Entrez Gene ID which is National Center

for Biotechnology Information (NCBI)’s database for gene-specific information. Entrez Gene

includes records from genomes that have been completely sequenced, that have an active

research community to contribute gene-specific information or that are scheduled for intense

sequence analysis (Maglott et al., 2005). Lastly, we selected a WikiPathways (Slenter et al.,

2018) to obtain the gene regulatory network.

5.3 Discussion

Figure 5.3 showed the marginal posterior probability (MPP) of selected biomarkers using

a threshold of 0.5 which means that such markers of gene expression has a significant

contribution to predicting the outcome which is the coronary artery disease index. Also,

Figure 5.1 showed that there is agreement across the chains with correlation values > 0.85

signifying that convergence has been attained using our proposed approach on the CAD data

(in line with Chekouo et al. (2017)). However, using the existing method 1 approach; the

linear model converged easily using the same number of iterations as our proposed approach

and same burn-in period but the logistic model may require more number of iterations to

achieve convergence as shown in appendix B.4. Also, the boxplot in Figure 5.2 gives the

Gelman’s convergence plot (Gelman and Rubin, 1992) for posterior estimates of β̂1, β̂2, and

σ̂2 using the proposed method, this showed that the algorithm converged with evidence of

good mixture across the MCMC chains.

The selected genes obtained using the proposed method is shown in Table 5.1 from single

nucleotide polymorphism (SNP) information. The variant G allele of the SORBS1 polymorphism
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was a risk factor for hypertension. Also, The prevalence of hypertension was greater in the

combined group of all subjects with the AG or GG genotype of SORBS1 than in those

with the AA genotype from 40 to 80 years of age (Yamada et al., 2009). The shorter

trinucleotide repeat disorders (CAG repeat) of the androgen receptor (AR) gene is associated

with more severe CAD, which suggests a role for the sensitivity to androgens in the increased

frequency of CAD in males (Alevizaki et al., 2003). C1orf64 closely correlated with androgen

receptor (AR) expression in primary and metastatic breast tumors and C1orf64 expression

was relatively higher in breast tumors with a lower grade and lobular histology (Naderi, 2017).

A recent study suggested that SRARP (C1orf64) is a tumor suppressor that can be used

to predict the clinical outcomes of malignant tumors (Zhang et al., 2021). sterol-regulatory

element binding transcription factors (SREBFs), regulators of cholesterol metabolism, SREBF-

2 and SCAP play an important role in the progression of atherosclerosis. SREBF-2 G1784C

polymorphism (SREBF-2-595A/G isoforms) has been proven to be associated with early

onset myocardial infarction (MI) in middle-aged male Americans (Friedlander et al., 2008).

SREBF-2-595A/G isoforms and the SCAP A2386G polymorphism (SCAP-796I/V isoforms)

have also been proven to be associated with prehospital sudden cardiac death in middle-aged

male Finns (Fan et al., 2008). HS3ST3A1 was identified as part of the several molecular

changes induced by smoking in human airway epithelium, which provided some candidate

genes and microRNAs for assessing the risk of lung diseases caused by smoking (Huang

et al., 2019). Rezaee et al. (2020) showed that the PTGDS gene expression levels increased

significantly in the patients with vessel restenosis. SALL1 hyper-methylation has already

been confirmed as the diagnostic biomarker for breast cancer and other epithelial cancers,

especially for the colorectal cancer (Hill et al., 2010).
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Chapter 6

Summary, and Conclusion

6.1 Summary

This study has proposed a novel Bayesian variable selection method with semicontinuous

response where the nature of data is of a high dimensionality. The algorithm converged easily

and has a more reliable variable selection potentials, it performs well even when sample sizes

are small or larger than the number of features. We used the two-part model developed by

Duan et al. (1983), then incorporated spike-and-slab prior for the regression coefficients and

a normal distribution as prior on the intercept and clinical covariates parameters. Applied

the Stochastic Search Variable Selection (SSVS) to randomly sample the indicator variables

for variable selection. The agreement of chain behaviour is checked and marginal posterior

probabilities (MPP) that passed the threshold of 0.5 is used to select important features. We

also compared some existing variable selection models to the proposed approach, and it was

observed that the proposed approach converged faster and behaved better than other models

based on the AUC values in Tables 4.1 and 4.2 for variable selection.

