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Abstract

In this thesis we review the generalization to the Non-Abelian setting of the Kundt-
Newman substitution method for solving systems of coupled wave equations in two-
dimensional space, which appeared, in 1992, in the Journal of Physics in an article
by L. Bombelli, W. E. Couch. and R. J. Torrence. The original contribution of
this thesis is in the derivation of a particular Kundt-Newman potential sequence
whose terms can be expressed explicitly as a function of its index and for which the
associated wave equation has a solution in closed form. We constructed the solution

by finding a method of dimensional reduction of the wave equation.
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Introduction

In the presence of symmetries, many physical problems can be reduced to two di-
mensions. In this thesis we will discuss some of the methods for solving systems of
coupled wave equations in two dimensions. One can show that the system of coupled

wave equations can be represented by a partial differential equation:
(0uJoOy — J1)¥o =0

where the potentials Jy and J; are matrix functions of coordinates u and v. One can
recursively define a Kundt-Newman sequence of potentials {Ji} and an associated
sequence of wave equations {(9,Jik8, — Jr+1)¥x = 0}. This sequence of wave equa-
tions has the property that if a solution to one of the equation in the sequence is
known the solutions of the equations preceding it can be constructed from this known
solution and the potentials in the {J;} sequence. The recursive relation that is used
to construct the Kundt-Newman sequences is described in chapter 1 of this thesis.
Chapter 1 also covers the relationship between the Kundt-Newman sequences and
Toda lattices.

Since the Kundt-Newman sequence is defined by a recursive equation involving

the inverses of preceding potentials one often encounters two difficulties:

1. To decide whether or not a solution of the k-th equation can be expressed
in closed form, it may be necessary to know the potentials J; explicitly as

functions of the index k.

2. It may not be clear, how to proceed in constructing the sequence and relating

solutions if one of the matrices in the sequence {Jix} becomes singular.



In chapter 2 we will address first of the difficulties. We will show that for a
particular class of Kundt-Newman potential sequences one can find an explicit
formula for the potentials J in terms of the index k.

In chapter 3 we will answer the second problem for the particular class of poten-
tials that was derived in the chapter 2. We will show how the singularity of a matrix
potential in the Kundt-Newman sequence can lead to reduction of the number of
wave equations that have to be solved and how the solutions of the original and the
reduced systems can be related.

[n the chapter 4 we demonstrate how these methods of solving a system of wave
equations can be applied to the problem of finding solutions of the Schrodinger wave
equation.

In the conclusion, we present some of the open problems that may be of interest.



Chapter 1

Wave equation

The problem of solving the wave equation (i.e a hyperbolic partial differential equa-
tion) arises in many theoretical and practical settings in the investigation of physical
phenomena. The properties of the wave equation and its solutions are therefore of
considerable interest. In 141 dimensions, the wave equation can be transformed
into a form that allows generation of a sequence of wave equations, called a Kundt-
Newman sequence. In some particular cases the properties of this sequence can be
used to generate solutions to the original wave equation. The following sections sum-
marize some of the properties of this sequence discussed in [1] and [2], including its

relation to Toda lattice motions.

1.1  The right and left normal forms of the wave equation

Let gq5 be the Lorentzian metric and V, the induced covariant derivative on a 1+1
dimensional space-time. Then the homogeneous second-order linear wave equation

can be expressed in the form:
(g°(z°) Vo Vs + 24%(2°)V, + 2M(2°))¥ = 0 (1.1)

where a,b,c = 1,2 . The equation 1.1 can be transformed by appropriate coordinate

and gauge transformations into a form ( for more details see [2] and [1] ):

(8yJoBu — 1) = 0 (1.2)



