
THE UNIVERSITY OF CALGARY 

XML Document Classification Using Structural and Textual Features 

by 

Mohammad Khabbazhaye Tajer 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

CALGARY, ALBERTA 

August, 2008 

© Mohammad Khabbazhaye Tajer 2008 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "XML Document Classification Using 

Structural and Textual Features" submitted by Mohammad Khabbazhaye Tajer in 

partial fulfillment of the requirements for the degree of MASTER OF SCIENCE. 

Supervisor, Dr. Reda Alhajj 
Department of Computer Science 

/,26 /zoo 

Date 

U 

VA 
Dr. Mo s fa A. Hammad 
Department of Computer Science 

Dr. Vahid Garousi 
Department of Electrical and 
Computer Engineering 



Abstract 

This thesis addresses XML document classification by considering both structural 

and content based features of documents. This leads to more informative feature 

vectors that better represent documents from different perspectives. To manage 

the feature space better, we integrate soft clustering and feature reduction into the 

process. In order to extract structural information, we use existing rule mining algo-

rithms to capture frequent structural patterns in the form of rules and later convert 

them to structural features. However, for extracting content information of XML 

documents, we propose a new method based on soft clustering of words and using 

each cluster as a textual feature. We show that the classifier built only using our 

textual features outperforms some well-known information retrieval (IR) based doc-

ument classification technique. Further, the combination of structural and textual 

features results in an accurate and robust classifier. We demonstrate the efficiency 

and effectiveness of incorporating both structural and content information by per-

forming a comparative analysis of our classifier model and several other document 

classifiers including XML document classifiers. 

Index Terms: XML document, classification, structural features, content features, 

soft clustering, information retrieval. 

111 



Acknowledgements 

This project could not have been accomplished without the gracious help and super-

vision of my advisor, Dr. Reda Alhajj. I would like to thank him for his time and 

patience and also for his example, as a professor and as a man. I am also grateful to 

Dr. Moustafa Hammad and Dr. Vahid Garousi, my committee members, for their 

time and effort in reviewing this work and their valuable feedback. 

I would like to acknowledge my great friend, Keivan Kianmehr, who has never 

had any reservation to share his experience and deep knowledge with me. 

I owe thanks to my family, my parents and sister, who have always encouraged 

me and been supportive of me in pursuing my dreams. 

iv 



Table of Contents 

Approval Page 

Abstract 

Acknowledgements 

Table of Contents 

1' 

111 

iv 

V 

1 Introduction 1 
1.1. Problem Definition and Motivation   1 
1.2 The Proposed Solution   4 
1.3 Contribution  9 
1.4 Thesis Organization  10 

2 Background and Related Work 12 
2.1 XML Basics   12 
2.2 Classification and Feature Reduction   16 

2.2.1 Classification   16 
2.2.2 Feature Reduction   18 

2.3 Content-based XML Classification   22 
2.4 Structure-based XML Classification   26 
2.5 Our Framework in Comparison with Previous Work   29 

3 Feature Extraction from Unstructured and Semi-Structured Docu-
ments 30 

3.1 Feature Spaces for XML Document   30 
3.2 Structural Feature Construction   33 

3.2.1 Structural Rule Mining   33 
3.2.2 Constructing Structural Feature Vectors   35 

3,3 Textual Feature Construction   36 
3.3.1 Document Preprocessing   38 
3.3.2 Original Document Set vs. Inverted Index   39 
3.3.3 Supervised Word-Vector Formation   40 
3.3.4 Clustering of words   42 
3.3.5 Fuzzy Clustering of words and Constructing the Final Feature 

Vector Set   44 
3.4 Building Classifier Model   46 

V 



4 Creating a Hierarchy of Subjects Using Support Vector Machines 
and 10 Fold Cross Validation 47 

4.1 Creating Classifier models for Soft Classification   48 
4.2 Calculating the Distance between Subject Categories   49 
4.3 Hierarchical Clustering of Subject Categories   50 

5 Experimental Analysis 54 
5.1 The Datasets   54 
5.2 Feature Extraction from XML Datasets and Classification   57 
5.3 Text Classification on 20NewsGroups Dataset   63 
5.4 Automatical Hierarchy Generation from the 20NewsGroupos Dataset 69 

6 Summary, Conclusion & Future Work 76 
6.1 Summary   76 
6.2 Conclusion   77 
6.3 Future Work  78 

Bibliography 81 

vi 



List of Tables 

5.1 Subject categories of 20NewsGroups dataset partitioned into 6 top 
level classes   55 

5.2 Characteristics of XML datasets   57 
5.3 Classification results using the whole space and different methods . 61 
5.4 Comparison of JR classifiers   62 
5.5 Comparing the accuracy of Feature based classification to structural 

rule based classifiers   63 
5.6 Most similar classes in 20NewsGroups dataset based on our SVR-

based distance measure   70 
5.7 Steps of the Single-linkage hierarchical clustering algorithm   71 
5.8 8 high level categories of 20NewsGroups dataset proposed in [58], cre-

ated by linear projection.   73 
5.9 8 high level categories of 20NewsGroups dataset created by our algo-

rithm using Support Vector Regression Machine.   74 

vii 



List of Figures 

1.1 Using clusters as textual and frequent sub-structures as structural 
features   6 

1.2 The Architecture of The Automatic XML Document Classifier Model 8 

2.1 Structure of a sample XML document  14 
2.2 Bookstore elements with different number of books   14 

4.1 Process of Hierarchical Clustering of Objects   52 

5.1 Number of Clusters vs. Accuracy on LOO1 Dataset   59 
5.2 Combining Textual and Structural Features   60 
5.3 Comparison of Naive-BOW and Cluster-BOW using 10-Fold Cross 

Validation and different number of words   64 
5.4 Size of the training set using different number of words for classification 67 
5.5 Automatically generated hierarchy from 20NewsGroups dataset . . . 72 
5.6 Automatically generated hierarchy from 20NewsGroups dataset . . . 75 

viii 



Chapter 1 

Introduction 

A growing volume of structured and unstructured documents do exist and should 

be better organized for effective usage. This requires the development of some sys-

tematic and automated techniques capable of classifying the documents based on 

their features. One such effective technique is described in this thesis. Before diving 

into the details of the proposed approach, this chapter is dedicated to introduce the 

problem, motivate for the work done, and enumerate the contributions. 

1.1 Problem Definition and Motivation 

XML (eXtensible Markup Language) has emerged as a recommendation of World 

Wide Web Consortium (W3C) and is being gradually accepted as the standard 

format for data exchange between different platforms and partners over the web. 

Further, because of its semi-structural nature, there has been great interest to store 

large data repositories, e.g., digital libraries, as XML documents. As the amount 

of information available in XML format grows, data mining techniques have been 

widely considered to better organize XML documents for effective browsing and 

efficient search. In this regard, classification has been recently applied to XML doc-

uments [28, 29, 44, 45]. 

Classification is known as supervised learning technique which involves consider-

ing some predefined classes and significant features of a set of data objects to build a 

1 



2 

classifier model capable of predicting the class of new data objects having the same 

set of features used in building the classifier. When the classes are not known, the 

process turns into unsupervised learning and the target is to find the classes in a 

process known as clustering. 

The goal of XML document classification is to build a classifier model that can 

automatically assign XML documents to some existing categories. Most of the ex-

isting XML document classifiers either work solely based on information retrieval 

methods and ignore the structural patterns existing in the document tag-structure 

or the other way around. In general, feature reduction [17] has been successfully 

utilized as a preprocessing phase to reduce the complexity of classification models 

and to improve the accuracy of the classifier. 

The work described in this thesis attempts to capture both content and struc-

tural information of XML documents in a way to integrate them into the process of 

learning and predicting the classifier model. Our main target is to convert document 

classification into a classical classification problem by effective feature extraction 

from different aspects of the document, and then apply any model or improved tech-

nique in order to build the desired classifier. Feature extraction gives us the flexibility 

of approaching the problem using a wider range of applicable techniques and taking 

advantage of the extensive research described in literature on classical classification 

problems. 

Building a reliable and accurate classifier system that could be used in practice 

requires considering all important aspects of different document types. Furthermore, 

a practical document classifier or classification framework has to be extensible and 

scalable enough to perform in dynamic environment as the number of existing doc-



3 

uments of different types is growing every moment. Developing dynamic classifiers 

requires extra effort to keep the classifier capable of maintaining high accuracy. Ac-

curacy degrades as the new documents deviate from the characteristics of the set 

of documents used in the training. A dynamic classifier watches the change in the 

characteristics and adapts itself to cover the corresponding documents; such a dy-

namic classifier is out of the scope of this thesis and could be considered in future 

to expand the static classifier into dynamic one after we tuneup the static classifier 

and analyze all its aspects as covered in this thesis. Actually, most of the previous 

research in the area has focused on static classification of text documents because 

they concentrate on testing the outcome using existing datasets, which are generally 

static. 

Our general idea is also applicable to other kinds of documents that have a 

structure; although the details of feature extraction would be different for other types 

of documents. For example, if the task is HTML document classification, we could 

also take into account features of HTML documents other than text (like links to 

other pages in the document or images used in the document, etc.). However, we have 

particularly focused on the classification of XML documents in this thesis. We want 

to show how it is possible to extract from XML documents informative features that 

could be used for building an accurate classifier model. The conducted experiments 

demonstrate the effectiveness and applicability of the proposed integrated approach. 

Although our framework is extensible for dynamic document classification, we 

have concentrated on static classification where the set of documents is assumed to 

be fixed in order to initially validate our proposed ideas. We have briefly explained 

the additional steps required for online and dynamic classification in section 6.3 and 



4 

left dynamic document classification as future work. 

Finally, we use feature vector representation of documents combined with Support 

Vector Regression (SVR) machines [56] for creating a hierarchy of documents. Using 

SVR. we will define a distance measure between classes and use distance measure 

to hierarchically cluster the categories. There are several reasons for converting the 

flat structure of categories to a hierarchy; among which are: 1) Instead of querying 

a fiat set of documents, many users prefer to browse hierarchical directories and 

issue queries in specific sub-areas. 2) It can help us to create high level categories 

of documents and cluster the subjects by cutting the hierarchy at any desired level. 

Clustering of the subjects could reduce the complexity of classification problems by 

grouping the similar classes of documents in one class. This technique could be 

useful in problems where all of the low level classes are not required and a high level 

grouping of subjects is enough. 

1.2 The Proposed Solution 

In this section, we describe our approach for building an automatic XML document 

classification model. Our main attempt is to incorporate both structure and content 

information of XML documents into the process of building the classifier model by 

constructing structural and textual features. 

The feature extractor has two main components, each covers one aspect of the 

document. Resulted feature vectors from different aspects are concatenated later, 

and every document is represented by a single vector. On the other hand, the content-

based feature extractor component clusters the words according to their distribution 



5 

over the set of class labels, and then computes the degree of association between 

documents and clusters. Since every cluster represents a feature or a group of words, 

the choice of clustering method could greatly affect the accuracy of classification. 

Hard clustering algorithms assign every object to only one cluster, while soft 

clustering algorithms try to assign every object to several clusters with different 

membership degrees. We believe that the choice of soft or hard clustering of words 

depends on the average number of words per document. In case of a corpus that has 

much more words than documents, i.e., documents are very large (simply contain 

tens of thousands of words), we could argue that a single word is a small atomic 

unit, and therefore hard clustering is preferable. On the other hand, if documents 

are not large, soft clustering seems to be more natural choice, mainly because the 

closeness of documents to clusters (features) is not underestimated or overestimated 

due to ignoring partial memberships in clusters. 

Since the size of typical XML documents available on the web (such as RSS News 

Feeds) is not huge in practice, we would rather use Fuzzy C-Means Clustering [21] 

as a soft clustering algorithm after mapping every word to a vector according to its 

distribution over the set of class labels. If the number of class labels is small soft 

clustering of words will spread the feature space over a larger number of clusters and 

separate the words from each other according to their association with categories of 

subjects. On the other hand, when the number of class labels is large, each word 

vector will have more dimensions and it will result in a degradation in the quality 

of clusters. In such cases, we prefer to use the normalized distribution of words over 

classes as soft clusters and skip the clustering phase. 

As for the structural feature extraction, we convert the tag-structure of the doc-



6 

word clusters 

Frequent Sub-structure 

Frequent Sub-structure 

tT1\\ 
•2\ 1r3 /Fs1\ /F52\ FS3 Label 

XD 0.25 0.02 0.3 1 1 0 or 1 CI 

1 Q Cl 

XD3 .. ... 0 0 .,. C2 

Textual Featuies Structural Features 

Figure 1.1: Using clusters as textual and frequent sub-structures as structural fea-
tures 



7 

ument into a tree according to parent-child relationships, mine frequent sub-trees 

existing in the document tree and use each frequent sub-tree as a feature. Frequent 

pattern mining concepts have already been successfully adapted and used in the con-

text of frequent tree mining [34]. Figure 1.1 depicts our general idea of feature based 

XML document classification and also a very high level view of feature extraction 

process in a nutshell. We have assigned hypothetical values to features in order to 

show the range of values for different types of features. 

Figure 1.2 depicts the architecture of the automatic XML documents classifier 

model and the data flow within the system. Our proposed model consists of three 

main components. The first component handles structural feature construction. A 

rule mining algorithm extracts all frequent structural patterns from XML documents 

and builds structural rules. Structural rules are then converted to features to form 

a set of structural feature vectors representing structural information of XML doc-

uments. Textual feature construction is performed by the second component of the 

proposed model. Inverted index representation of the given XML documents is used 

to build a set of word vectors according to the occurrences of words in different 

documents. Fuzzy 0-Means clustering algorithm is then applied to word vectors to 

generate clusters of words. These clusters are later used as textual features to create 

a set of textual feature vectors describing content information of XML documents. 

Eventually, the third component takes feature vectors as input to a supervised learn-

ing algorithm to build the final classifier model. 