Furthermore, the important risk factors selected by the proposed model has been known in

previous studies to be genes associated with coronary artery disease (CAD) as explained in
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the discussion section 5.3.

6.2 Conclusion

� Consistency of our proposed method: The findings from this study is consistent

with the results from other existing Bayesian variable selection methods, the important

risk factors selected by the proposed model has been known in previous studies to be

genes associated with coronary artery disease (CAD) (see discussion section 5.3). It is

obvious that our model behaved better than the existing models used in comparison

(Tables 4.1 and 4.2).

� Contribution to knowledge: We have included the possibility of selecting the same

and/or different sets of important features using the two-part model introduced by Duan

et al. (1983) with semicontinuous response to carry out Bayesian variable selection in

the context of high-dimensional data analysis. This is what most existing Bayesian

variable selection methods did not mention or consider not even the classical approach.

Also, the proposed method can be applied to many areas of research in health and

other areas of specialisations where there are lots of zeros (also known as zero-inflated),

a semicontinuous type of response data which is usually the case with most health

related dataset. We have also been able to propose a method that can consistently and

accurately handle high dimensional data analysis with at least one thousand (> 1, 000)

covariates using two-part model.

� Strength of this study: The strength of our proposed method lies in the ability to

provide more accurate selection of predictors that are risk factors of outcome or disease

responses (i.e., select likely genes associated with coronary artery disease) that are
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semicontinuous in high dimensional data analysis. Also, the proposed method (method

2: combined model) converged faster than other Bayesian variable selection model

compared in this study and can accommodate atleast a thousand number of features.

� Limitation of the study: One limitation that can be pointed out is that it requires

a High performance computing resources if the features are higher than or equal to a

thousand.

� Future research: There is possibility of applying this proposed method for Bayesian

variable selection with other types of models for modelling nonnegative data with

clumping at zero like those listed in Min and Agresti (2002), e.g using a single distribution

from the exponential dispersion family to analyze semicontinuous data (Jørgensen,

1987; Jorgensen, 1997).
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A.1 Derivation of the full conditional density, β2|σ2,y

This is the full conditional of β2|σ2,y before the introduction of vector of indicator variables

z(2) to the linear model.

P (β2|σ2,y) =

∫
P (β1, β2, σ

2|y, X)dβ1

=

∫
P (y|β1, β2, σ

2, X)P (β1, β2, σ
2)dβ1

=

∫
P (y|β1, β2, σ

2, X)× P (β2|σ2)× P (σ2)× P (β1)dβ1

=

∫ n∏
i=1,
yi=0

(
eX

⊤
1iβ1

1 + eX
⊤
1iβ1

)
n∏

i=1,
yi>0

(
1

1 + eX
⊤
1iβ1

)
|Σ|−

1
2 exp

{
−1

2

[
(y∗ −X∗

2β2)
⊤

×Σ−1 (y∗ −X∗
2β2)

]}
|Σ0|−

1
2 exp

{
− 1

2σ2
(β2 − β0)

⊤ Σ−1
0 (β2 − β0)

}
P (σ2)P (β1)dβ1

=

∫ n∏
i=1,
yi=0

(
eX

⊤
1iβ1

1 + eX
⊤
1iβ1

)
n∏

i=1,
yi>0

(
1

1 + eX
⊤
1iβ1

)
P (β1)dβ1|Σ|−

1
2 |Σ0|−

1
2

× exp

{
−1

2

[
(y∗ −X∗

2β2)
⊤Σ−1 (y∗ −X∗

2β2)
]}

exp

{
− 1

2σ2
(β2 − β0)

⊤Σ−1
0 (β2 − β0)

}
P (σ2)

∝ |Σ|−
1
2 exp

{
−1

2

[
(y∗ −X∗

2β2)
⊤Σ−1 (y∗ −X∗

2β2)
]}

|Σ0|−
1
2

× exp

{
− 1

2σ2
(β2 − β0)

⊤Σ−1
0 (β2 − β0)

} (ν0σ2
0

2

) ν0
2

Γ(ν0
2
)

(
σ2
)− ν0

2
−1

exp

{
−ν0σ

2
0

2σ2

}
∝ exp

{
− 1

2σ2

[
(y∗ −X∗

2β2)
⊤ (y∗ −X∗

2β2)
]}

exp

{
− 1

2σ2
(β2 − β0)