(8,Jo8y — J1)To = 0 (1.3)

where 9, and J, denote the usual partial derivatives with respect to coordinates v
and u . Equations 1.2 and 1.3 are called the right and left normal forms of the
wave equation 1.1 . As obtained from the equation 1.1, equations 1.2 and 1.3 are
scalar equations. The results of this thesis shall be mainly concerned with their
generalization to the case when Jo, J1, Jo and Ji are matrices and ¥, and U, are
either vectors or matrices. All subsequent claims in this chapter, unless otherwise
indicated. are equally valid both in the commutative and non-commutative setting.
The potentials Jo,Jl,jo, J; in the right normal form and the left normal form are

related by:

Jo = J§t (1.4)

JoJl = Jo_lJl + BUJO‘IB,,JO (15)
and solutious of the equations 1.2 and 1.3 by:
\I’0=J0_l\ifo (1.6)

Note that the potentials are not unique. For example the following transformation

preserves the general form of the right normal wave equation:

J,o = U(u)JoV(v) (17)

\Illo = V'l(v)\Ilo (18)

More detailed discussion of the uniqueness properties of the right and left normal

forms can be found in 1] and [2].



1.2 Sequence of wave equations

A general solution to the initial value problem for equation 1.2 can be obtained as
a superposition of an outgoing and an incoming solution, where the incoming and

outgoing solutions are defined by:

Definition 1.2.1 ¥ is an incoming solution of the wave equation if U satisfies 1.2

and the initial value condition:

8. |yo = 0 (1.9)

Similarly, ¥ is an outgoing solution of the wave equation if ¥ satisfies 1.2 and the

boundary condition:

au‘pluzo =0 (1.10)

As was mentioned in the introduction to this chapter, we would like to use prop-

erties of a sequence of wave equations
{(0uJkBy — Jk+1) ¥ = 0} (1.11)

to generate a solution to the equation 1.2 . How such a sequence can be constructed

will become apparent from following claim.

Claim 1.2.1 Let ¥r_; be a solution of the initial value problem:
(Oudk-10u = Jk)¥ro1 =0, Ou¥r-1fo=0 =0 (1.12)
and let Jii1, Vi be defined by:

0, = /O"kak-ldv' , 8uTilumo = 0 (1.13)

Jey1 = JkJ,;-_IIJk - Jkau.],:la,,.fk (1.14)



Then Uy, is a solution of the initial value problem:
(0uJkOu — Jet1)¥e =0 , O9,VPi|y=0 =0 (1.15)
Proof: Integration of the equation 1.12 yields:
Jeo10u¥s_y = / JeWp_dv’ (1.16)
0
Then from the last equation and the definition of ¥, we get:
Ji-10,% oy = Jp ¥ (1.17)

On another hand, if we differentiate equation 1.13 with respect to v then solve for

¥_; and differentiate again with respect to u, we obtain:
OV = 8,,J,:‘8,,Jk\11k (1.18)
If we now combine equations 1.17 and 1.18 we get:

JeWe = Jeo10,Wioy = Jeo10uJ7 10,01V
= T (T 8B, T Wk — I I8, T )
= Jim1 I (0,0u Tk Wk — Tk Vi — Jiu i e W)
= Je1JTH0u[0uTk ¥k — Jka Vi) + Thuw Tk — Jkudi T Vi)

= S 7[00 Jk8.Tk] + Ji[0u I 0y T Pk) (1.19)

where we have used the notation Ji, = 9,Jx. The last equation can be expressed in
the form:
0 = 8,J0,Y; — (JkJ,:_lle — Jkaqu_Iaka)‘Dk

0 = (0yJiOu— [JkJ,:jIJk - JkauJ,:laqu])\I'k (1.20)



From equation 1.14 the last equation becomes:

(OuJiOx — Je41 )W =0 (1.21)

We will refer to the sequences of wave equations, potentials and solutions sat-
isfying the recursive relations of Claim 1.2.1 as Kundt-Newman sequences or KN
sequences. A similar result to the Claim 1.2.1 also holds for the left normal form of

the wave equation. Since the proofs are similar we will state it without proof.