8 

XMLDocunients 

Strnctural Feature Cónstiuction 

Document Preprocessing 

Trees 

Structural Rule Mining 

Structural Rules 

V 
Building Structural Feature Vectors 

TextualFeáture Constructioii 

Document Preprocessing 

Preprocessed 
Documents 

Index Entries 

[ Supervised Word-Vector Formation 

WordVectors 

Fuzzy Clustetingof Words 

Word Clusters 

Building Textual Feature Vectors 

Structural Feature Vectors \ / Textual Featute Vectors 

Supervised Classification Algorithm 

/ 
K Classifier Model 
 / 

Figure 1.2: The Architecture of The Automatic XML Document Classifier Model 



9 

1.3 Contribution 

The model described in this thesis might be considered as a major contribution in 

feature reduction and document classification. The main contributions of this thesis 

could be enumerated as follows: 

• A general feature based framework is proposed for document classification. 

The proposed framework could be used for any kind of document. We will 

demonstrate the applicability of our framework on plain text and also semi-

structured XML documents. 

• A new approach for feature extraction from text documents is proposed based 

on using the distribution of words over the set of class labels and Fuzzy C-Means 

clustering. Experiments show how soft clustering achieves better compression 

of the feature space when compared to a hard clustering algorithm such as 

K-Means clustering. 

o We adapt structure based classification techniques for structural feature ex-

traction from documents, and convert the coverage of rules on documents to 

features. The extracted features are then concatenated with textual features 

and form the final feature vector for XML documents. 

o Using feature based representation of documents, we propose a way of automat-

ically building a hierarchy of subjects and clustering of subject(class labels). 

Automatic hierarchy creation facilitates browsing and searching for users and 

also can group small categories of subjects into larger ones according to content 



10 

similarities and could reduce the complexity of classification when the number 

of class labels is large. 

1.4 Thesis Organization 

The material presented above in this chapter motivated for the tackled problem and 

enumerated the major contribution of the proposed solution. For the reader to get 

the global picture, this section highlights the basic content of the other chapters of 

this thesis. 

Chapter 2 is an overview of existing XML classification techniques and also pro-

vides the background required to understand the rest of the thesis. We will describe 

different classification approaches some of which are text based and some are struc-

ture based. We also give an overview of several text classification approaches and 

feature reduction techniques in the context of text classification. 

Chapter 3 describes the feature spaces designed to capture structural and con-

tent information of XML documents and shows how textual and structural features 

are defined and extracted from documents. Textual feature extraction technique 

described based on soft clustering of words could be also used for text classification. 

Chapter 4 explains our approach to build an automatic hierarchy of classes using 

the feature vector representation of documents obtained from previous chapter using 

SVR to measure the similarity of classes and hierarchical clustering. 

Chapter 5 presents the selected evaluation model, the conducted experiments and 

the achieved results. The results of several experiments are reported in this chapter 

to show the effectiveness of clustering over other feature reduction techniques, as well 



11 

as the strength of our proposed technique for XML document classification compared 

to previous work. The conducted experiments also show how Fuzzy-C-means as a 

soft clustering technique achieves better compression of feature space compared to 

hard clustering algorithms. 

Chapter 6 is summary, conclusions and future research directions. 



Chapter 2 

Background and Related Work 

Data mining is the process of extracting hidden knowledge underlying the data accu-

mulated over time [3]. Knowledge could be extracted in several predefined forms and 

used to make predictions or decisions for the feature. In order to extract knowledge, 

machine learning techniques and models are frequently used. Different forms of data 

mining tasks involve classification, clustering, prediction, association rule mining, 

outlier mining etc. [4]. 

In this thesis we focus on the problem of Document Classification, Specifically, 

XML document classification. Among the data mining tasks mentioned above we 

have employed classification, feature reduction and clustering. As described in the 

literature, XML document classification includes two major techniques: content-

based classification and structure-based classification. Alternative approaches have 

been also proposed to combine different techniques in order to improve classification 

performance and efficiency. In the rest of this chapter, we will provide the necessary 

background information and describe several XML classification work within each of 

the two categories. 

2.1 XML Basics 

A document in XML format by definition is a well-formed document that contains 

one or more elements. In other words, a document starts from exactly one element 

12 



13 

called the root element and all other elements have to start and end in the scope 

of other elements to keep the document well-formed; every non-root element has a 

parent. There could also be other attributes associated to each element for further 

description. Each element of the document contains either other elements or data 

that could be in different formats [2]. 

Elements of the document are opened and closed by tags; and the tag structure 

could continue to any level without any restriction as long as it conforms to the 

Document Type Definition (DTD) stored in a file with DTD extension. In this 

sense, XML documents are called to be semi-structured documents in comparison 

with fully structured data stored in relational databases. The structure of the XML 

document has to be well-formed, but there is no general form that all elements must 

follow. Every XML document has a tree-like structure according to the parent-child 

relationship existing between its attributes. Let's see what we mean by tree structure 

and semi-structured nature of XML documents. Figure 2.1 shows an example of the 

tree structure. 

Every element node represents a tag, and associated with each tag there are 

attributes. The whole tree structure represents the schema of the document and 

parent child relationships. As it is shown in Figure 2.1, nodes that are under the 

same parent are called sibling nodes. Based on the given XML schema intended to 

store data about bookstores, there could be several documents each of which has 

its own specific structure. Root element of the document is < bookstores >, and 

under the root element there could be several < bookstore > elements. Figure 2.2 

demonstrates two different bookstores. 

From the XML schema, we know that under < bookstore> element we should 



14 

Root Element 
<bookstores> 

Attribute: 
Ianq 

Element: 
<title> 

Siblings 

Test: 
Everyday Italian 

<bookstore>  

Poronti I I child 

Element: 
<book> 

Test: 
Giada Do 
Laurentils 

*tribute: 
name 

Attribute: 
'category' 

Element: 
<year>  

Text: 
2005 

Element: 
<price> 

Text: 
3000 

Figure 2.1: Structure of a sample XML document 

<bookstore name 'Chsptr"> 
<book cetcor.yuC0OKINGu>. 

<title- j5,5gIreflU> 

Everyday Itaian 
</title> 
<author> 
Giacia- De .LturentiiS 
</author> -
<yeer>2005</year> 
<price>30. 00</price> 

</booic>' - 

<book oateGoy"CHXLDP!I'I"> 
<titi,e leng"en'>-
Harry Potter 
</title> 
<author>Y K. Rossling</author> 
<year>2005</ year> 
<price>2 .90</price> 

</hook> 
<book category= IEB">' 

<title lang"en> 
Leatmiiicj XNL</tItle> 
<author>Erk T. Ray</author> 
<year>2 003</ year> 
<price>39 .9S</pr ice> 

</book> 
</booketore> 

<bookstore name = -"Juoaron"> 
<book category COOICXMG'> 

<title lang"en">, 
Everyday ItL'ian 

<author> 
Giacla Dc Latthentiisl 
</author> 
<year>2005</year> 
<price>30'.QO</price> 

</book' 
<book ego7"CHILDREkI">' 

<title 1eng"en"> 
Harmy, pottei 
</title> 
<author> R. Rotslinçy/author> 
<year2 OOS</year> 
•<price>29 .90</price> 

</book> 
</}iookstore> 

Figure 2.2: Bookstore elements with different number of books 



15 

be expecting < book> elements. However, every bookstore could have its own num-

ber of books; and unlike records in relational database, bookstore elements do not 

necessarily have exactly the same structure. XML documents could also have nested 

and recursive structures; this is why despite conforming to a predefined schema they 

are not fully structured and are called semi-structured documents. 

Besides the tree structure, every XML document also contains text, mainly in 

leaf nodes and also as attribute values. As it is visible, every XML document has two 

main components: 1) Structure, 2) Text; each of which is a valuable source of data. 

Therefore, every information retrieval or knowledge extraction method has to take 

into consideration both of these sources of information in order to be precise. The 

following list provides a summary of reasons for XML usage and why it has become 

an inseparable constituent of today's information systems. 

• XML is frequently used as a way of displaying dynamic data on HTML pages. 

HTML is also a markup language, but it is not capable of modeling and storing 

data since its tags and elements are predefined. Unlike HTML, we can define 

the structure and meaning of XML tags, use HTML only for displaying data 

and XML for storing dynamic data on web-pages. Stored data in XML files 

could be read, parsed and used by client-side script that runs on browsers to 

fill the empty HTML template [1]. 

• XML is a standard way of data sharing and exchange between applications. 

Data stored in XML format is plain text and platform independent. Every 

software system could read and process the document. Therefore, applications 

can send and receive necessary messages and data in this standard format [15]. 



16 

• Since XML is an easy way of data sharing and exchange, there has been a great 

interest in using XML databases and storing data in XML format. Stored 

database could be queried using XML query languages and the result is an 

XML document containing the desired data. Retrieved data could be then used 

locally or exchanged between applications. Almost all of the modern database 

systems have added support for XML data type. Some XML databases are 

native, and work completely independent from relational databases. They 

have their own way of storing and querying XML documents. Some other 

XML databases are non-native, which means they store XML data in relational 

databases and query the document using relational engine, then convert the 

result relation back into XML format [15]. 

2.2 Classification and Feature Reduction 

2.2.1 Classification 

Every data object stored in a database is identified by its attributes either numerical 

or nominal. The main idea of classification is to explore through existing data objects 

called training set to discover a set of classifier rules which determine the class of 

each object according to its attributes [6]. These rules form a classifier model and 

are used to predict the class or missing attribute value of unseen objects whose class 

might not be known. 

As we can see from the above definition, classification consists of two main steps. 

In the first step, which is also known as the supervised learning process (i.e., the class 

labels of the training samples are provided), the aim is to build a model that captures 



17 

the characteristics of data classes and attributes of the training set by generating 

a set of rules that could also be in the form of mathematical or machine learning 

models. The second step is to verify the accuracy of the created model through 

testing. The model is run over a test set to predict the classes of objects or data 

whose classes are not provided. By comparing the actual labels against the ones 

predicted by the classifier model, we can measure the accuracy of the model on the 

test set. If the accuracy is satisfactory, the model could be used in practice for the 

prediction of class labels of unseen objects whose labels are not known. 

A more formal definition of the classification problem may be stated as follows [5]. 

Let D be a database of records {R1, R2, ..., R} and C = {C1, C2,..., C} be the set of 

all class labels. The classification problem is a mapping f: D -+ C, where each tuple 

R in D belongs to one and only one of m classes. There are some rare problems in 

which a record belongs to more than one class, but let us concentrate on the classical 

problem with single label data objects. A class, C contains precisely those records 

mapped to C, i.e., C = {Rf(R) = C, 1 ≤ i ≤ m, AR4 E D}. This mapping 

function can then be used later to predict the classes of the tuples in a testing set. 

Classification has several different applications, such as preventing theft and sav-

ing lives, medical diagnosis, increasing revenue and market analysis, better decision 

making, predicting customer behavior, etc. Fraud-detection is an example of a real 

world application of classification. The training set includes complete records of both 

valid and fraudulent activities, each classified as either valid or fraudulent activity. 

Data could be obtained from the previous cases happened in the past whose condi-

tion is known and certain. Appropriate attributes for each record are identified by 

domain experts and values are assigned. The classifier training algorithm uses these 



18 

pre-classified examples to generate a set of rules and parameters required for building 

a classifier model. Once the classifier is created, it is applied to a test set of classified 

samples to determine the quality of the model. The quality and efficiency of the 

model is usually evaluated by a combination of statistical techniques and domain 

expertise. When the quality of the classifier is approved, it is used to discriminate 

between the validity and fraudulent of future data. 

There are many popular and powerful techniques for classification [6]. Decision 

trees [7] and Bayesian networks [8] have been widely researched for classification. 

Statistical models, such as nearest neighbor methods, have been used for classifi-

cation as well. Many other machine learning techniques, such as neural networks 

and support vector machine, are used to automate the process of rule induction for 

building a classifier model [8]. 

2.2.2 Feature Reduction 

Feature reduction refers to the process of selecting a subset of features (attributes) of 

the dataset; the target is to locate the minimum set of the most significant features. 

As data mining has become more popular and widely used for solving problems 

characterized by high dimensionality, such as text processing of internet documents 

and gene expression array analysis, feature extraction has become one the key tasks 

in data mining. The main target is to reduce the dimensionality of these kind 

of problems to the best manageable size possible without sacrificing the accuracy; 

actually, the accuracy is mostly improved. A corpus of documents usually consists 

of at least tens of thousands of words each of which is one feature in the bag of 

words representation. Gene expression datasets are also quite high dimensional with 



19 

thousands of genes that identify a disease [17]. 

Three main reasons could be enumerated for feature reduction: 

• Improving the prediction accuracy of predictor models; When there are tens 

of thousands of features, it is expected to have redundant and uninformative 

or noisy variables as well. A good example of this could be gene expression 

array data, where a few features (usually less than 20) out of the whole feature 

set are enough to build a classifier; and the classifier built based on these 

few features usually outperforms the one created based on all features [18]. 

Feature reduction has also been proven effective on text data. Since the whole 

word-set is extremely large compared to the number of words that appear in 

one document, there will be lots of 0 values in each feature vector and it will 

make the dataset sparse and noisy. A number of different studies have shown 

how feature reduction techniques, specifically feature clustering, improves the 

accuracy of text classifiers, e.g., [47, 48, 49, 54]. 

• Feature reduction could help us create a faster and less costly classifier. Ob-

viously, when the number of variables, involved in building the classifier and 

testing the model is smaller, the complexity decreases and it is easier and faster 

to build the model. However, we must be careful not to sacrifice the classifica-

tion accuracy for time complexity if the accuracy is of greater importance. 

• Identifying the most effective features for classification. When there are sev-

eral thousand variables, we want to see which of them are most important in 

identifying the class label. Especially in the case of gene expression array data, 

we want to find the deciding genes on a disease [19, 20]. 



20 

Feature extraction techniques from datasets have been focused on four main 

categories [17]. 