⊤Σ−1
0 (β2 − β0)

}
∝ exp

{
− 1

2σ2

(
β⊤
0 Σ

−1
0 β0

)}
exp

{
− 1

2σ2
y∗⊤y∗

}
exp

{
−1

2
(β2 − µβ)

⊤Σ−1
β (β2 − µβ)

}
P (β2|σ2,y) ∝ exp

{
−1

2
(β2 − µβ)

⊤ Σ−1
β (β2 − µβ)

}
, where Σ = σ2Σ0. (A.1.1)
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A.2 Derivation of the marginal posterior density of σ2|y

This is the full conditional of σ2|y before the introduction of vector of indicator variables

z(2) in the linear model.

P (σ2|y) =
∫
β2

P (β2, σ
2|y, X)dβ2

=

∫
β2

P (y|β2, σ
2, X)P (β2, σ

2)dβ2

=

∫
β2

P (y|β2, σ
2, X)× P (β2|σ2)× P (σ2)dβ2

= P (σ2)

∫
β2

(2π)−
n2
2
(
σ2
)−n2

2 exp

{
− 1

2σ2

[
(y∗ −X∗

2β2)
⊤ (y∗ −X∗

2β2)
]}

× (2π)−
p2
2
(
σ2
)− p2

2 |Σ0|−
1
2 exp

{
− 1

2σ2

[
(β2 − β0)

⊤Σ−1
0 (β2 − β0)

]}
dβ2

= P (σ2)

∫
β2

(2π)−
n2+p2

2
(
σ2
)−n2+p2

2 exp

{
− 1

2σ2

[
(y∗ −X∗

2β2)
⊤ (y∗ −X∗

2β2)
]}

× |Σ0|−
1
2 exp

{
− 1

2σ2

[
(β2 − β0)

⊤Σ−1
0 (β2 − β0)

]}
dβ2

= P (σ2)

∫
β2

(2π)−
n2+p2

2
(
σ2
)−n2+p2

2 exp

{
− 1

2σ2

[
y∗⊤y∗ − 2β⊤

2 X
∗⊤
2 y∗ + β⊤

2 X
∗⊤
2 X∗

2β2

+β⊤
2 Σ

−1
0 β2 − 2β⊤

2 Σ
−1
0 β0 + β⊤

0 Σ
−1
0 β0

]}
dβ2

= P (σ2)

∫
β2

(2π)−
n2+p2

2
(
σ2
)−n2+p2

2 exp

{
− 1

2σ2

[
y∗⊤y∗ − 2β⊤

2

(
X∗⊤

2 y∗ + Σ−1
0 β0

)
+β⊤

2

(
X∗⊤

2 X∗
2 + Σ−1

0

)
β2 + β⊤

0 Σ
−1
0 β0

]}
dβ2

= P (σ2) (2π)−
n2+p2

2
(
σ2
)−n2+p2

2 exp

{
− 1

2σ2

[
y∗⊤y∗ + β⊤

0 Σ
−1
0 β0

]}
∫
β2

exp

{
− 1

2σ2

[
β⊤
2

(
X∗⊤

2 X∗
2 + Σ−1

0

)
β2 − 2β⊤

2

(
X∗⊤

2 y∗ + Σ−1
0 β0

)]}
dβ2

= P (σ2) (2π)−
n2
2
(
σ2
)−n2

2 exp

{
− 1

2σ2

[
y∗⊤y∗ + β⊤

0 Σ
−1
0 β0

]}
× exp

{
+

1

2σ2
µ⊤
b Σ

−1
b µb

}
|Σ−1

b |
1
2 ×

∫
β2

(2π)−
p2
2
(
σ2
)− p2

2 |Σ−1
b |−

1
2 exp

{
− 1

2σ2

[
(β2 − µb)

⊤Σ−1
b (β2 − µb)

]}
dβ2

∝

(
ν0σ2

0

2

) ν0
2

Γ(ν0
2
)

(
σ2
)− ν0

2
−1

exp

{
−ν0σ

2
0

2σ2

}(
σ2
)−n2

2 exp

{
− 1

2σ2

[
y∗⊤y∗ + β⊤

0 Σ
−1
0 β0 − µ⊤

b Σ
−1
b µb

]}

∝

(
ν0+n2σ2

0

2

) ν0
2

Γ(ν0
2
)

(
σ2
)− (ν0+n2)

2
−1

exp

{
− 1

2σ2

[
ν0σ

2
0 + y∗⊤y∗ + β⊤

0 Σ
−1
0 β0 − µ⊤

b Σ
−1
b µb

]}
P (σ2|y) ∝ (σ2)−

νn
2
−1 exp

{
−νnσ

2
n

2σ2

}
(A.2.1)
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A.3 Derivation of the posterior density of β1|u, X1,R

This is the posterior density of β1|u, X1,R before the introduction of vector of indicator

variables z(1) in the logistic model.