Claim 1.2.2 Let ®r_; be a solution of the initial value problem:
(auLk-i-lav - Lk)q>k—-1 = y aqu—1|u=0 =0 (1-22)
and let Ly_y, P be defined by:

Le®e = /O"Lk@k_ldu' » Bu®kluco =0 (1.23)

Licv = LiLliglLe — Li0u L 0uLi (1.24)
Then ®, is a solution of the initial value problem:
(OuLlkOy — Lk1)®r =0 , 0, Pk|u=0 =0 (1.25)

As before the recursive relations of the Claim 1.2.2 define a sequence of Kundt-
Newman wave equations in left normal form, and the corresponding sequences of
potentials and solutions. The reason for choosing the indexing in decreasing order
will become apparent when we will discuss the relationship between wave equations
and Toda lattices, in chapter 2. A useful relation between solutions of the Kundt-
Newman sequence of wave equations in the right normal form can be derived by

considering the equation 1.13 .



Claim 1.2.3 Let {(0yJi-10u — Ji)¥i-1 = 0}2, be a Kundt-Newman sequence
Then
o = J7 0,105 0,d2 . .. I 0y Jns1 Wi (1.26)

Proof: If we take the derivative with respect to v of the equation 1.13 we obtain:
3y JkVk = JxWi_y , and hence Wy = J[19,J1¥, (1.27)
Then the claim holds for £ =1 . If we assume:
Qo = J10,NWJI5 0y .. . I 0,0, (1.28)
and substitute ¥, = J};8yJns1Tns1 . we get:

l]:"0 = J;lauJIJ{lavJZ e Jr:i}].aan*l \pn+1 (1'29)

As before, similar claim holds for the solution of the Kundt-Newman sequence in

the left normal form.

To see how Kundt-Newman sequence can be used to construct a solution of the
original wave equation 1.2 , consider the case when for some n > 0 we have J,o; =0
and Ji is invertible for 0 < £ < n. Then the sequence must terminate (on the right)

since equation 1.14 cannot generate J,;2. Recall, that by equation 1.17 we have:
JnOVy = Ju1¥n (1.30)

and hence 9,¥, = 0 .Then ¥, is an arbitrary function of v, ¥, = f(v). Referring

to the Claim 1.2.3 | the solution of the original equation can be expressed as:

Uy = J10, I 0,0z . .. I8, Ju f(0) (1.31)



Similarly, if there exists an m < 0 such that L,,_; = 0, we have left termination and

a solution to the equation 1.2 is g = L¢Py where
&y = Ll"lauLlL;lauLg o L7180, Log(u) (1.32)

and g is an arbitrary function of u. Since the potentials Ji. L, and the solutions

Uy, ®, of the wave equations in right and left normal forms are related by:
Jy=L;' and &, = J7'¥; (1.33)
if the sequence is double terminating, the general solution of the wave equation is:
U =Wy+ LoPo (1.34)

In the scalar case a Kundt-Newman sequence either terminates in a zero to the
right or left or both, or it never terminates. However, in the matrix case a reduction
problem naturally arises because from a given Jy and J; equation 1.4 may generate a
matrix J,4; which is nonzero but singular with r = rank(Jp4+1) < dim(Jpy1) = d so
that equation 1.4 cannot be used to generate any higher indexed matrix Ji. As Dr.
R.J. Torrence has pointed out, the natural question then is: Can we somehow use
the singular nature of J,;; to find a d — r dimensional solution to the equation 1.2
and find nonsingular matrices J, and Jn41 of dimension r such that equation 1.14
may be applied to generate Ji for n+2 < k from J. and jn+1 until the next matrix of
reduced rank is encountered and the process repeated? A similar reduction problem
can occur on the left. To state a proper reduction procedure in the general case may
prove to be difficult, but the particular Kundt-Newman sequences we find in this
thesis give rise to a nice, explicit reduction which meets all the intuitive requirements

which one wants to have in a solution to the reduction problem.
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1.3 A scalar example of terminating Kundt-Newman se-

quences

To illustrate some of the previous ideas we consider as an example the wave equation:

n(n+1)