1. Filter methods 

2. Wrapper methods 

3. Embedded methods 

4. Feature clustering 

Filter methods refer to the methods where we don't build any classifier in order 

to measure the effectiveness of the feature. Instead, a measure is defined for the 

goodness of the feature. For this purpose, statistical measures and Information Gain 

have been used in combination with a threshold based on which we decide to select the 

feature or filter it out. Wrapper methods take another approach and build classifier 

models based on individual features as well as the combination of features. Then, 

the rise or fall of the accuracy on the training dataset is used as the deciding factor 

for keeping or removing the feature from the set of selected features. Embedded 

methods take advantage of both techniques. They usually filter the large set of 

features using a filter method, then the wrapper method is applied to the smaller set 

of features to further remove the irrelevant features. Feature clustering has also been 

quite popular specifically in feature selection and extraction from text documents. 

In this approach, first we cluster the features (words in text documents) and all of 

the words that are similar to each other will fall under the same cluster. Then few 

features from the cluster which are closest to the cluster centroid are selected. In 

our case, we use clustering of words to compress the feature space by directing all 



21 

of the words that are similar to each other into the same clusters and then use each 

cluster as a feature; all of the words in that cluster will be used in order to avoid 0 

values. 

The clustering problem is generally the process of exploring through data objects 

we have in a dataset and grouping similar objects in the same categories, while the 

number of categories is either not known or is provided as an input parameter. It has 

been widely studied in the literature [16], and several techniques have been proposed. 

Clustering techniques could be categorized into different categories regarding the 

similarity measure they define for data objects. From another viewpoint, we could 

have either soft or hard clustering result. 

In soft clustering, every data object can belong to more than one cluster with 

different membership degrees; however the sum of all membership degrees must be 

1 for each object. In hard clustering every object is assigned only to one cluster. 

Unlike classification, clustering is an unsupervised task in nature. Which means the 

categories are not known and there is no training and learning. However, there are 

cases where we have extra information about clusters or data objects besides their 

numerical vector as well, or we know a few points that belong to certain clusters. 

In those cases, using the extra information available could facilitate the process and 

improve the reliability of clustering. The class of clustering algorithms that use these 

extra information are called semi-supervised or supervised clustering techniques. 



22 

2.3 Content-based XML Classification 

In this approach, only the content of XML documents are used in building a classifier 

model; document structures are completely ignored, i.e., all tags within the XML 

documents are removed in a pre-processing step. After removing tags, the XML doc-

uments are treated as a set of labeled pure text documents and the XML classification 

problem is simplified to the classical problem of automated text classification. 

Many standard information retrieval (IR) and machine learning methods have 

been successfully applied to the text classification problem. For instance, Rocchio's 

algorithm [10] is a classical lit method that has been adopted [11] and evaluated 

for text classification. In Rocchio's algorithm [10], each class is represented by a 

prototype vector, and a document vector is assigned to the closest class by measuring 

the similarity between a particular document and each of the prototype vectors. For 

example, the similarity can be simply computed by the dot product or by using 

different similarity measures. From the family of machine learning algorithms, Naive 

Bayes, k-nearest Neighbor, Decision T'ees and Support Vector Machines have been 

widely applied to real world text classification problems. 

Machine learning algorithms generally apply an inductive process in which an 

automated text classifier is built by learning, from a set of labeled documents, the 

characteristics of different categories. The final classifier model contains a set of 

decision rules that are obtained via explicit error minimization. The advantages of 

the above approaches are: 1) accuracy, which is comparable to that achieved by 

human experts, and 2) efficiency in terms of time spent for training and prediction. 

However, in the context of web documents classification, where the number of cat-



23 

egories is significantly large, the above methods do not perform properly as they 

are all fiat classifiers, i.e., they ignore the structural relationship between the cate-

gories (classes) by flattening the class structure. To cope with this problem, a few 

hierarchical classification methods have been proposed to assign a document to an 

appropriate category from a hierarchical category space, e.g., [12, 13, 23, 24, 25]. 

In most of the hierarchical classification methods, the category space is organized 

in tree structures [26]. For instance, Fuhr et al. have proposed a hierarchical content-

based classification method for XML documents classification. In their work, to 

assign a new XML document to an existing category, the classifier works in a top-

down manner starting from the root of a hierarchical taxonomy. A binary classifier, 

which is built for each category in the tree, decides whether a document fits in that 

particular category or not. A document can be classified into different categories 

with different confidence measures. 

The most successful previous approaches proposed for text categorization have 

applied feature reduction techniques, specifically feature clustering, to the bag of 

words representation of documents in order to reduce the dimensionality. Word clus-

tering has been a popular technique for language modeling and word co-occurrence [46] 

as well as feature reduction in text classification [4'7, 48, 49, 54]. Most of the previ-

ous work published around this topic has been concentrated on using distributional 

clustering of words and Information Bottleneck, presented first in [55]. 

The authors of [55] represent every word by its distribution of context where it 

has appeared. Words are divided into two groups of nouns and verbs, and the co-

occurrence frequencies are measured. Relative entropy of word distributions is then 

used as a dissimilarity measure for clustering. Later on, the idea of distributional 



24 

clustering and Information Bottleneck has been very popular and has been used as 

one of the major feature reduction techniques for text classification. Authors of [47] 

use the class label information and represent every word by its distribution over the 

set of class labels. Thus, their clustering is more aggressive and they achieve a higher 

compression of feature space compared to unsupervised distributional clustering. 

In their experimental results, they achieve close but lower classification accuracies 

using a Naive Bayes classifier after word clustering as opposed to bag of words 

representation of documents. The work described in [49] takes a similar approach 

and shows that the classification accuracy could also be improved as a result of word 

clustering provided that training samples are small. 

The work described in [48] combines distributional clustering and classification 

power of SVM for the multi-class document classification problem, and achieves 

higher classification accuracies in many cases compared to Naive Bayes classifiers. 

The idea of distributional clustering of words has emerged from natural language 

processing, and the aim is to provide a possible way of clustering when the only in-

formation we have is co-occurrence of words. In other words, distributional clustering 

is a powerful soft clustering technique when we have lack of useful information, and 

works best for problems where word representations are highly complicated and di-

mensionality is so high that using conventional clustering techniques in data mining 

is not accurate. In contrast, if word representation is simple and low dimensional, 

using conventional distance-based algorithms is preferable. We believe that the word 

representation after projection of words on the set of class labels is greatly informa-

tive and rather simple because the number of class labels in typical text classification 

problems is small (for instance, 20 in the 20 newsgroups probleim[52]).. Therefore, we 



25 

consider Fuzzy FCM [21] to be a more suitable soft clustering technique compared 

to distributional clustering for feature reduction in XML document classification 

problem for variety of reasons. First of all, fuzzy systems have demonstrated their 

effectiveness in soft computing and data mining [53], specifically in soft clustering of 

complex data such as Microarray and intrusion detection data [50, 51, 22]. It has also 

been successfully applied to mining web access data, which has a similar nature in 

some ways to word clustering. Secondly, fuzzy FCM has low computational cost, and 

when it comes to implementing real life text classification systems, computational 

cost becomes a serious issue. In the end, as mentioned above, word clustering prob-

lem for the purpose of document classification is a much simpler problem than the 

general case of unsupervised word clustering studied in natural language processing 

where we have little useful information available. 

All of the described text classification approaches, despite their good performance 

in many text applications, do not perform quite effectively for XML document classi-

fication because there is a considerable amount of information buried in the structures 

of XML documents; such information is ignored by content-based text classification 

algorithms [28]. A XML document is a semi-structured data that contains not just 

text content, but also structures. Further, structures in XML documents are be-

lieved to be chosen more carefully than the content [29]. Consequently, structures 

represent more precise characteristic of XML documents that can be employed in 

the classification process. 



26 

2.4 Structure-based XML Classification 

The second alternative for XML document classification is to use the information 

hidden within the documents' structure for building the automated classifier model. 

In this case, the tags and their hierarchical structure within the XML documents 

are learned by the classifier algorithm, and are used to assign a new incoming XML 

document to an existing category. 

Recently, there have been several attempts to propose structure-based classifiers 

that solely use the structure of the document. For instance, XRules [28] is a well-

known structured-based XML classification method, which works based on the basic 

idea of associative classifiers. Associative classification algorithms usually adapt an 

association rule discovery technique to extract class association rules (rules whose 

consequents are class labels) from a data set; this is the training process. The 

extracted rules should have frequencies above user specified constraints, i.e., minsup 

and minconf thresholds. Then, a classifier is built by using a subset of the most 

discriminative and high quality rules generated in the learning stage. OBA [30], 

OMAR [31] and OPAR [32] are well-know methods from the family of associative 

classifiers. 

In XRules [28], the developers suggested that associative classifiers can be adapted 

to generate structure-based rules by flattening the XML structure, and later these 

rules can be used to classify the XML documents. The developers also argue that if 

associative classifiers are to be directly applied to the XML document classification 

problem, they result in loss of structure information as the rule miner component 

of the utilized classifiers do not take into consideration the hierarchical structure of 



27 

XML documents while extracting the rules. However, the advantage of XRules over 

the classical associative classifier is that it has an efficient rule mining component, 

namely XMiner, that extracts all structural rules related to any class according to 

the hierarchical structure existing within the XML documents. The qualified rules, 

i.e., rules that satisfy the minimum support and confidence values, are used later 

to perform the structural classification task. While XRules classifier shows improve-

ment in accuracy compared to content-based classification methods, it suffers from 

several issues. First, the rule generator algorithm returns a huge number of rules, and 

it is difficult to store the rules, retrieve the related rules, and sort the rules. Second, 

in most cases, XRules achieves a high classification accuracy by using a significantly 

large number of rules in the classifier (by choosing very small support threshold value 

such as 0.03%), which in turn can cause the overfitting problem, especially for a small 

training data set. Further, the XRules method completely ignores the contents of 

XML documents. Therefore, there is still the possibility to improve the performance 

of the classifier model by learning from information presented by both content and 

structure of the XML documents. 

In addition to the above approaches, some recently proposed alternative meth-

ods make use of both document content and structure in order to improve the XML 

document classification efficiency. The work described in [33] presents an inductive 

learning system for XML documents. A higher-order logic formalism suitable for 

representing individuals with complex structures is used for structural information 

representation. Structure features are constructed by composing transformations of 

XML document structure. A structured feature selection method, which works based 

on analyzing DTD, is applied to remove irrelevant text content from document ele-



28 

ments. A new text document corresponding to every element is formed by collecting 

text contents of that particular element. Finally, every word in the training set is 

represented as a content feature. The learning algorithm of this method is a decision-

tree learning algorithm driven by precision and recall. The main disadvantage of this 

approach is that it highly depends on the XML document schema, e.g., DTD, and 

can not classify schema-less XML documents where the data does not conform to 

any fixed schema. 

Theobald et al. [29] proposed a classification method for schema-less XML doc-

uments. In their model, structure features are constructed according to XML paths 

for the document elements to represent the document structure. For content fea-

tures, instead of using words as features, they combine tags with text terms that 

appear in the corresponding element content, and each tag-term pair represents a 

content feature. Finally, they use SVM algorithm to build their classifier model. The 

main advantage of their approach is that they map content features into an ontolog-

ical concept space and construct expanded textual features. This results in better 

handling of documents that include heterogeneous vocabulary. Although showing 

accuracy improvement, this approach suffers from efficiency issues when tag-path 

features are constructed by considering any length within the XML document. This 

may generate a huge number of structure features, which in turn can degrade the 

performance of the classifier algorithm. In their paper, the authors limit tag-path 

features to path length 2 to cope with efficiency matters. However, ignoring the tag-

path features with length more than 2 will result in loss of structural information. 



29 

2.5 Our Framework in Comparison with Previous Work 

The above analysis and identified drawbacks and weaknesses of the existing ap-

proaches motivated the development of our approach described in this thesis. 

The main contribution of this study is an automatic text and XML document 

classifier model that incorporates both structural and content information of XML 

documents into the process of learning and prediction. In order to extract the struc-

tural information, we use the existing rule mining algorithms to capture the frequent 

structural patterns in form of rules and later convert them to structural features. 

However, for extracting the content information of XML documents, we propose a 

new method based on Fuzzy C-Means Clustering [21] of words and using each cluster 

as a textual feature. We show that the classifier built only using our textual features 

outperforms most well-known IR-based document classification technique. Further, 

the combination of structural and textual features will result in an accurate and 

robust classifier. We demonstrate the efficiency and effectiveness of incorporating 

both structural and content information by performing a comparative analysis of 

our classifier model and several XML and text document classifiers. 



Chapter 3 

Feature Extraction from Unstructured and 

Semi-Structured Documents 

In this chapter, we describe our techniques for feature extraction. We discuss the 

feature vector construction process, rule mining, document preprocessing, clustering 

and classification. If the approach is to be used for semi-structured document classi-

fication, both components have to be applied to capture features from both aspects 

of the document. Otherwise, if the purpose is only to classify plain text documents 

structural feature construction phase could be skipped. 

3.1 Feature Spaces for XML Document 

In order to precisely characterize both content and structure of XML documents for 

the learning process of XML classification, every XML document in our model is 

represented by a feature vector. Features in a feature vector are usually representa-

tives of data item attributes in the form fi = v1 A f2 = V2 A f3 = v3 A ... A f = 

where fi is a feature (attribute) and vi is its value. 

In a learning system, such as the one proposed in this thesis, a feature vector 

is used to describe the key properties of XML documents in the training set to 

be learned by the classification algorithm. Here, the feature set designed for XML 

classification includes structural features and textual features. The former feature 

set represents frequent structural patterns, and the latter feature set describes the 

30 



31 

content information in XML documents. Structural features are constructed based 

on frequent structural patterns hidden in XML documents. Frequent structural 

patterns can be captured in the form of structural rules by adapting a rule mining 

algorithm. 