P (β1|u, X1,R) ∝ P (u|β1,R, X1)P (β1)

∝
(

1

2π

)n
2

|Σn|−
1
2 exp

{
−1

2
(u−X1β1 − µ)⊤Σ−1

n (u−X1β1 − µ)

}
×
(

1

2π

) p1
2

|B0|−
1
2 exp

{
−1

2
(β1 − b0)

⊤B−1
0 (β1 − b0)

}
∝ exp

{
−1

2
(u−X1β1 − µ)⊤Σ−1

n (u−X1β1 − µ)− 1

2
(β1 − b0)

⊤B−1
0 (β1 − b0)

}
∝ exp

{
−1

2

(
u⊤Σ−1

n u− u⊤Σ−1
n X1β1 − u⊤Σ−1

n µ− β⊤
1 X

⊤
1 Σ

−1
n u

+β⊤
1 X

⊤
1 Σ

−1
n X1β1 + β⊤

1 X
⊤
1 Σ

−1
n µ− µ⊤Σ−1

n u+ µ⊤Σ−1
n X1β1 + µ⊤Σ−1

n µ

+β⊤
1 B

−1
0 β1 − β⊤

1 B
−1
0 b0 − b⊤0 B

−1
0 β1 + β⊤

0 B
−1
0 b0

)}
∝ exp

{
−1

2

(
u⊤Σ−1

n u− 2β⊤
1 X

⊤
1 Σ

−1
n u+ 2β⊤

1 X
⊤
1 Σ

−1
n µ+ β⊤

1 X
⊤
1 Σ

−1
n X1β1

+β⊤
1 B

−1
0 β1 − 2β⊤

1 B
−1
0 b0 + b⊤0 B

−1
0 b0 − 2µ⊤Σ−1

n u+ µ⊤Σ−1
n µ
)}

∝ exp

{
−1

2

[
β⊤
1

(
B−1

0 +X⊤
1 Σ

−1
n X1

)
β1 − 2β⊤

1

(
B−1

0 b0 +X⊤
1 Σ

−1
n u

−X⊤
1 Σ

−1
n µ
)]}

exp

{
−1

2

[
u⊤Σ−1

n u− 2µ⊤Σ−1
n u+ µ⊤Σ−1

n µ
]}

∝ exp

{
−1

2

[
β⊤
1

(
B−1

0 +X⊤
1 Σ

−1
n X1

)
β1 − 2β⊤

1

(
B−1

0 b0 +X⊤
1 Σ

−1
n u

−X⊤
1 Σ

−1
n µ
)]}

exp

{
−1

2
(u− µ)⊤Σ−1

n (u− µ)

}
exp

{
1

2
b⊤nB

−1
n bn

}
P (β1|u, X1,R) ∝ exp

{
−1

2
(β1 − bn)

⊤B−1
n (β1 − bn)

}
(A.3.1)
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A.4 Method of Generating Exponential Variates for

the Latent Utilities, u

Since the errors in equation (3.2.20) follows a approximate normal distribution using the

values for the mean and variance parameters shown in Table (3.1) and the utility is of a

binary category (L = 1), we obtain

exp(−u1i) ∼ Exponential(λi), l = 1, · · · , L

exp(−ui) ∼ Exponential(1), l = 0. (A.4.1)

Given that the categorical observation l ∈ {0, · · · , L} say yi = l, the utilities u1i is the

maximum of all utilities

uli = max
l′=0,··· ,L

ul′i ⇐⇒ exp(−uli) = min
l′=0,··· ,L

exp(−ul′i). (A.4.2)

Since, exp(−uli) is the minimum of exponentially distributed random variables, its parameter

has to be equal to 1+ λi and for all other utilities ul̄i, l̄ = 1, · · · , L, l̄ ̸= l, then the following

relationship holds:

exp(−ul̄i) = Exponential(1 + λl′i) + Exponential(λl̄i). (A.4.3)

An illustration of how equation (A.4.3) becomes the expression in equation (3.2.22) can be

found in the link on Generating Exponential Variates.