(auau - m

)& =0 (1.35)

The equation 1.35 arises from separation of angular variables in the ordinary scalar
wave equation on Minkowski space-time and in several other spherically symmetric
problems (see e.g. [7. 8, 9]). Comparing 1.35 with the standard form of the wave
equationl.2, we can identify the potentials in this example as:

n(n+1) n(n+1)

Jo=1 ,and J; = wra)y? = 3 (1.36)
where r = v + u. Define p; = [[%,_«(n + i) , and note that:
[(n+k)(n+ 1~ k)~ 2k]p = pis1 (1.37)

Then the Kundt-Newman sequence of potentials {J;} can be expressed explicitly

as:

=2 for k>0 (1.38)

= 2
since this satisfies 1.14. Obviously the above equation holds for k=1 . If nis a
positive integer then p,yy =0, pn #0, Jo #0, and J,4; =0 . From the claim 1.2.3
we get that the solution to the equation 1.35 can be expressed as:

U = 0N 00 T, Juf(v)

n

= 7'2 31,1‘281, .o Tzau -f(—vz (1'39)

N —_— -,.271

o~

n

where f(v) is an arbitrary function of v .
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1.4 Relation of Kundt-Newman sequences to Toda lat-

tices

[n this section we would like to discuss the relationship between normalized wave
equations and Toda lattices [2]. A system of coupled second order differential equa-

tions:

Pyx = e~ {Ue—vk—1) _ o—(vk+1-vk) ke Z (1.40)

dt?

can be interpreted [6] as an infinite lattice of particles interacting exponentially with

the closest neighbor. An equivalent form to the equation 1.40 can be obtained by a

substitution:
d:
nk - _ﬂ . and mk — e_(yk-yk—l) (1.41)
dt
The equation 1.40 is then transformed into:
dnk dzyk
- _ — o ~yk) _ p—(vk—yk-1) — —
dt — dt2 — Y41 =Yk e k—Yk—1) — mk+1 my
dmy -
Mk — e‘(yk‘yk—l)(% _ %) = mk(nk — nk—l) (1_42)

dt dt dt

The above set of equations can be generalized to two dimensions [3]:
—Ounk = Mpy —my
Oy = mg(ng — ng_y) (1.43)
The last system of equations can be alternatively expressed as:
(0r —O)ne = mpyr —my
(0 + 8z)me = my(ng —nk-1) (1.44)
Under the coordinate transformations:

z=v+u ,and t=v-—u (1.45)
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A possible mechanical interpretation of the system 1.43 can be found in [4]. The
system considered above can also be generalized into a non-commutative setting. A
possible physical interpretation of such system is discussed in [5]. The generalized

system can be described by the system of equations:
(8 — O )Ny = My — My
(Bt -+ 8,)Mk = MiNgey — N My, (1.46)

As was shown in [2], there is a correspondence between the Kundt-Newman se-

quences of wave equations and Toda lattices.

Claim 1.4.1 Let {(9yJi0u —Ji+1)¥r = 0}, be a Kundt-Newman sequence of wave
equations and {J}2, the associated sequence of Kundt-Newman potentials. Then

Miy1 = J7 ey and Ny = J7'0,Jk, k € Z | satisfy the generalized Toda lattice

equation :
(at - 3,:)Nk = ."/[k+1 - ka
((?t + BI)A/[k = MkaH — N M, (1.47)
with
r=v+4+u ,and t=v-—u (1.48)

Proof: By the definition of the variables z and ¢ we have:
3, = (0 + 0;) (1.49)
Since My = J;'Jiy then:

(ar + at)Mk = aqu—leH.