In the context of XML documents, a rule is an entity that relates a frequent 

structure on the left hand side to a class variable on the right [28]. The rule mining 

algorithm extracts all structural rules having support and confidence greater than 

a pre-determined threshold; support is the percentage of documents that contain 

the structure in the right hand side of the rule, and confidence is the percentage of 

documents belonging to the class variable, i.e., the consequent of the rule, by con-

sidering only documents that contain the antecedent of the rule. Such rules are able 

to extract useful associations between frequent structures in XML documents and 

class variables. Structural rules are then incorporated into the learning process in 

the form of structural features, i.e., every rule is represented by a feature. The cor-

responding feature value indicates whether the rule is covered by a particular XML 

document from the training set or not. Structural features provide the classification 

algorithm with extra discrimination knowledge obtained from the structural informa-

tion available inside the document, which are completely ignored by content-based 

classifiers. They also help the classifier to deal with XML documents that come from 

a large number of heterogeneous sources with different structures. Structural feature 

construction is covered in more detail in Section 3.2. 

On the other hand, textual features are constructed based on XML document 

content. In context of content, every XML document is a set of words, each of 

which has a frequency of occurrence in the document. The straight forward way to 



32 

extract textual features would be by considering every word as a feature and the 

corresponding word frequency as the feature value. This representation results in 

a unique feature vector for every document and every feature value is set to the 

normalized frequency of the word. Although this way of feature construction is 

easy and requires few computational steps, it has the following major drawbacks. 

First, when every single word is modeled as a feature, obviously the resulting feature 

vector will have many dimensions because the number of existing words in a set 

of documents is very large. High dimensionality increases the complexity of the 

problem and reduces the efficiency and accuracy of the classifier model. Second, 

when new words are added to the system as a result of adding new documents to the 

system, this change will greatly affect the system since new words need to be added 

to the feature vector of all existing documents. Third, each document contains only 

a small portion of the words in w, which represents the complete set of words existing 

in the training documents; this means that a large portion of the feature values in the 

feature vector will be mostly 0. Having the final textual feature vectors so sparse will 

definitely overshadow the accuracy of the final classifier model. In order to cope with 

these issues and take a more sophisticated approach in feature extraction, we propose 

a new method based on Fuzzy Clustering of words and using each cluster as a feature. 

The corresponding feature (cluster) value for each document will be related to the 

number of words in that document that belong to the cluster. In other words, the 

corresponding feature value describes the dependency of the document on a cluster of 

words. Among all clustering techniques that could be possibly used for our purpose, 

Fuzzy Clustering is preferable since it can associate every word to multiple clusters 

with different membership degrees, and hence avoids crisp assignment of words to 



33 

clusters. Our proposed method for textual feature construction is described in more 

detail in Section 3.3. 

3.2 Structural Feature Construction 

As descried in Section 3.1, structural features are constructed based on frequent 

structural patterns to characterize structural information of XML documents. Struc-

tural feature construction includes two major phases: generating structural rules and 

building structural feature vectors based on the generated rules. In the first phase, 

the task is to extract from the given XML documents all structural rules that satisfy 

user-specified support and confidence thresholds. In the second phase, the validity 

of rules for every XML document is used to generate a set of structural feature vec-

tors. Every XML document in the dataset is represented by a feature vector. Every 

feature in the vector corresponds to an individual rule. The value of every individual 

feature for any particular document is set to 1 if the rule is covered by that particular 

document, otherwise the value is set to 0. The generated feature vectors represent 

coverage distribution of structural rules over the given XML documents. 

3.2.1 Structural Rule Mining 

A structural rule is formally defined as X Class, where X is a frequent substruc-

ture in a given collection of XML document structures D, Classi is one of k classes, 

s and c are support and confidence measures, respectively; they are used to evaluate 



34 

rule goodness and are computed as follows: 

s(X U Class)  
s(X = Class) = IDI (3.1) 

s(X U Cla.ss)  
c(X Class) = s(X) (3.2) 

The rule X Classi implies that a particular XML document j with structure D 

more likely belongs to Class if D3 contains frequent substructure X. The prob-

lem of structural rule mining involves extracting all structural rules that satisfy the 

user-defined thresholds for support and confidence. It is basically divided into two 

subproblems. The first subproblem aims at finding frequent substructures from the 

given data collection D. Frequent structures refer to substructures whose support 

exceed the support threshold value (minimum support). The second subproblem is 

to generate structural rules from frequent structures by considering the fact that 

rules should satisfy the minimum confidence threshold. 

Most rule mining algorithms require the input data to be in transactional form 

in order to perform the mining process. The issue in structural rule mining for XML 

classification arises mainly because of the semi-structural nature of XML documents 

that contain both tags and content. The general approach used to address this issue 

is document format transformation as a preprocessing step. First, all document 

content is removed. Second, the tag structure of the XML document is transformed 

into a tree structure to preserve the hierarchical form of the document. Finally, the 

tree structures, each of which represents a XML document, are flatten to form a 

transactional dataset appropriate for rule mining algorithms. 

The method we have used for structural rule mining follows the rule generator 

approach, called XMiner [28]. In XMiner, the TreeMiner algorithm [34] is adapted to 



35 

find all structural rules that have support and confidence greater than given thresh-

olds. In order to apply XMiner, XML documents are modeled as ordered, labeled, 

and rooted trees. Later, tree structures are converted into transactions. It is worth 

mentioning that this conversion preserves the hierarchical structure of the trees. For 

further information about XMiner, the reader should refer to [28]. 

3.2.2 Constructing Structural Feature Vectors 

In order to make use of the structural information discovered by structural rules in 

the learning process, every structural rule is modeled by a structural feature and 

every XML document from the training set is represented by a structural feature 

vector. 

A structured feature in our model is defined as a predicator indicating whether 

every individual rule from the extracted structural rule set is covered by a particular 

XML document from the training set. Feature vectors constructed using our method 

describe the distribution validity of structural rules over the training set. The process 

of building the final structural feature vectors is as follows. We check the validity 

of rules against XML documents. If a rule is valid for a document (i.e., the rule 

is covered by the document), the value of the feature representing that rule in the 

feature vector is set to 1; otherwise the value is assigned to 0. A pair <feature, value> 

in a structural feature vector takes the following form: 

fr1 1 1 if r is covered by the document d 
= 

L. 0 otherwise 
(3.3) 

where fl'i is a feature that represents rule i in the structural rule set and d is a XML 



36 

document from the training set D. 

In order to maintain consistency between learning and prediction, we need to 

generate structural feature vector for the given test document. However, there is a 

difference in the process of generating structural feature vector for a test instance 

compared to the same process when applied to a training sample. In case of a 

training sample, we can check to see if a structural rule is covered by the sample as 

we already know its class label. However, for a given test instance, the class label is 

not known. As a result, it is not possible to check the validity of a particular rule for 

the given test instance using the same strategy that we apply for training samples. 

To address this issue, we make a minor change in the algorithm as follows. If the 

antecedent of a structural rule is covered by a test instance, we assume that the rule 

is valid for the given test item and set the value of the feature representing that rule 

in the corresponding feature vector to 1; otherwise, it will be set to .0. Using this 

approach, every test instance can be represented by a structural feature vector as 

well. At this stage, we can apply the classifier model to predict the class label of a 

given test instance by taking into consideration consistency of the model. 

3.3 Textual Feature Construction 

Although there are different types of documents which are used for different purposes, 

all these documents have one main element in common which is text as the major 

content. In this sense, every document, including XML documents, can be looked 

at as a bag of words and the text is definitely one of the main sources where we 

can extract valuable content information from documents, in the form of textual 



37 

features. 

This section is devoted to describe our approach for extracting textual features 

from XML documents. There are different approaches for extracting features from 

text. The simplest representation of text documents is to use every existing word in 

the dictionary as a feature and frequency of the word in documents as feature values. 

It is also possible to apply feature reduction techniques, such as information gain 

based feature reduction, on the set of words and restrict the feature space to a subset 

of words. Another possible way of feature extraction or reduction as mentioned in 

Chapter 1 is clustering of words. 

One of the major contributions this work is extMctiñg textual features from 

text documents through soft clustering of words. We will explain in detail how it 

is possible to cluster the words in our approach and also experimentally show how 

clustering of words could improve the accuracy of the classifier model compared to the 

other feature extraction and reduction methods used for document representation. 

To form textual feature vectors, four main steps are involved in the model as 

follows. 

1. Document preprocessing (if necessary); 

2. Building an Inverted index (if it is not already available); 

3. Clustering of words; 

4. Building the feature vector for every document. 

Here, it is worth mentioning that since most IR systems use inverted index and 

preprocess the documents before building the index, the first two steps are not nec-



38 

essary to be done in most cases. However, in order to preserve the integrity of this 

document as a complete thesis, we describe the first two preliminary steps as well 

as the last two steps which are the main components of our system in constructing 

textual features. 

3.3.1 Document Preprocessing 

In preparing the documents for textual feature construction, three main pre-processing 

steps are required. First, all non-textual components of a document need to be re-

moved to form a plain text document. For instance, in the context of XML docu-

ments, we need to get rid of all XML tags. After converting all documents into plain 

text format, we perform the two well-known preprocessing steps applied in every JR 

system, known as Stop Word Removal and Stemming [12]. 

Stop word removal refers to the process of removing all common words that can 

appear in every document regardless of the context. After removing all stop words 

from the document, stemming is performed. 

Stemming refers to the process of converting every word into its root in the 

English language. For instance, there are different variations of the word "go" such 

as go, went, going, gone, etc. All different forms of any particular word more likely 

denote the same concept when they appear in a document. Therefore, in our JR 

feature extraction approach, we are not concerned about the tense or the form of 

the word; only the root meaning of the word is considered. Since there are many 

different variations for words in the English language, stemming is usually a tricky 

step. 



39 

In this work, an existing open source library has been used for the stemming task 

it is described in Section 5. Hereafter, wherever the word "document" appears in 

this chapter, it refers to a document in the plain text format. 

3.3.2 Original Document Set vs. Inverted Index 

The original representation of documents and words in a set of documents includes 

documents as the main entries and a set of words within every document. In order 

to find the occurrence of a given word W within the content of a set of documents, 

a linear search over all documents is needed. Every document D in the set can be 

represented as: 

D = {(w,f (wj,D))Iwi E w}, 

where wi is a distinct word in the complete word set w; f(w, D) denotes the normal-

ized frequency of wi in D, such that the sum of all word frequencies for every docu-

ment is 1. In other words, f(w, D) gives the fraction of words, w, i = 1,2,... , m, 

existing in document D. Obviously, the frequency of all words that appear in some 

documents and exist in w but do not appear in .0 is 0 for D. Using this represen-

tation, every document can be modeled as a vector of < word, word frequency> 

pairs. The normalized frequency of wi in D can be calculated by dividing the number 

of occurrences of wi in  over the total number of words in D. Later in this thesis, 

we will refer to the matrix representation of original documents as NXlwI, where N 

is the number of documents and jwj is the cardinality of the complete word set, i.e., 

w. Every entry Aij represents the normalized frequency of the j11 word from w in 

the ith document. 



40 

In addition to the document representation described above, the inverted index 

technique has been used to represent a given document set as well. An entry W in 

the inverted index could be represented as: 

W = {(d,f(W,d))IW appears in d}. 

Here, every index entry for a particular word W includes a list of all documents that 

contain the particular word, and f(W, d2) denotes the normalized fraction of word 

W in document d. 

Inverted index structure indicates the same concept in different IR systems in the 

way that it indexes documents by words. Different systems use different measures for 

frequency; here, we use the described normalized frequency measure and argue that 

it suits our feature vector extraction task better than the other ones. We use both 

inverted index and original representation of documents in order to build textual 

feature vectors. The following explanation describes how we benefit from these two 

representations to form the textual feature space. 

3.3.3 Supervised Word-Vector Formation 

Every clustering technique requires a similarity measure to estimate the closeness 

among objects that are going to be clustered. Since we are interested in Fuzzy 

Clustering of words, we need to represent every word by a vector which is constructed 

by considering the inverted index and class labels of documents in our training set. 

Since we use the class label information to form word vector, our final clustering 

model will be supervised in the sense that the class label information will be involved 

in calculating the similarity between objects (words). In the rest of this section, we 



41 

articulate the process of building word vectors. 

To perform fuzzy clustering of words, the algorithm requires every word to be 

presented in a vector form. For this purpose, we use class label information existing 

in the training set. Every word is mapped to a vector of length n, where n denotes 

the number of distinct class labels in the training set. There is one coordinate corre-

sponding to each of the n class labels in the vector. In other words, every coordinate 

shows the importance of the word for the corresponding class of documents, and 

the vector is normalized such that the sum of all the values associated with the 

coordinates is 1. 

As defined earlier in this section, every entry W = {(d, f(W, d))jW appears in d} 

in the inverted index contains all documents in which the word W has appeared as 

well as their corresponding frequencies. Further, the class label for every document 

is also available along with that document. Thus, the inverted index structure pro-

vides us with all required information about the given document set. Equation 3.4 

shows how the unnormalized value of each coordinate is computed. 

Let wi = {(dk,f(wj,dk))Iwj appears in dk} be the inverted index for word w 

and V = (vi, V2) ..., va), be the corresponding word vector, where n is the number of 

classes; the coordinate value is computed as follows: 

n 

V'1.tl .i\i ..-i IN 
Ti:..... !1J,uk)akE'1J £1 
vz:l   X 

Jik I Lj 

The value of the j' coordinate is calculated as the frequencies of wi in all documents 

from class C in which wi appears, over the sum of all frequencies existing in the 

inverted index entry for w,. This fraction shows the dependency of class C on word 

w. The only drawback of using this fraction is that in many datasets, instances 



42 

are not distributed uniformly among the classes. In such datasets, the dependency 

of dominant classes to the word will be overestimated. To neutralize this effect, we 

multiply each coordinate value by the number of all documents over the number of 

documents in that specific class; this will push down the coordinate value for all 

dominant classes and will boost up the coordinate values for all classes with fewer 

instances. Therefore, the value of each coordinate will get closer to the dependency 

of the corresponding class to word w, regardless of the distribution of instances in 

classes. Every coordinate of the vector is then normalized using Equation 3.5. 