A.5 Marginal Distribution of β1z,β2z, and σ2

To show that there was no closed form of the joint posterior distribution of β1z,β2z,and σ2,

we express the marginal distribution of each as follows;
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The marginal probability distribution of β1z,

To obtain the marginal probability distribution of β1z, integrate out β2z and σ2,

P (β1z|β2z, σ
2,y, z(1), z(2),X) =

∫
β2z

∫
σ2

P (y|β1z,β2z, z
(1), z(2), σ2,X)P (β1z|z(1))

× P (β2z|σ2, z(2))P (σ2|z(2))dσ2dβ2z (A.5.1)

The marginal probability distribution of β2z,

To obtain the marginal probability distribution of β2z, integrate out β1z and σ2,

P (β2z|β1z, σ
2,y, z(1), z(2),X) =

∫
β1z

∫
σ2

P (y|β1z,β2z, z
(1), z(2), σ2,X)P (β1z|z(1))

× P (β2z|σ2, z(2))P (σ2|z(2))dσ2dβ1z (A.5.2)

The marginal probability distribution of σ2,

To obtain the marginal probability distribution of σ2, integrate out β1z and β2z,

P (σ2|β1z,β2z,y, z
(1), z(2),X) =

∫
β1z

∫
β2z

P (y|β1z,β2z, z
(1), z(2), σ2,X)P (β1z|z(1))

× P (β2z|σ2, z(2))P (σ2|z(2))dβ2zdβ1z (A.5.3)

Since, integrating equation (A.5.1), (A.5.2), and (A.5.3) cannot be performed analytically,

we try to obtain the full conditional density and if it exist we can use the MCMC techniques

of the Gibbs sampler but if the full conditional density does not exist we therefore apply the

Metropolis-Hastings algorithm. In this study, the full conditional exist that is the reason for

using a Gibbs sampler algorithm as our MCMC technique.
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Appendix B

B.1 Posterior Summary for Method 1 and Method 2
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B.2 Other convergence diagnostics plots from simulation

study

Method 2: Combined model
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Figure B.1: Plot of correlation across the 10

chains in the combined model when n = 300; p

= 500
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Figure B.2: Convergence diagnostic plot

of the posterior estimate samples across

the 10 chains for β̂1, β̂2, and σ̂
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Figure B.3: Plot of correlation across the 10

chains in the combined model when n = 300; p

= 200
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Figure B.4: Convergence diagnostic plot

of the posterior estimate samples across

the 10 chains for β̂1, β̂2, and σ̂
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Figure B.5: Plot of correlation across the 10

chains in the combined model when n = 300; p

= 50
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Figure B.6: Convergence diagnostic plot

of the posterior estimate samples across

the 10 chains for β̂1, β̂2, and σ̂
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Figure B.7: Plot of correlation across the 10

chains in the combined model when n = 500; p

= 500
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Figure B.8: Convergence diagnostic plot

of the posterior estimate samples across

the 10 chains for β̂1, β̂2, and σ̂
2 when n =

500; p = 500
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Figure B.9: Plot of correlation across the 10

chains in the combined model when n = 500; p

= 200
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Figure B.10: Convergence diagnostic

plot of the posterior estimate samples

across the 10 chains for β̂1, β̂2, and σ̂
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Figure B.11: Plot of correlation across the 10

chains in the combined model when n = 500; p =

50
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Figure B.13: Plot of correlation across the

10 chains in the logistic model when n = 300;

p = 500
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Figure B.14: Plot of correlation across the

10 chains in the linear model when n = 300; p

= 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

β̂1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●
●
●●●

●

●

●●
●

●●
●

●
●

●

●

●

●

●●

1.
0

1.
1

1.
2

1.
3

1.
4

β̂2

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

σ̂
2

Figure B.15: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for

β̂1, β̂2, and σ̂
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Figure B.16: Plot of correlation across the

10 chains in the logistic model when n = 300;

p = 200
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Figure B.17: Plot of correlation across the

10 chains in the linear model when n = 300; p

= 200
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Figure B.18: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for
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Figure B.19: Plot of correlation across the