13

= Ji e di 0otk — I 00Tk i

= lV[ka+1 — N My (1.50)
{Jr} is a Kundt-Newman sequence and hence:

J,:}‘Jk.{.l = J,:_IIJk - aqu_laka
l‘/[k = Mk_l - auNk

= ZWk_l + (at - ax)Nk (151)
The above equation can be solved for (8; — dz) Vi :

(8, - 6,.,)Nk = A/[k — A/[k—l (1.52)

A similar claim also holds for the Kundt-Newman sequence of wave equations in

the left normal form:

Claim 1.4.2 Let {(9uLiOy — Li-1)®r = 0}, be a Kundt-Newman sequence of
wave equations and {Li}i2, the associated sequence of Kundt-Newman potentials.
Then Miyy = Lif Ly and Ni = L;'0,Lk, k € Z , satisfy the generalized Toda lattice

equation :
(O + 0:)Ne = Mgy — M;

(6t - 6,,)Mk = NkMk — A/Ika_l (1.53)

with

z=v4+u ,and t=v-—u (1.54)
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In the case of antisymmetric Abelian Toda lattice motion two classes naturally
arise [2]. Referring to the notation in the equation 1.40 the two classes can be

characterized by following two equations:
Y-k = —Yr and y_x = —Yk-1 (1.55)

Motion satisfying the first equation can be interpreted as a lattice motion with a
center element and the one satisfying the second equation can be interpreted as
motion without a center element. Following [2] we will refer to the first class as self-
adjoint and to the second as almost self-adjoint. From the definition of n; and m;
(see equation 1.41) and from the first of the equations 1.55 we get for the self-adjoint

Toda lattice:

N = —Ng and M_f = Mk (1.56)
Similarly, for the almost self-adjoint case we have:
N_gp = —Nk-1 and Mo = Mg (157)

The equation 1.56 and 1.57 can be easily generalized to the non-abelian setting. If
we use the definitions as in the claim 1.4.1, then in the self-adjoint non-abelian case

the equations VN_p = — Ny and M_p = My, imply

Jox = J7t (1.58)
and in the almost self-adjoint case the equations N_y = —Nx_; and M_ = M,
imply

Jok =Jgh (1.59)

The scalar lattice generated from equation 1.36 is an example of a self adjoint

lattice.



Chapter 2

Kac and Kundt-Newman Sequences

An example of a Kundt-Newman one step terminating sequence of symmetric matri-
ces was given by Couch, Torrence and Bombelli in [2]. We would like to construct an
example of Kundt-Newman matrix sequence, which is not necessarily symmetric, and
terminates in more than a single step. To this end we would like to take advantage
of some of the properties of a Kac matrix sequence ...,Vg, J1, V1. /20, V3, J3,... . It
is known that the Kac sequence consists of two coupled Kundt-Newman sequences
{Vik} and {Ji}. In our approach, we will choose a simple sequence of Kundt-Newman
potentials {Vi} and show how to use these to obtain a more complex and interesting
sequence of potentials {Ji}. Depending on the choice of certain parameters, the se-
quence of potentials {J} can then be either terminated or reduced to a sequence of
lower dimensional matrices. We will make use of the one dimensional Kac sequence

and thus we take J, and Vi to be matrix functions of a single variable t.

2.1 Non-Abelian Kac Sequence

Definition 2.1.1 A matrir sequence {Vi,Ji} is a Kac sequence if the matrices Ji

and V. satisfy following recursive equations:

Jey1 = OV + Vka—IVk (2.1)

ath-H = Jk+1V;¢—1Jk+1—Vk+1 (2-2)

15
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Claim 2.1.1 Subsequences {Vi} and {Ji} satisfying the recursive equations 2.1 and

2.2 are Kundt-Newman sequences.