VNk = , n is the number of coordinates (3.5) 

Vii 
j=1 

Normalized vector VN is the final vector that will represent word w1 in the next 

Fuzzy Clustering step. 

3.3.4 Clustering of words 

It was mentioned earlier how clustering of words could be useful to compress the 

feature space. Here, we review and categorize the possible approaches to word clus-

tering from different perspectives. Clustering approaches we consider for our appli-

cation could be categorized into two categories: soft and hard clustering from one 

perspective. From another point of view, we could choose an unsupervised, semi-

supervised or a supervised clustering approach. we believe unsupervised clustering 

of words could be helpful for applications where the clustering of words is done for 

purposes other than classification. But for the classification purpose, we don't con-



43 

sider unsupervised clustering of words an option because it ignores useful class label 

information and focus on semi-supervised and supervised clustering of words. 

In general, our approach suggests semi-supervised clustering using the distribu-

tions of words over the class labels as vectors to be clustered and soft clustering. 

It is worth mentioning that soft clustering algorithms are unsupervised in nature. 

What makes our clustering of words semi-supervised is the combination of supervised 

word vector formation with regard to distribution of words over class labels and an 

unsupervised clustering algorithm. 

Word vector formation itself could also be considered as a way of fully supervised 

clustering of words. Every class label will represent one cluster and the number of 

clusters is the same as the number of class labels, which will also solve the problem of 

parameter setting for us. On the other hand, when the number of class labels is rather 

large, like many real word applications and as in many benchmark datasets (Reuters 

with 188 classes), the quality of clustering usually goes down. Therefore, when the 

number of document categories is large, we would rather use the distribution of words 

over the categories as a matrix representing the soft clustering of words. This will 

solve the problem of parameter setting as well as the problem of dealing with low 

quality clusters as a result of high dimensionality. 

Clustering algorithms could also be categorized into soft and hard. We already 

mentioned that the use of soft clustering is preferable. However, we will experimen-

tally compare soft and hard clustering algorithms for feature extraction and show 

how soft clustering could be more effective for our application. 



44 

3.3.5 Fuzzy Clustering of words and Constructing the Final Feature Vec-

tor Set 

Given the number of clusters K, Fuzzy C-Means returns for every object a vector 

that shows the membership degree of the object in different clusters. For a given 

set of word-vectors that has the cardinality of 1w I, Fuzzy C-Means returns a IWI x K 

matrix that we call Words Membership Matrix, denoted WMM. Every row i of 

WMM represents membership degrees of a single object, simply a word, in different 

clusters and every column j represents membership degrees of different objects in 

the th cluster. 

The process of constructing the final textual feature vectors, after mapping every 

word to a vector, can be summarized in the following main steps: 

1. Fuzzy clustering of words and forming the Words Membership Matrix WMM; 

2. Matrix Multiplication of A and WMM (the original set of document vectors); 

3. Normalizing the multiplication result. 

The first step could be skipped if the number of categories is large, and we decide 

to use the distribution of words in classes as soft clustering of words. Equation 3.6 

shows how the final textual feature vector set is formed after matrix multiplication; 

recall that A is the matrix representation of the original documents. 

FVSCtNXK = NxIwl X WMMI,IXK (3.6) 

Each row in FVSetNXK represents feature values for a particular document from 

the document set. Every document's corresponding vector is normalized such that 



45 

the sum of all feature values in the vector is 1. The number of features K can be 

set to any desired number; it is equal to the number of clusters. We adjust this 

parameter experimentally and show that we can capture enough textual information 

as a result of using a supervised word-vector formation and fuzzy clustering of words, 

even using a very small number of features compared to the actual number of words 

in each of our benchmark datasets (approximately 14,000). The achieved accuracy 

is comparable to the most successful previous work described in the literature. We 

use K = 10 in all of our experiments. This parameter setting is discussed in more 

detail in Chapter 5. 

Finally, feature vector construction is performed in the same way for both training 

and test samples. The only difference could be stated as follows. Although the range 

of words used in a specific domain is limited, there could be words that exist in 

the training document set, but do not appear in the new test document. For every 

new test document, first the preprocessing step is performed to make the words 

consistent with the set of words in w. Document representation vector for every 

new test document t will have f(t, w) for every word w, that exists in w and 0 for 

all other coordinates that represent a word that exist in w, but not in t. All other 

words that might be in t and have not appeared in any of the documents in the 

training set will be disregarded as we did not have access to these words while we 

were creating the classifier model. After converting the test document to a form 

consistent with the document representation in our training set, we have a 1 x IWI 

matrix and we can perform the same matrix multiplication with WMM11 xK to form 

the feature vector for test document t. The normalized feature vector could be passed 

to any classification model that we build from the training feature vector set for class 



46 

prediction. 

3.4 Building Classifier Model 

In order to incorporate both structural and textual features into the learning process, 

structural and textual feature vectors associated with any particular XML document 

are first consolidated to one feature vector. The resulted feature vector indicates both 

structural and content characteristics of the XML document. The task of building a 

classifier model in our approach is then to employ the combined feature vectors, each 

of which represents a XML document from the training set, into an effective learning 

algorithm which uses these feature vectors to train a classifier model. There exist 

many classification algorithms for supervised learning. The performance of different 

learning algorithms strongly depend on the classification domain and the dataset. 

In this study, we have used support vector machines and decision tree algorithms to 

build the classifier model. To evaluate the accuracy of our classifier model, we use 

the train versus test validation technique. 



Chapter 4 

Creating a Hierarchy of Subjects Using Support 

Vector Machines and 10 Fold Cross Validation 

In this chapter, we describe how it is possible to exploit feature based representation 

of documents along with SVM in order to create a hierarchy of subjects. While text 

classification is necessary to automatically assign new documents to appropriate 

subject(s), creating a hierarchy of documents helps users to query and browse the 

document set more efficiently. 

Most of the existing hierarchies are created manually based on the conceptual 

similarities between subject categories. Manual hierarchy creation is subjective and 

users from different domains might end up with different hierarchies of categories. 

Although manually created hierarchies are subjective, we believe they can still pro-

vide a good framework for user queries if they are created by domain experts in every 

sub-domain. However, this way of clustering subjects might not be possible for mod-

ern applications and document sets since the number of documents and subjects are 

growing exponentially every day. There are also situations in which we have no good 

regarding idea how the hierarchy should be built based on the conceptual similarities 

between subjects. Automatically generated hierarchies have been proposed in order 

to avoid the confusion and provide a unique hierarchy of documents that could be 

cut at any level to get top level document groups. The process involves scanning the 

whole document set in which every document is represented as a bag of words and 

47 



48 

measuring the similarity between different categories. 

To avoid the manual construction, we propose an automatic solution for hier-

archy creation from the training dataset using the feature vector representation of 

documents described in Chapter 3, and also Support Vector Machines. We repeat 

the experiments involved in hierarchy creation 10 times through 10 fold cross vali-

dation to insure the reliability of our created hierarchy. Our approach to hierarchy 

creation is first calculating the distance between classes. For this purpose, we use a 

supervised classification model that could assign every sample to two different classes 

with different probabilities. In other words, we could also use support vector ma-

chine as a way of soft classification that computes the degree of similarity of each 

document to different classes. If the model is being used for the purpose of classifi-

cation, then the class which has the maximum membership probability will be the 

predicted class for the given document. Here our purpose from this experiment is 

only hierarchical clustering and grouping the large number of class labels into smaller 

top level categories. Automatically created hierarchy could be further studied and 

labeled by domain experts for future usage and for facilitating user queries. The rest 

of this chapter summarizes the steps involved in automatically creating a hierarchy 

of subjects from feature vector representation of documents. 

4.1 Creating Classifier models for Soft Classification 

The first step for clustering of class labels is to compute the distance between them. 

For this purpose, we use Support Vector Regression [56] that could compute the 

membership probability of a sample in each of two classes. Obviously, creating a 



49 

hierarchy for a dataset with two classes makes no sense. Therefore, we are always 

dealing with a classification problem of classifying data samples into I Cl classes where 

C is the set of all existing categories. We construct ICI SVR's each for classifying 

one of the classes say Cj against the other ones. For creating SVR model S, all of 

the samples from class Ci are used with their labels changed to 1 and the rest of the 

dataset is sampled randomly to select I ci I samples distributed evenly over the I C I - 1 

classes except I i I. Then, we label all of these randomly selected samples by 0. 

Using each SVR, S, we could compute the probability of membership of every 

test data sample in Cj. Please notice that by testing data samples here we mean 

the portion of training dataset which is used for testing in 10 fold cross validation. 

We are not allowed to use samples from test dataset for hierarchy creation since 

those samples are only used for validation and measurement of accuracy. After 

applying all regression models on all samples, we get a IDI x ICI matrix, where 

ID I is the size of the training document set. Every element ji of the matrix shows 

how likely it is for the jth document to belong to class 1c4. Let's call this matrix 

the membership probabilities (MP) matrix. The next step in hierarchical clustering 

would be calculating the distance between classes using the membership probabilities 

matrix. 

4.2 Calculating the Distance between Subject Categories 

Besides the calculated probabilities in MP, every sample in the training set also has 

a real class label. Equation 4.1 shows how the distance between two different classes 

i and j, d(i,j), is found using the membership matrix. 



50 

{MP.1D,.1abeI=i} + 7, JMPk-iJDk.1abe1=jJ 
d(i,j) = 1 IiI  

2 
(4.1) 

Basically, the distance or dissimilarity of classes in Equation 4.1 is defined to be 

1 - similarity. Similarity is always a number in the range [0,1] because all member-

ship probabilities are between 0 and 1 and so is the every average value on them; it 

is found using membership probabilities. Every row in MP as mentioned before, rep-

resents memberships of the corresponding document from document set in different 

classes. In order to find the distance between classes c1 and c, first we find average 

membership probability of all documents that belong to c1 in class c. Then, we 

repeat the computation the other way around, and see how likely it is for documents 

of class cj to belong to class Cj. Similarity of two categories is then the average of 

the two similarities mentioned above. 

Ten fold cross validation does not make any significant difference to the process. 

It is only to improve the reliability of the distance measure defined. Experiments are 

repeated 10 times on the training set and each time one of the 10 splits of the dataset 

is used for testing and creating the membership matrix. Ten different distance values 

between classes is then found and the average of these 10 values would be used as 

the final distance. Having computed the distance between categories, now we can 

use hierarchical clustering for building a hierarchy of class labels. 

4.3 Hierarchical Clustering of Subject Categories 

Hierarchical clustering is a clustering approach that converts the fiat structure of 

existing objects into a hierarchy according to their distances from each other. When 



51 

the distance between objects is known, regardless of the distance measure used, it is 

very simple to apply hierarchical clustering. The general process may be summarized 

as follows: 

1. The distance between objects is known. 

2. Define a distance measure between clusters and also between clusters and ob-

jects. 

3. Consider every cluster as an object. 

4. In each step of the algorithm find the shortest distance between objects and 

merge them into one cluster. Merged objects could be two basic objects, two 

clusters or a basic object and a cluster. 

5. Continue combining objects until there is only one object left and that is the 

whole set of objects. 

6. Hierarchy of objects could be obtained by logging during the execution of the 

algorithm and tracing the log backwards. 

7. In the end, the hierarchy could be cut at any level to get the desired number 

of top level clusters. 

This algorithm is called Hierarchical Agglomerative Clustering [57] and the out-

put is a dendrogram that shows the steps of the algorithm on the hierarchy at dif-

ferent levels. There are several approaches for defining the distance between clusters 

and also for defining the distance between a single object and a cluster. Single-

linkage measure uses the minimum distance between objects in two different clusters 



52 

as distance between two clusters. There are also other variations that use maximum 

and average distance. Here, we prefer to use the single-linkage measure because we 

believe if there are any two classes that are similar to each other, they have to be 

put in one cluster in order to minimize misclassification; our main purpose here from 

hierarchy generation is to divide classes into top level groups in such a way that 

improves classification accuracy. 

AB CD 

A " 0.0 0.2 0.5 0.4 

0.2 8.0 0.0 0.0 

C 0.0 0.6 0.0 0,8 

D 0,4 .0.5 0,8 0.8 
-/ 

/ D 
26 

M . 

04 

816 

Objects 

Figure 4.1: Process of Hierarchical Clustering of Objects 

To illustrate how a hierarchy of objects could be created using a given distance 

matrix, assume we have four objects with their distances from each other as given in 

Figure 4.1. From the distance matrix it is simple to follow the steps of the algorithm. 



53 

First objects A and B are grouped into one cluster because 0.2 is the shortest distance 

between two objects. Then D joins the newly created cluster because 0.4 is the next 

smallest value in the matrix; and finally the whole group of objects forms the highest 

level of the hierarchy. The algorithm applied here followed the single-linkage measure. 

We might get a different dendrogram using other types of linkage measures. 



Chapter 5 

Experimental Analysis 

We have implemented the whole system architecture presented in Figure 1.2. Some 

of the components have been adapted from existing systems developed either by our 

research group or by other research groups as described in Chapter 2. To pre-process 

documents for textual feature extraction, we used the implementation from [35] for 

stemming and a complete list of stop words from [36]. For structural feature extrac-

tion, we obtained the Xminer engine from the authors of [28]. Our implementation 

of textual feature extraction as described in Section 3.3 could also be used indepen-

dently for IR classification. We have done experiments on XML documents in Log 

Markup Language (LOGML) [37] and have compared our results to three classifica-

tion methods XRules, OBA and IRC [38]. In order to evaluate our text classification 

approach, we have also reported the results we achieved from running our IR com-

ponent after ignoring all the structural information on XML datasets as well as the 

2ONewsGroups [52] dataset. Before comparing our results to other approaches, we 

will briefly describe our datasets. We will also suggest a possible way of parameter 

setting (number of features to be extracted from each aspect) for our approach. 