10 chains in the logistic model when n = 300;

p = 50
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Figure B.20: Plot of correlation across the

10 chains in the linear model when n = 300; p

= 50
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Figure B.21: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for
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Figure B.22: Plot of correlation across the

10 chains in the logistic model when n = 500;

p = 500
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Figure B.23: Plot of correlation across the

10 chains in the linear model when n = 500; p

= 500
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Figure B.24: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for

β̂1, β̂2, and σ̂
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Figure B.25: Plot of correlation across the

10 chains in the logistic model when n = 500;

p = 200
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Figure B.26: Plot of correlation across the

10 chains in the linear model when n = 500; p

= 200

●

●

●

●

●

●

●

●

●

●

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

β̂1

●

●

●

●

1.
00

0
1.

00
1

1.
00

2
1.

00
3

1.
00

4
1.

00
5

β̂2

0.
6

0.
8

1.
0

1.
2

1.
4

σ̂
2

Figure B.27: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for

β̂1, β̂2, and σ̂
2
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Figure B.28: Plot of correlation across the

10 chains in the logistic model when n = 500;

p = 50
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Figure B.29: Plot of correlation across the

10 chains in the linear model when n = 500; p

= 50
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Figure B.30: Convergence diagnostic plot of the

posterior estimate samples across the 10 chains for

β̂1, β̂2, and σ̂
2
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B.3 Marginal Posterior Probability (MPP) Plots

Method 2: Combined model
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Figure B.31: mpp when n = 300, p =

1000
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Figure B.32: mpp when n = 300, p =

500
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Figure B.33: mpp when n = 300, p =

200
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Figure B.34: mpp when n = 300, p =

50
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Figure B.35: mpp when n = 500, p =

1000
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Figure B.36: mpp when n = 500, p =

500
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Figure B.37: mpp when n = 500, p =

200
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Figure B.38: mpp when n = 500, p =

50
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Method 1

For Logistic model
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Figure B.39: mpp when n = 300, p =

1000
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Figure B.40: mpp when n = 300, p =

500
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Figure B.41: mpp when n = 300, p =

200
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Figure B.42: mpp when n = 300, p =

50112
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Figure B.43: mpp when n = 500, p =

1000
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Figure B.44: mpp when n = 500, p =

500
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Figure B.45: mpp when n = 500, p =

200
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Figure B.46: mpp when n = 500, p =

50
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For Linear model
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Figure B.47: mpp when n = 300, p =

1000
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Figure B.48: mpp when n = 300, p =

500
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Figure B.49: mpp when n = 300, p =

200
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Figure B.50: mpp when n = 300, p =

50
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Figure B.51: mpp when n = 500, p =

1000
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Figure B.52: mpp when n = 500, p =

500
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Figure B.53: mpp when n = 500, p =

200
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Figure B.54: mpp when n = 500, p =

50
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B.4 Application of Method 1 to Coronary Artery Disease

(CAD) Data
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Figure B.55: Plot of correlation across

the 10 chains in the logistic model using

CAD data.
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Figure B.56: Plot of correlation across

the 10 chains in the linear model using

CAD data.
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Figure B.57: onvergence diagnostic plot

of the posterior estimate samples across

the 10 chains for β̂1, β̂2, and, σ̂
2 using

CAD data.
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Method 1: MPP Plot using Coronary Artery Disease

(CAD) Data
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Figure B.58: The marginal posterior

probability for the logistic model using

CAD data.
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Figure B.59: The marginal posterior

probability for the linear model using

CAD data.
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Table B.5: coronary artery disease data: top 20 genes associated with coronary artery

disease using method 1 (selecting important features independently from the logistic and

linear model, j = pc + 2, · · · , p, ℓ = 1, 2).