Proof: Recall, from section 1.2, that a matrix sequence { Mk} is a Kundt-Newman

sequence if it satisfies the equation:
M My = ML My, — 8. M0, M, (2.3)
To show that {V,} satisfies the above definition, take the partial derivative of both
sides of the equation 2.1 to obtain:
Odisr = OuVi+ 0:(Vi)Jr Vi — VRJT10:(JR)IT Vi
+Vid B Va) (2.4)
Solve equation 2.2 for Vi, and substitute for 8;.J;4; from the equation 2.4 .
Virr = Jenrt Vi et — Odien
= Jert Vi krr — OuVi — Q(Vi) I Ve + Vi1 0(Jk) T Vi
— ViJ710d(Vi)
= (OVi + I VR)VTH OVe + T Vi) — 8uVi — Bu(Va) I Vi
+ Vid ' 0e(Je) I Vi = Vi (Vi)
= —0uVi + (B Vi)V 0Ve + VI VeI Vi + ViJ10i(JR) I Vi
= —0uVi+ (BVR)V'OVi + VTV VA
+ Vi Y (T Vit e — Vi) Vi
= —0uVi+ (@W)VIVi + VI Vi (2.5)
Multiply equation 2.5 on both sides by V;~! . We obtain:

VitVipr = =Vi0uVi + Vi1 (B VR) VIOV + VL Ve
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= ViV — ((3Vi)aVe + Vi1 0u Vi)
= ViV — AV 0 k) (2.6)
Hence the matrix sequence {V;} is a Kundt-Newman sequence. The same result can

be obtained for the sequence of matrices {J;}. First, solve equation 2.2 for Vzy; and

differentiate both sides with respect to t, to get:
Vi1 = —=Oudkr1 + (Bedet)Vi kgt — T Vi L (O VRV gt + Tt VT (8 krt)
(2.7)

If we now substitute for 9;V; in equation 2.1, we obtain:

Jewr = = Oudi + (B J)V Ik — T Vili (Ve )Vili Tk

+ Vi (8edi) + Vid Vi

= = Oudk + (0 Je)Vi i Jk + VT4 (0eJk)
+ (Vi Tk = 8e i) IS W TRV Ik — 8 Jk)
— Vi (U — Ve I Vi ) Vith Ji

= = dudr + (i) I (O k) + T Vii Vit e
— LV (T = Ve I V=1 ) Vi e

= — Oudi + (0T (B Tk) + Tk Vi1 JeVie1 Ik
— VL Vi T + Ted 7 Tk

- - 3tth + (ath)J,:l(ath) + Jka—_Eljk (2.8)

As we did before in the case of the matrix sequence Vi , we can now multiply both

sides of equation 2.8 by J; ! .

J e = -J70udk + TN (8edk) I (8 k) + I e ity Tk



= JLJp — 8718k (2.9)

Equation 2.9 defines Kundt-Newman matrix sequence J; . Hence, the Kac sequence

consists of two coupled Kundt-Newman sequences Vi and Ji .

O

As the starting point in our construction of a new, interesting family of Toda

lattices {Jx} we choose n x n matrices Vp and V] to be:

Ll +1) 0 0
0 bL(b+1) ... 0
Vo=1,and V; = b +1) t% (2.10)
0 0 L(l.+1)

where I is the n x n identity matrix, and the [; are real valued parameters which
satisfy 0 < [, < [, € ... < 1 . With this choice of the matrices V5 and V; the

form of the k-th matrix in the sequence {V;} can be determined exactly.

Claim 2.1.2 Let {Vi.} be Kundt-Newman sequence of n X n matrices such that:
1
Vo=1 and V} = t—za.'z'ag(ll(ll + 1), L2+ 1),....0.(ln + 1)) (2.11)

Where I is the n x n identity matriz. Then Vi can be expressed as:

P - N : k :
Vi = tz—'; , where Py =diag( ] (h+1i), J[[ (e+7),.... [ (la+19) (2.12)
i=1-k i=1—-k i=1—k

Proof: For £ = 1 the matrix given by the equation 2.12 is obviously equal to V; .