5.1 The Datasets 

We have conducted extensive experiments on Text and XML datasets (all publicly 

available) to evaluate both our text classifier built only based on textual feature 

54 



55 

extractor and also our proposed XML classification framework. The 20NewsGroups 

dataset is used for text classification, which is one of the most popular benchmark 

datasets for text mining research projects. The version of this dataset we have used 

is a collection of 18,828 documents distributed almost evenly among 20 different 

classes each of which is a newsgroup. Each document is an email message sent under 

one of the subject categories that also contains header information. In the version of 

this dataset we are using, all of the duplicates and header fields are removed except 

for From and Subject fields, We have further removed the From field from all the 

messages to use only subject and body of the documents for classification. Table 5.1 

shows these 20 classes divided into 6 top level categories. Top level division of this 

dataset is only to show how it is organized and how there exist classes so similar to 

each other. For the purpose of training and testing our system, we have used all of 

the classes and the classification problem is to assign one of the 20 labels to every 

test document based on the model created from documents in the training set. 

Table 5.1: Subject categories of 20NewsGroups dataset partitioned into 6 top level 
classes 

conip.graphics rec.autos sci.crypt 
comp.os.ms-windows.misc rec.motorcycles sci.electronics 
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med 
comp.sys.mac.hardware rec.sport.hockey sci.space 
comp.windows.x 
misc.forsale talk.politics.misc talk.religion.misc 

talk.politics.guns alt.atheism 
talk.politics.mideast soc.religion.christian 

A XML document in LOGML describes the web-server log of a user session in a 

specific compact format. Every document contains a graphical representation of the 



56 

log file as well as the content of the visited pages. Along with every document, there 

is also information about the domain from which the users have visited the page on 

the main Internet domain or one of its sub-domains. Our main purpose is to build a 

classifier capable of classifying users who have visited from an academic domain (edu 

or ac) against users who have visited from other domains. We have downloaded the 

log files from [39]; it consists of user sessions for three consecutive weeks on the web-

server on http://www.cs.rpi.edu domain. In all our experiments, we have used the log 

of one week for training and the log of another week for testing. Table 5.2 describes 

the characteristics of our datasets. Our main reason for choosing XML datasets in 

this format is being consistent with the experimental framework presented in [28], 

which has been one of the most successful XML classification systems so far and 

have a basis for comparing our system to previous research in the area. 

Although there are only two classes, by looking at the distribution of documents in 

the classes as shown in Table 5.2, it is obvious that expectedly most of the documents 

belong to the other class because it covers a wider range of internet domains. This 

complicates the classification process. Besides the distribution, due to the nature 

of the documents that contain log file information, it is quite complicated for the 

classifier model to distinguish between classes. This complexity originates from the 

fact that there are many general pages on every webserver that all users may visit. 

Although users from academic domain are more likely to visit scientific pages, it does 

not mean that they never visit pages from other categories. 



57 

Table 5.2: Characteristics of XML datasets 

Dataset # of Documents Distribution in classes 
educational other 

LOG1 8074 1962 6112 
LOG2 7047 1686 5721 
LOG3 7628 1798 5830 

5.2 Feature Extraction from XML Datasets and Classifica-

tion 

Although we have described in detail how we extract textual and structural features, 

yet there are some other issues to address for feature extraction. In Section 3.3.5, we 

have already mentioned that the number of textual features is equal to the number 

of clusters (K), which we determine experimentally in this section. As for the struc-

tural features, we mentioned that XRules works based on frequent pattern mining 

concepts, and in order to mine frequent structural patterns we need to set the sup-

port threshold. XRules achieves its accuracy by setting the latter parameter to very 

small values such as 0.08% when it uses XMiner, which results in extremely large 

rule set; in most cases more than 20,000 for the described datasets. This results in 

overfitting in the training dataset, and the difficulty of a meaningful interpretation 

from the classifier model later on. Furthermore, instead of suggesting a basis for 

parameter setting, authors of [28] built several rule sets by changing the support and 

confidence parameters and report their best achieved accuracy. Although this exper-

imental approach based on changing parameters and reporting the best result has 

been widely used in the literature, it is not possible and realistic simply because we 



58 

have no idea about the parameters when we start the experiments. In this section, 

we describe how we have chosen our parameter values experimentally and how we 

can achieve high classification accuracy by extracting few features from either aspect 

of the XML documents before starting the final classification. 

Number of Clusters: 

In order to set the number of clusters, we did experiments on LOG1 dataset. 

We split the dataset randomly into two halves for training and testing. We found 

experimentally that classifier models start to learn and extract knowledge for the 

values of K around 10. For very small values of K, say closer to 2, the classifier 

ends up classifying most samples in the dominant class, which is an indicator of 

lack of knowledge extraction. We continued adding features to the feature space 

by recreating the final dataset 26 times. We did this experiment for all integers 

between 2 and 20. For other cluster numbers greater than 20, we have increased the 

number of clusters by 10 in each step until 100; we used Linear-SVM to perform this 

experiment as SVMs have always demonstrated their reliability and strength for the 

classification problem, specifically text classification [14]; by running comprehensive 

experiments, we found Linear-SVM more accurate than others for our problem. 

It can be easily observed from Figure 5.1 that very few clusters cannot capture 

enough textual information from the dataset for the final classifier model. As we 

increase the number of clusters from 2 to 10, there is considerable change in accu-

racy. The peak is at 9, and after 10 the accuracy remains around 84%; the classifier 

model seems to be stable. We increase the number of clusters by 10 from 20 to 100 

to support the reliability of our choice of the number of clusters. Although doing 



59 

Figure 5.1: Number of Clusters vs. Accuracy on LOG1 Dataset 

the same experiment on other datasets could result in having the peak at a different 

value, all of them become stable around 10; so, we have set K = 10 for the textual 

feature extractor component in all experiments. 

Selection of Frequent Structural Patterns: 

Every frequent structural pattern mined by XMiner is considered a feature in the 

structural feature space. Similar to any other frequent pattern mining algorithm, 

XMiner also defines frequent patterns based on a minimum threshold value (Support). 

In order to avoid a huge structural feature space, we conducted experiments on the 

same split of LOG1 dataset used to set the number of clusters. We set the support 

value equal to 0.7% to mine the first 1,817 frequent patterns. We used Information 



60 

Combining First N Structural Patterns with Textual Features 

Be 

87 

83 

200 
Ac = 86.79% 

I300 
Ace = 8681% 

Number of Structural Feat ures (N) 

Figure 5.2: Combining Textual and Structural Features 

Gain of features with respect to class labels to sort the features. In each step, we 

combined the first N structural features with 10 textual features derived from the 

previous section in order to find the best combination. Since the number of required 

frequent structural patterns is more due to the sparseness of these features, we know 

that we need to add more structural features than textual features. We start N from 

10 and add the next 10 features to the feature space in each step until 300. From 

300 to 1800, we increase the step size to 100. Figure 5.2 shows how combining the 

first N structural features with the 10 textual features discovered from the previous 

step changes the accuracy of Linear-SVM on LOG1 dataset. 

Very few structural rules can not capture enough information from the dataset; 

however, they can still improve the accuracy when combined with textual features. 

The model gets so close to its highest accuracy (86.81%) when 200 rules are added; 



61 

there is no considerable change in accuracy as we keep adding features to the feature 

space in steps of 10 from 200 to 300. Figure 5.2 also shows that by adding large 

number of structural rules, the effect of textual features fades away gradually and 

the accuracy decreases. According to the feedback from the conducted experiments, 

we have set the number of clusters to 10 and the number of rules to 200 in all of our 

experiments. 

Table 5.3: Classification results using the whole space and different methods 

Datasets Accuracy (%) 

training test 
Classification Method 
DT SVM 

LOG1 LOG2 85.39 85.88 
LOG2 LOG3 87.04 85.79 
LOG3 LOG1 83.86 84.56 

Classification Accuracy and Comparisons After fixing the number of features 

to be extracted from each aspect of the document, we can use the final feature based 

dataset to build our classifier model. As mentioned before, feature representation of 

documents gives us the flexibility to apply different techniques. We have explained 

how we benefit from information gain in the previous section. Here, we also take ad-

vantage of this flexibility and use two different techniques, Linear-SVM and Decision 

Trees (DT), that work based on totally different concepts to build classifier model. 

Table 5.3 shows how SVM and DT perform on the final feature based dataset, which 

is the result of concatenating feature spaces. 

Extracted knowledge in the form of textual features overlaps structural knowl-

edge in many cases, and repeating the same information is no help to improve the 



62 

classification accuracy. However, it is expected to observe improvement after using 

the whole feature space since it is very likely to have individual feature spaces that 

do not contain exactly the same information. 

Table 5.4: Comparison of JR classifiers 

Datasets Accuracy (%) 
training test Feature-IR IRC 
LOG1 LOG2 83.37 74.81 
LOG2 LOW 83.41 77.64 
LOG3 LOG1 83.42 73.76 

We have compared the accuracy of our JR classifier to IRC as proposing a feature 

based JR classifier is one of the main contributions of this thesis. As summarized 

in Table 5.4, our IR classifier can outperform IRC by an average of 9% in accuracy. 

This improvement is due to the fact that we compress the whole feature space of 

words into clusters and use well known classification techniques; there is very little 

content-based information that we ignore compared to IRC, which works based on 

clustering of documents. Our classification accuracies are close in all of the exper-

iments because all LOG datasets contain the same documents visited in different 

weeks, and the closeness of accuracies in different experiments is an indicator of suc-

cessful and similar clustering of words, regardless of the corpus based on which we 

clustered the words. 

At the end, we compare the accuracy of classification using the whole feature 

space to two of the most well known structure based classifiers. In two of the ex-

periments, we have achieved our best accuracy using SVM and DT; this helped us 

creating a better model for the second experiment. Our proposed system works 



63 

Table 5.5: Comparing the accuracy of Feature based classification to structural rule 
based classifiers 

Datasets Accuracy (%) 
training test Feature Based XRules CBA 
LOG1 LOG2 85.88 82.99 77.23 
LOG2 LOG3 87.04 84.61 76.43 
LOG3 LOG1 84.56 83.81 75.70 

better than both XRules and CBA using the whole feature space. Table 5.5 re-

ports the comparison and the amount of improvement we achieved; this highlight 

the advantage of our proposed approach. 

5.3 Text Classification on 2ONewsGroups Dataset 

Besides XML classification, it is necessary to evaluate our proposed text classifica-

tion approach based on word clustering from different perspectives, most importantly 

processing time and the improvement it achieves compared to a simple bag of words 

representation of documents. We mentioned earlier that for text classification, us-

ing all of the words in the process of model creation is not necessary and feature 

reduction has always been applied to text datasets. Our experimental results on the 

20NewsGroups dataset show that although using all of the words is not necessary, 

using all of the words does not degrade the quality of our proposed classification ap-

proach. Furthermore, low computational cost of our implementation using Inverted 

Index structure enables us to use all of the words for classification with little time 

spent on feature extraction. 

In order to compare our classification accuracy with Naive-BOW (naive bag of 



64 

100 

90 

80 

70 

a a 60 
ID 

40 

80 
5. 
0 

20 

10 

0 

)N&veB0W 

—*--CIuster80W 

--A-- NaiveB0W-Infog&n 

—+—C1uterB0W-lnogair, 

—St 

Sc. 

- 

(0 0 N C 0) Sn N o ID N U) N U) 0 N .4 CC 

.4 .4 (4 N (I V (0 CC 

N 

N 
(4 
ID 

N (A 
N 

Number of words used for classification 

.4 N (9 N N (1) V IA 0 
-I 

Figure 5.3: Comparison of Naive-BOW and Cluster-BOW using 10-Fold Cross Vali-
dation and different number of words 

words) combined with Linear-SVM approach, several experiments are conducted 

using different number of words for training and different criteria for word filtering. 

In all experiments, we have chosen 20 as the number of classes for the number of 

features (clusters) in our approach; and we used multiple binary SVM classifiers for 

multi-class classification. 

Figure 5.3 shows the average classification accuracy using different number of 

words. We have considered two different criteria for filtering the words based on: 

1) word support (number of documents in which the word appears) and 2) Informa-

tion Gain; since it is possible to filter any desired number of words using information 

gain, we choose the numbers on the X axis based on the first criteria. Minimum 



65 

support of the word is changed from 1 to 7,000 in order to find the number of words 

that pass the filter. We have to change the support value gradually when the support 

is small since there is a considerable change in the number of words that pass the 

filter in the initial steps. When the minimum support is set to 1, which means we are 

interested in all of the words, on average 107,366 words, from the training portion 

of cross validation splits pass the filter. Changing the support from 1 to 2 results in 

a significant drop, meaning that many words appear only once in the training set. 

Only 56,608 words pass the filter on average when the support is changed from 1 to 

2. 

Unlike the initial steps, in the consequent steps, there is no need to change the 

value by 1. For example, when we change the support from 400 to 500, the number 

of words changes from 611 to 437. Therefore, we could increase the step as the 

support gets higher. At the very end of the Xaxis, we have 5 and 7 words filtered 

after using 6,000 and 7,000 as minimum support, respectively. Every time, both 

the average classification accuracies of naive bag of words and clustering bag of 

words are measured. The best accuracy achieved by Linear-SVM on simple BOW 

representation of documents is 65.48% using 41,174 words and after that the accuracy 

goes down slightly as a result of extremely huge dimensionality and sparseness. In 

our approach, on the other hand, even adding the words that have appeared only 

twice in the training set increases the accuracy from 92.82% to 93.39%. Therefore, 

using minimum support as our filter, we achieve the best accuracy using 56,608 

words, and the accuracy does not increase when the rest of the words are added in 

the final step. 

Information gain was also used for filtering the words. In order to keep experi-



66 

ments using this filter consistent with the ones performed based on minimum support, 

we choose the same number of top words as we had on the X axis after sorting the 

words based on information gain. In order to compute the information gain of the 

words with respect to the class labels, first we find the mutual information gain of 

every <word, class> pair using Equation 5.1 first presented in [43]. 