Probe ID Gene Symbol P (z
(1)
j = 1|X1,y) P (z

(2)
j = 1|X2,y)

ILMN 1749792 SORBS1 0.05 1.00

ILMN 1792540 AR 0.06 1.00

ILMN 1893915 0.05 1.00

ILMN 1669577 PRNPIP 0.05 1.00

ILMN 1838166 0.05 1.00

ILMN 2328986 SREBF1 0.11 1.00

ILMN 1664464 PTGDS 0.05 1.00

ILMN 1752843 GRM4 0.08 1.00

ILMN 1886595 0.08 1.00

ILMN 1693981 SH3TC2 0.05 1.00

ILMN 1723674 NKAIN3 0.06 1.00

ILMN 1819503 0.05 1.00

ILMN 1680042 LOC649452 0.05 0.99

ILMN 1657888 SALL1 0.04 0.99

ILMN 1813280 LOC642222 0.05 0.99

ILMN 1800131 LOC652826 0.07 0.99

ILMN 2066088 C1orf64 0.06 0.99

ILMN 1761210 LOC155100 0.05 0.99

ILMN 1714176 LOC283487 0.09 0.99
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Table B.6: Clinical covariates: CATHerization GENetics (CATHEGEN) Measurement

to Understand the Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK)

genome-wide association studies (GWAS)

Characteristics Data Description Code Type

AGE Age at Cath years Continuous

BMI body mass index Continuous

HYPERTENSION hypertension by history. 1 = Y, 0 = N Binary

CADINDEX Index of severity . = missing Semicontinuous

of coronary artery disease 0 = No CAD >= 50% (zeros and positive values)

at enrolment. 19 = 1 vessel disease 50-74%

CAD Index is set to missing: 23 = > 1 vessel 50-74%

1) When all vessel components OR 1 vessel >= 75%

OR numdzv is missing 32 = 1 vessel severe ( >= 95% )

2) When numdzv is not missing 37= 2 diseases vessels

any of the components are present 42 = 2 severe diseased (both >= 95%)

48 = 1 diseased vessel w/ proxLAD> 94%

OR 2 diseased vessel w/ severe LAD

56 = 2 diseased vessels w/ severe prox LAD

(>= 95%) OR 3 diseased vessels

63 = 3 diseased vessels

w/ >= 1 vessel severe (>= 95%)

67 = 3 diseased vessels w/ prox LAD

74 = 3 diseased vessels

w/ severe (>= 95%) prox LAD

82 = Left main disease >= 75%

100 = Left main severe (>= 95%) disease

DIABETES previous diagnosis of diabetes 1 = Y, 0 = N Binary

HYPERCHOLESTEROLEMIA previous diagnosis and/or treatment 1 = Y, 0 = N Binary

NUMDZV Nos. of vessels with

significant occlusion (> 75%)

RACE race defined by 1 = Caucasian, 2 = African American, Categorical

population stratification 5 = Other (Nominal)

SEX gender 1 = F, 0 = M Binary

SMOKING The patient must be smoking 1 = Y, 0 = N Binary

at least half pack of cigarettes per day to

have a significant smoking history

DEATH patient died 1 = Y, 0 = N Binary

DDEATH Days from a catheterization

to death if dead

DSMI Days from cardiac catheterization

to subsequent myocardial infarction

HXMI Previous history of 1 = Y, 0 = N Binary

myocardial infarction

119



Table B.7: Patients Characteristics by coronary artery disease (CAD) index data. Where

0 stands for No CAD, and 1 for positive responses of CAD.

Variable Overall, N = 1,8691

CAD Index

p-value20, N = 5221 1, N = 1,3471

AGE 62 (54, 71) 56 (48, 65) 64 (56, 72) <0.001

BMI 29 (25, 33) 29 (26, 36) 29 (25, 33) 0.001

HYPERTENSION 1,269 (68%) 317 (61%) 952 (71%) <0.001

DIABETES 589 (32%) 128 (25%) 461 (34%) <0.001

HYPERCHOLESTEROLEMIA 1,121 (60%) 234 (45%) 887 (66%) <0.001

RACE <0.001

1 1,332 (71%) 323 (62%) 1,009 (75%)

2 407 (22%) 168 (32%) 239 (18%)

5 130 (7.0%) 31 (5.9%) 99 (7.3%)

SEX 714 (38%) 283 (54%) 431 (32%) <0.001

SMOKING 889 (48%) 197 (38%) 692 (51%) <0.001

DEATH 445 (24%) 83 (16%) 362 (27%) <0.001

DDEATH 2,259 (1,808, 2,623) 2,263 (1,789, 2,643) 2,253 (1,823, 2,610) 0.30

HXMI 517 (28%) 52 (10.0%) 465 (35%) <0.001

1 Median (IQR) or Frequency (%) 
2 Wilcoxon rank sum test; Pearson's Chi-squared test 
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