Assume that Vi and Vi_; can be described by equation 2.12. Since

—2k(2k+ 1) +4E2 + (i +E) L +1-k) =+ k+1)(1; — k) (2.13)
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then:

— 2%(2k + 1)] + 4k*] + P PCY, = Pepy PO (2.14)

{Vi} is a Kundt-Newman sequence and hence:

Virr = =0V + (0Vi)V (8 Ve) + ViV Vi
= [—2k(2k + 1)] + 48T + PoPCY t2—1::3

_ ZI'Z% (2.15)

(]

Thus {Vi} is a trivial, diagonal matrix generalization of the scalar lattice 1.38 having
n such uncoupled lattices strung along the diagonal. We will use this {Vi} to find a
non-trivial, non-diagonal sequence of matrix potentials {J;} satisfying equations 2.1,
2.2 and 2.9 and expressed in closed form in terms of k,¢,(;, and arbitrary constant
parameters of integration.

For £ > 0, V. given by 2.15 is well defined at all points of the parameter space,
it is a solution of the matrix Toda lattice equations 2.6 at all points except those
having an integer value for some [;. At integer values some of the Vs for £ > 0
are not invertible and the corresponding equations from 2.1, 2.2, and 2.6 are not
defined. We shall show that the sequence {Ji} has the same property. Generation of
the complete sequences by equations 2.1 and 2.2 or 2.6 and 2.9 starting with £ =0
and k£ = 1 would not be possible in the integer case. In this sense {Vi} and {Ji}
provide an extension of sequences to real values of I’s from integer values and extend
the generation by the Kac and Toda equations from that possible with integer values.
In the next chapter we will use our extension to show how to obtain a reduction of

the Toda lattice {Jx} and the wave equation 1.2 in the integer case.
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When every [; is an integer, for £ > [, Vi and Ji have decreasing rank as &
increases and become zero matrices for £ > k;y + 1 . In that case our reduction

of the wave equation provides an n dimensional solution of 1.2. Thus we obtain a

generalization of 1.31.

To find the solution for Ji, we first consider following linearization of the equation
2.2. Let Jp = —Vk_l(atCDk)(I);l, then it follows from the equation 2.2 that:
ka;:.ll']k - ‘/k = —3th_1(8t<I>k)<I>;1
= —(0:Vi-1(8:®x))®;" + Vio1(0:9:)®5 ' (9:Bi) DL

—(0:Vi-1(0:®:)) @5 + Vi Ak (2.16)
and hence, we obtain a linear differential equation for ®:
at‘/k_laték = ‘/k@L (217)

We point out that this ansatz for Ji transforms equation 2.2 into the Kundt-Newman
sequence of wave equations with coefficients V. In our calculations we found it more

convenient to use the linearization
Jk = —"/k_l‘p,:lat‘llk (2.18)

Since dyJx = JiViZ  Jx — Vi then

T Vilide — Vi =0 Vi1 U510,
= —(8Vim1 V' Vi) Vic18: Uk — Vi1 UV 0: Vi1 0: Tk

= LViiJk = Via U Vi 0V 808y (2.19)
and hence we get a linear differential equation for ¥y :

0:Vie10.9, = Vi1 UV Vi (2.20)
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4

Since we chose the matrices Vi to be diagonal, the system of differential equations

2.20 is not coupled and the solutions can be found explicitly as we will show in the

following claim.

Claim 2.1.3 Let {Vi, Ji} be a Kac sequence where Vi is defined as :

P k ) k -
V;°=T: Py = diag( [] (L +7),-.-, II a+4) (2.21)
t i=l—-k t=1-k
detVi_1 # 0 and
Je = Vi1 9710, 0, (2.22)
then Uy has the form:
U = t5 (AT + %BkT_l) T = diag(t", ... t") (2.23)

Ar and By are arbitrary constant matrices.