(w, C) = p(e,.,,e0) log  
e,uE{O,1} ecE{O,1} p(ew)p(ec) 

(5.1) 

After finding the mutual information gain of every class and every word, we use the 

summation of over the set of classes to find the overall information gain of the word. 

Figure 5.3 shows how both systems can perform better using the infàrmation gain 

criteria with fewer number of words; still our feature extraction technique based on 

word clustering and minimum support outperforms the Naive-BOW even after the 

effective information gain feature reduction. Best performance is achieved by our 

approach after information gain filter whose accuracy curve is always over all the 

other curves. However, in order to get the highest possible accuracy, we still need to 

add most of the words to the clusters. The classifier built after feature reduction by 

information gain and then feature extraction through clustering achieves the same 

highest accuracy with 41,174 words on average while the highest possible accuracy 

we can get from Naive-BOW approach is 70.74% using top 33,377 words after sorting 

by the words based on the second criteria. It is worth to highlight that we have used 

all the 20 classes and all the documents for classification, and our reported results 

should not be compared with same projects that use only top level partitions of the 

20NewsGroups dataset for classification. 

Besides the experiments summarized in Figure 5.3, we also performed experi-



67 

3400 
—a.— Naive BOW 

3200 
3000 14 --*—Clustering BOW 

2800 12 

2600 

2400 10 

2200 

1 2000 
82 

1800 

1600 

1400 

1200 

o 1000 

" 800 

600 

400 

200 

0 

2 

- T 

5 7 10 18 32 155 177 215 260 534 437 

'Number of Words (Fealures) 

Figure 5.4: Size of the training set using different number of words for classification 

ments on our approach, this time using K-Means hard clustering algorithm. While 

soft clustering of words achieves such high classification results, on the other hand, 

using K-Means clustering and same number of clusters (20) resulted in accuracies 

all less than 50%, using different number of words which means with hard clustering 

of words we either loose information and can't build an accurate classifier or the 

number of clusters required is much more than the ones in soft clustering. Consider-

ing either case supports the validity of our argument about the choice of clustering 

algorithm in the beginning of this thesis. 

Figure 5.4 shows the size of the training set using different number of words by 

both Naive-BOW and our approach. It is visible that our training set size is very 

small and always constant due to the same number of features used in every exper-

iment. On the other hand, the. size of the training set using-Naive-BOW approach 



68 

increases dramatically as we add more words to the feature vector, simply because 

the dimensionality increases and this will greatly affect the performance of the sys-

tem in terms of both memory usage and processing time as presented in Table 5.3. 

# of 
Words 

SVM Train-Test 
(ms) 

Clustering 
(ms) 

Other 
(ms) 

Total 
(ms) 

Naïve- 
BOW 

Feature- 
Based 

Feature- 
Based 

Feature- 
Based 

Naïve- 
BOW 

Feature-
Based 

100 31676 32694 685 2857 31676 36236 
200 50259 33939 933 3325 50259 38197 
500 91544 26231 1168 3578 91544 30977 
1000 154079 21742 1282 4144 154079 27168 
2000 288746 18245 2540 4947 288746 25732 
5000 688622 15033 10870 6532 688622 32435 
10000 1355100 13207 21957 8082 1355100 43246 
20000 2688023 10982 41782 10909 2688023 63673 

As we can see in Table 5.3, the processing time of our system on a typical personal 

computer (2.1 GHz CPU, 2GB Maim Memory) is considerably faster than the Naive-

BOW approach except only for the cases where we are using a very small percentage 

of words that could not result in acceptable accuracies whatsoever. The amount of 

time spent on training and testing by the SVM model decreases as we use more words 

for classification in our approach and it's no surprise since the size of the dataset is 

the same, but documents are easily separable when more words are used and SVM 

performs faster. Using Naive representation of the documents, the only processing 

time is SVM training and testing while in the feature based approach there are other 

computational steps as well; mainly clustering of the words and finding word vectors 

using the inverted index structure; also matrix multiplication of the clustering result 



69 

and document vectors; we have reported the sum of the latter two steps as other 

computational cost for the feature based approach. Although we are paying little 

preliminary computational cost, our model creation is much more faster than Naive-

BOW approach when reasonable number of words is used. It is worth mentioning 

that we are achieving this fast processing time by assuming that an inverted index 

structure is already available which is a quite reasonable and realistic assumption 

since every modern information system uses this index structure for its information 

retrieval purposes. 

5.4 Automatical Hierarchy Generation from the 2ONews-

Groupos Dataset 

As described in Chapter 4, we can take advantage of our dense feature vector and 

combine it with SVR in order to measure the similarity of classes to each other; then, 

create a hierarchy of subjects from the training dataset. The created Hierarchy could 

be further cut at any level to get any desired number of clusters. In order to create 

the hierarchy of subjects and be consistent with the most recent similar publication 

and hence have a basis for comparison, we have used the "by-date" version of the 

2ONewsCroups dataset with 18,846 documents, which is already split into two parts 

of train and test. The rest of the characteristics, including the number of classes and 

class labels are the same. After computing the distance between classes, we get a 

20 by 20 symmetric distance matrix with 190 actual distance values between classes, 

which are all possible permutations of 2 out of 20 class labels. Having calculated the 

distance between classes, we could hierarchically cluster objects. Table 5.6 shows the 



70 

5 smallest distance values between classes. Small distance between classes indicates 

similarity. Table 5.1 includes the full names of classes. 

Classes 
atheism tlk.religion politic.gun os.win ibm.hardware 
tlk.religion soc.religion politic.misk ibm.hardware mac.hardware 

Distance 0.5204 0.6267 0.7599 0.8838 0.9036 

Table 5.6: Most similar classes in 20NewsGroups dataset based on our SVR-based 
distance measure 

Although we have only used bag of words representation of documents and have 

not used any semantical measure for similarity, it is observable that the most similar 

categories are also conceptually close to each other. For example, the category 

that covers documents about Atheism is very close to one of the categories covering 

Religion related discussions. Other religion related categories are also similar. On 

the other hand, we can see that classes under which documents related to computer 

systems are categorized among the most similar classes. 

The single linkage measure, as described in Chapter 4, takes the distance vector 

as input and creates a hierarchy of objects. In each step, two of the objects (either 

cluster or single object) are merged into one cluster until we have a cluster of all 

objects. Because we have 20 classes and each step merges 2 objects into one cluster, 

obviously the clustering algorithm has 19 steps. Table 5.4 and Figure 5.5 show the 

steps of the hierarchical clustering algorithm. Class labels are alphabetically sorted 

and numbered from 1 to 20, and every newly created cluster (object) is assigned a 

new number starting from 21. Each step merges to objects until, at the end, object 

number 39 created as a result of the last step groups all of the class labels into one 

cluster. 

We can see in the steps of the algorithm that besides religion and computer 



71 

Step Cluster 1 Cluster 2 Distance Result 
1 alt.atheism(1) talk.religion.misc(20) 0.5204 21 
2 soc.religion.christian(16) 21 0.6267 22 
3 talk.politics.guns(17) talk.politics.misc(19) 0.7599 23 
4 comp.os.ms- 

windows.misc(3) 
comp.ibm.pc.hardware(4) 0.8838 24 

5 comp.sys.mac.hardware(5) 24 0.9036 25 
6 misc.forsale(7) 25 0.9098 26 
7 comp.graphics(2) comp.windows.x(6) 0.9185 27 
8 26 27 0.9399 28 
9 rec.sport.baseball(10) rec.sport.hockey(11) 0.9418 29 
10 22 23 0.9477 30 
11 sci.electronics(13) 28 0.9504 31 
12 rec.autos(8) rec. motorcycles (9) 0.9549 32 
13 31 32 0.9618 33 
14 sci.crypt(12) 30 0.9710 34 
15 sci.space(15) 33 0.9796 35 
16 talk.politics.niideast(18) 34 0.9797 36 
17 35 36 0.9831 37 
18 sci.rned(14) 37 0.9859 38 
19 29 38 0.9908 39 

Table 5.7: Steps of the Single-linkage hierarchical clustering algorithm 



72 

- 
1 I 1 I I I I I I 

alUt 

Ill,. ret 

socrd 

pot.tui 

potmis 

ocicey 

potmid 

com.gep 

WtILX 

os.win 

ibm.brd 

mac.t,rd 

fll!1.51t0 

cLrtec 

recast 

rcc.mot 

ecLep 

scLmed 

baseball 

hockey 

Figure 5.5: Automatically generated hierarchy from 2ONewsGroups dataset 

systems, sport categories and also automobile and motorcycle categories are similar 

to each other. This means that our suggested way of creating hierarchy of classes 

makes conceptual sense. Figure 5.5 is the dendrogram that shows the process visually. 

Besides clustering of class labels and using the hierarchy for classification, as 

mentioned before, the created hierarchy could also be used for facilitating user queries 

after assigning labels to the larger categories in the intermediate levels. 

Authors of [58] proposed another way of measuring the similarity between classes 



73 

based on the linear discriminant projection; and based on their similarity measure, 

they create a hierarchy of classes. By cutting their created hierarchy, they cluster 

the dataset into 8 top level categories and compare. Further, they use the first 

1,000 words from the dataset according to the information gain for classification and 

report their accuracies. Table 5.4 shows their automatically created categories by 

linear projection. 

Group Members 
1 alt. atheism, talk. region. misc, talk.politics.guns, 

talk.politics. misc, talk.politics. mideas 
2 comp. os. mswindows. misc, comp. sys. i bm.pc. hardware, 

comp-graphs, comp. sys. mac. hardware, comp. windows. x 
3 sci.space, sci.med, sei.electronic 
4 rec. sport. baseball, rec. sport, hockey, rec. motorcycles 
5 misc.forsale 
6 soc. religion. christian 
7 rec. autos 
8 sci. crypt 

Table 5.8: 8 high level categories of 20NewsGroups dataset proposed in [58], created 
by linear projection. 

In order to compare our classification accuracy with the previous research in the 

area, we cut our hierarchy at an appropriate level to get 8 top level classes. Figure 5.6 

shows the same dendrogram of Figure 5.5. Top level categories are shown with 

different line styles. Cutting the dendrogram in order to get 8 top level categories 

is similar to executing only the first 11 steps of clustering in Table 5.4. The first 

two groups of classes are similar to each other in both approaches. The first group 

mostly belongs to classes related to politics and religion, and the second group is 

the group of computer related categories. Baseball and Hockey are both in the same 



74 

Group Members 
1 alt. atheism, talk. region. misc, talk.politics.guns, 

talk. politics. misc, soc. religion. christian, 
2 comp. os. mswindows. misc, comp. sys. ibm.pc. hardware, 

comp.graphs, comp.sys. mac. hardware, comp.windows.x, 
sci. electronic, misc.forsale 

3 rec. sport. baseball, rec. sport. hockey 
4 rec.autos, rec.motorcycles 
5 sci.med 
6 talk.politics. mideas 
7 sci.space 

8 sci. crypt 

Table 5.9: 8 high level categories of 20NewsGroups dataset created by our algorithm 
using Support Vector Regression Machine. 

categories in both tables. However, the linear projection approach also groups the 

rec. motorcycles class with these two while it doesn't seem to be relevant to these two 

topics. Our approach groups this class and rec.autos in one cluster, which makes 

much more conceptual sense. Linear projection groups all categories on science in 

one cluster, while in our clustering of subjects, each of these is a separate cluster 

by itself. From one perspective, we could consider them all science related topics 

that should be under the same categories; but from another perspective, lookin at 

the specific scientific topics we will realize that they are not related to each other 

whatsoever (Medical Science, Cryptography and Space). 

Comparing the accuracies of the classifier models created based on these cate-

gories could also give us a measure for the goodness of clustering. Authors of [58] 

have reported 96.3% as their best achieved accuracy with a Linear-SVM model cre-

ated from the first 1,000 words according to information gain. We achieved 98.05% 



75 

lLat 

lkyel 

soc.rel -  

poLgim -  

potmio 

ocLcy 

poLinid 

com.gfp 

WhLX 

os,nin 

ibmhrd 

machod 

misoale 

scl.dcc 

accout 

rcc.mot 

scLsp 

scimcd 

bascboll 

hockey 

I. 

I. 

._._.._._._._._._._._._._1 

Figure 5.6: Automatically generated hierarchy from 2ONewsGroups dataset 

accuracy using the same classifier model and our feature extraction technique, al-

together, there is no unique way of deciding which grouping of class labels makes 

more conceptual sense. However, our higher achieved accuracy could be an indica-

tor of better grouping of classes using the SVR-based distance measure presented in 

chapter 4. 



Chapter 6 

Summary, Conclusion & Future Work 

In this closing chapter we include a summary of what has been accomplished and our 

concluding remarks. The main points drawn out of the testing phase are presented in 

Section 6.2. Section 6.3 discusses some of the limitations and suggests some possible 

directions for future research. 

6.1 Summary 

In this thesis, we proposed a new general framework for document classification based 

on extracting features from different aspects of the document. We described how it is 

possible to apply the proposed framework to text and XML document classification 

problems. We extract from each aspect of the document a feature vector that repre-

sents the document in a compact format and captures valuable information that can 

be used later on to build an accurate classifier using any of the well known classifi-

cation techniques. One main advantage of this representation is that it converts the 

document classification problem to a classical classification problem that could be 

approached in many different ways using the extensive previous research in the area 

of classification. Although different types of documents have different elements, the 

only element which is in common among them is text. In this thesis, we proposed a 

novel approach for JR based classification based on word clustering and using each 

cluster as a feature. We took advantage of this compact feature based representation 

76 



77 

and also proposed a solution for automatically generating a hierarchy of subjects. 

Comparison of our results proves the validity of our approach. Experiments have 

shown that combining textual and structural feature spaces improves the accuracy 

due to a richer source of knowledge we feed to any optimum and efficient classification 

technique. 

6.2 Conclusion 

By running experiments on XML and text datasets, we evaluated the applicability 

of our proposed framework. First, we conducted experiments on XML datasets and 

performed feature extraction. In order to extract features from text and structure of 

the documents, we conducted experiments to find the optimal number of features to 

be extracted from each aspect. Concatenation of feature vectors combined with well 

known classification techniques was able to outperform XML document classification 

techniques that work solely based on either text or structure. Furthermore, we 

showed how our novel textual feature extractor is successful to supersede IRC text 

classification technique that considers words based on clustering of documents. We 

also ran extensive experiments on the 2ONewsGroups dataset and compared accuracy, 

memory requirements and also performance of our approach with Naive bag of words 

feature based representation of documents and observed great improvement in terms 

of all of the mentioned factors. 

After classification on 2ONewsGroups with all of the classes, we generated a hi-

erarchy of classes using our compact feature based representation of documents and 

the method proposed in Chapter 4 for hierarchy generation. From the generated 



78 

hierarchy, we identified 8 high level categories of the dataset. Interpretation of the 

generated results shows that our clustering of class labels makes conceptual sense. 

Besides conceptual interpretation, we also evaluated the generated hierarchies in 

terms of classification accuracy and showed how it results in more accurate classi-

fication compared to the most recent similar research in literature. Altogether, our 

text classification results on XML datasets compared with IRC approach, our fast 

and accurate classification on the 2ONewsGroups dataset compared to Naive bag 

of words approach and our high classification accuracy on 8 high level categories 

support the validity of our textual feature extraction. Experimental results on XML 

datasets also prove that the combination of our accurate text classifier with structural 

features extracted after frequent structural pattern mining results in a more accurate 

XML document classifier compared to previous approaches that mostly ignore one 

aspect of the document. 

6.3 Future Work 

This thesis mainly focused on creating a compact textual feature space from the 

original representation of XML documents and combining it with structural features 

extracted in the form of classifier rules. Our structural feature space construction 

could be also compressed by clustering of frequent structural patterns. For this 

purpose, it is necessary to define a similarity measure between sub-structures. This 

could be either done using the coverage of each rule on training documents which 

results in a high dimensional and sparse vector. Clustering of structural features 

based on this representation requires more sophisticated clustering algorithms such 



79 

as distributional clustering based on Information Bottleneck technique, otherwise 

using conventional clustering techniques does not seem to be promising according 

to high dimensionality and sparsity. Another alternative for clustering could be by 

considering every frequent structural pattern a word and repeating a similar process 

as we did for word clustering. Similarity measure for structural patterns could be also 

defined based on the similarity of tree structures. Investigating different alternatives 

for defining similarity between frequent structural patterns and using appropriate 

clustering technique in order to extract a compact structural feature vector for every 

document is one of the necessary extensions on the current work. 

Our textual feature vector construction focuses only on the bag of words represen-

tation, which has been the most popular document representation in the literature. 

However, semantical closeness of the words could also be used as a factor for both 

word vector formation and feature vector construction after word clustering. In-

corporating ontology in the process and considering semantical similarities between 

words and subjects could extend the scope of this work in order to create a feature 

vector that could be used in practical modern information systems. 

We have already evaluated the effectiveness of our approach on the 2ONewsGroups 

dataset, which is a multi-class document directory. However, most of the real world 

document directories, such as google directory, include documents that are multi-

labeled as well meaning that each document could belong to more than one category. 

This could also be done using SVR and using the membership probabilities in classes 

as an indicator of the membership degrees of documents in classes. 

Finally, online document classification is one of the requirements of every modern 

document classification system. Most of the existing search engines and information 



80 

systems explore the web using a crawler to discover new reachable documents from 

existing documents based on the links between them. With our feature vector rep-

resentation of text documents, we can easily extend the scope of this work in order 

to create an online document classification system by constructing feature vector 

for newly discovered documents which is consistent with the existing representation. 

Further, we can use documents that are predicted to strongly belong to one of the 

classes for future training and improving the current model by adding recently ob-

served words to the word set and dynamically grow the existing word clusters to 

include the new words. Each of these steps specifically, dynamically expanding the 

clusters requires extensive investigation and experiments which is beyond the scope 

of this thesis and will be our future research direction based on the current work. 



Bibliography 

[1] Extensible Markup Language (XML), Webpage: 

(http://www.w3schoo1s.com/XML/) 

[2] T. Bray, J. Paoli and S. McQueen: "Extensible Markup Language (XML) 1.0 

W3C Recommendation," W3C, Febuary, 1998 

[3] A. Cavoukian: "Data Mining: Staking a Claim on Your Privacy," Information 

and Privacy Commissioners Report, Ontario, Canada, 1998. 

[4] M. H. Dunham: "Data Mining: Introductory and Advanced Topics," Prentice 

Hall, 2002, 

[5] M. H. Dunham: "Data Mining Techniques and Algorithms," Prentice Hall 

Press, 2000. 

[6] J. Han and M. Kamber: "Data Mining Concepts and Techniques," Morgan 

Kanufmann, 2000. 

[7] S. K. Murthy: "Automatic construction of decision trees from data: A multidis-

ciplinary survey," Data Mining and Knowledge Discovery, Vol.2, No.4, pp.345-

389, 1998. 

[8] R. 0. Duda and P. E. Hart: "Pattern Classification and Scene Analysis," Wiley 

and Sons, Inc, 1973 

[9] M. A. Hall: "Correlation-Based Feature Selection for Discrete and Numeric 

Class Machine Learning," Proc. of ICML, pp.359-366, 2000. 

81 



82 

[10] J. Rocchio, Relevance feedback in information retrieval, In The SMART Retrival 

System: Experiments in Automatic Document Processing, pp.313-323 Prentice 

Hall Inc., 1971. 

[11] D. A. Hull, 1994. "Improving text retrieval for the routing problem using latent 

semantic indexing." Proc. of ACM SIGIR, Dublin, pp.282289, 1994. 

[12] S. DAlessio, K. Murray, R. Schiaffino, and A. Kershenbaum. "The effect of using 

hierarchical classifiers in text categorization." Proc. of the mt. Conf. Recherche 

dlnformation Assistee par Ordinateur, Paris, pp.302313, 2000. 

[13] S. Dumais and H. Chen. Hierarchical classification of Web content. Proc. of 

ACM SIGIR, Athens, pp.256263, 2000. 

[14] T. Joachims, "Text categorization with support vector machines: learning with 

many relevant features." Proc. of ECML, Heidelberg, pp.137142, 1998. 

[15] A. Silberschatz, H.F. Korth, S. Sudershan: "Database System Concepts," 

McGraw-Hill, Inc. New York, NY, USA, 1998. 

[16] P. Berkhin: "A Survey of Clustering Data Mining Techniques", Grouping Mul-

tidimensional Data, Springer Berlin Heidelberg, pp.25-71, 2006. 

[17] I. Guyon, A. Elissee: "An Introduction to Variable and Feature Selection" Jour-

nal of Machine Learning Research 8, pp.1157-1182, 2003 

[18] C. Romualdi, S. Campanaro, D. Campagna, B. Celegato, N. Cannata, S. Toppo, 

C. Valle, G. Lanfranchi: "Pattern recognition in gene expression profiling using 

DNA array: a comparative study of different statistical methods applied to 



83 

cancer classification," Journal of Human Molecular Genetics, Vol. 1, No. 8, 

pp.823-836, 2003. 

[19] L. M. Fu, E. S. Youn: "Improving reliability of gene selection from microarray 

functional genomics data," IEEE Transactions on Information Technology in 

Biomedicine, pp.191-196, 2003 

[20] M. Khabbaz, K. Kiamebr, M. Alshalalfa and R. Alhajj, "Fuzzy Classifier 

Based Feature Reduction for Better Gene Selection," Proceedings of the Inter-

national Conference on Data Warehouse and Knowledge Discovery, Springer-

Verlag LNCS, Regensburg, Germany, pp.334-344, 2007. 

[21] J.C. Bezdek, R. Ehrlich and W. Full, "FCM: The fuzzy c-means clustering 

algorithm." COMP. GEOSCI., Vol.10, no.2-3, pp.191-203. 1984 

[22] M.E. Futschik and N.K. Kasabov, "Fuzzy clustering of gene expression data." 

Proc. of IEEE FUZZ, pp.414-419, 2002. 

[23] M. Sasaki and K. Kita. "Rule-based text categorization using hierarchical cat-

egories." Proc. of IEEE mt. Conf. on SMO, pp.28272830, 1998. 

[24] K. Wang, S. Zhou, and Y. He. "Hierarchical classification of real life documents." 

Proc. of SIAM SDJVI, Chicago, 2001. 

[25] A. S. Weigend, E. D. Wiener, and J. 0. Pedersen. "Exploiting hierarchy in text 

categorization." Information Retrieval, 1(3):193216, 1999. 

[26] A. Sun and E. Lim, "Hierarchical Text Classification and Evaluation." Proc. of 

IEEE ICDM, pp.521-528, 2001. 



84 

[27] N. Fuhr and G. Weikum, "Classification and Intelligent Search on Information in 

XML." Bulletin of the IEEE Technical Committee on Data Engineering, 25(1), 

51-58, 2002. 

[28] M.J. Zaki and C. Aggarwal, "XRULES: An Effective Structural Classifier for 

XML Data." Proc. of ACM SIGKDD, pp.316-325, 2003. 

[29] M. Theobald, R. Schenkel and G. Weikum, "Exploiting Structure, Annotation, 

and Ontological Knowledge for Automatic Classification of XML Data." Proc. 

of WebDB, pp.1-6, 2003. 

[30] B. Liu, W. Hsu and Y. Ma: "Integrating Classification and Association Rule 

Mining," Proc. of ACM SIGKDD, 1998. 

[31] W. Li, J. Han and J. Pei, "CMAR: Accurate and efficient classification based 

on multiple class-association rules," Proc. of IEEE ICDM, 2001. 

[32] X. Yin and J. Han, "CPAR: Classification based on predictive association rules," 

Proc. of SIAM 8DM, 2003. 

[33] X. Wu, "An Inductive Learning System for XML Documents." Proc. of Inductive 

Logic Progra'inrnming, 2007. 

[34] M. J. Zaki. "Efficiently Mining Frequent Trees in a Forest," ACM SIGKDD, 

2002. 

[35] http://www.tartarus.org/ martin/PorterStemmer/index.html 

[36] http://www.lextek.com/manua1s/onix/stopwords1.html 



85 

[37] J. Punin, M. Krishnamoorthy, M. Zaki. LOGML: Log markup language for web 

usage mining. In WEBKDD Workshop (with SIGKDD), August 2001. 

[38] C. Aggarwal, S. Gates, P. Yu. On the merits of using supervised clustering to 

build categorization systems. SIGKDD, 1999. 

[39] http://www.cs.rpi.edu/ zaki/software/logml/ Last Accessed on Decem-

ber,9,2007 

[40] H. Lu, R. Setiono, and H. Liu, Effective data mining using neural networks, 

IEEE Trans. Knowledge Data Eng., vol. 8, pp. 957961, Dec. 1996. 

[41] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification 

and Regression Trees. Monterey, CA: Wadsworth International Group. 

[42] http://people.csail.mit.edu/jrennie/20Newsgroups/ 

[43] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami," Inductive learning 

algorithms and representations for text categorization," Proceedings of A CM-

CIKM, 1998. 

[44] Garboni, C., Masseglia, F., Trousse, B.: Sequential pattern mining for structure-

based XML document classification. In: Workshop of the INitiative for the 

Evaluation of XML Retrieval. (2005) 458-468 

[45] L. Candillier, I. Tellier and F. Torre, "Transforming XML trees for efficient 

classification and clustering." Proc. of Workshop of Initiative for the Evaluation 

of XML Retrieval. pp.469-480, 2005. 



86 

[46] P.F. Brown, et al. "Class-based n-gram models of natural language." Computa-

tional Linguistics, 18(4):467-479, 1992. 

[47] L. D. Baker and A. McCallum. "Distributional clustering of words for text 

classification." Proc. of ACM SIGIR, pp.96103, 1998. 

[48] R. Bekkerman, R. El-Yaniv, Y. Winter and N. Tishby. "On feature distributional 

clustering for text categorization." Proc. of ACM SIGIR, pp.146153, 2001. 

[49] N. Slonim and N. Tishby. "The power of word clusters for text classification." 

Proc. of ECIR, 2001. 

[50] S. Russell and W. Lodwick, "Fuzzy clustering in data mining for telco database 

marketing campaigns," Proc. NAFIPS, pp.720726, June 1999. 

[51] H. Shah, J. IJndercoffer and A. Josh, "Fuzzy clustering for intrusion detection 

Fuzzy Systems." Porc. of IEEE FUZZ, vol.2, pp.1274-1278, 2003. 

[52] http://people.csail.mit.edu/jrennie/20Newsgroups/ 

[53] S. Mitra, S. K. Pal, and P. Mitra. "Data mining in soft computing framework: 

A survey." IEEE Transactions on Neural Networks, pp.3-14, 2002. 

[54] I. Dhillon, S. Mallela and R. Kumar, "Enhanced word clustering for hierarchical 

text classification." Proc. of ACM KDD, pp.191-200, 2002. 

[55] F. Pereira, N. Tishby, and L. Lee. "Distributional clustering of english words." 

Proc. of the Annual Meeting of ACL, pp. 183190, 1993. 



87 

[56] A. J. Smola, B. Schlkopf, "A Tutorial on Support Vector Regression." Statistics 

and Computing Journal, pp.199-222, 2004. 

[57] A. K. Jam, R. C. Dubes, "Algorithms for clustering data." Prentice Hall: New 

Jersey, 1988. 

[58] T. Li, S. Zhu, M. Ogihara, "Hierarchical document classification using automat-

ically generated hierarchy," Journal of Intellijent Information Systems, pp.211-

230, 2007. 