Proof: The proof is a simple matter of showing that ¥y is a solution of equation 2.20

by direct substitution.

a
The matrices ¥ and ¥;_, can be related by following claim.
Claim 2.1.4 If Ji satisfies 2.1, 2.2, and 2.20 then ¥} = 29, ¥y, .
Proof: By 2.21 and 2.22 we have:
P, __
i = 5 Ui 0l (2.24)

Also J; satisfies:
Je = 0:Vier + Vier 78 Vi (2.25)
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Let U = t?*-2d, . If we substitute for ¥; in the equation 2.24, we obtain:

_(2k=2)P B

_ -1
Je = $2k—1 - tzk—zq)k 0: %

= ath—l - Vk—l‘p;lat@k (2-26)
If we compare equations 2.25 and 2.26, we get:
87100k = —J 4 Vi (2.27)

Since Ji_; can be expressed as:

P>

t2k—4

Jk—l = \D;_Ilag‘pk_l (2.28)

then by substitution into equation 2.27 for J;}; we get:
- 1 - - 9 :
;16,8 = t—z(atll‘k_l) "W PCL P (2.29)

It can be easily shown by substitution that &, = F%’&a,\pk_l is a solution of the last

equation for any invertible constant matrix Ni. If we now go back to how we defined

b we get:
2k—2

O = %20, = = N8 W,_, = £2NedeTs_, (2.30)

t2k—-4

Without loss of generality, we can take N, = [ since by equation 2.18 J; does not

depend on Ng.
a
It remains to satisfy the Kac equation 2.1 with {Vi} given by 2.15 and {Ji} by 2.22

and 2.23. It is clear from the form of Ji established thus far that imposing equation

2.1 will relate the constant matrices (A1, Brs1) to (Ak, Bx) and hence establish
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(A, Bx) as functions of (A;, By) for all £ > 2. Since 2.1 involves J; ! it appears that
the relationship of (A1, Bi+1) to (Ag, Be) will be complicated and iteration from
(A1, By) to (A, Bi) will compound the complications. However, we shall now show
that (A, Bi) is simply related to (A,, B;) and derive a simple, nice formula for Ji
as a function of ¢, A;, B; and k. To avoid confusion we will denote Ji considered as

function of Ax and Bji by Gy, so if ¥ and Vi are defined as in the claim 2.1.3 then:
Gr = —Vi197'0,9, ,and Ji = Gi(Ax, B) (2.31)

Claim 2.1.5 Let D be an nxn matriz, D = diag(ly,l2,...,1) , and let Py, Vi, Wi, Ji
be as defined in the claim 2.1.3 . If Gi(Ak, Br) = —Vie1 Vi (Ak, Bi)3: Ui ( A, Bi)
and J, = Gi(Ax, B) then

PP Py

Jey1 = 2 (Gr(Ax, Bi) - 'tzk—_l) (2.32)
where fik, Bk are n X n constant matrices:
Ar = Ap(kI + D) , and By = Bi(kI—D —1I) (2.33)

Proof: By claim 2.1.3, we have ¥ (A. B) = t*(AT + 1 BT~!). Where T is defined as
T = diag(th,tb,..., ti=) . Since T = 1 DT, then :

tk . -
0.V (Ag, Br) = ‘t_(Ak(kI +D)T + Biy(kI =D -DNT™ Y = %\Ifk(Ak, By)  (2.34)

By the claim 2.1.4, we have Uy, = t28,¥( A, Br) = tUr( Ak, Bi). Since,

P

Vit 0 e (2.35)

Jk+1 = -

then:

P . . -~ -
Josr = —22—:(t\pk(Ak,Bk))—lat(t\pk(AkaBk))



P o L. ..
- __2%(“[;,:(,4," By)) M t8: ¥k ( Ak, B) + Ui (Ax, Bi)]

pp_ Pect F
= Dl Petun (A, BodaalAn, Be) — B2
P P P,
= k k—l(Gk(Akak) t2:—l) (2.36)

O

To see how the equation 2.32 can be used to compute Jiy1, let Ay = Al and Br = Bi.

Applying the equation 2.32 recursively we obtain:

P P P -
Gi(A}, BY) = == 52(Ginr (AL, BY) — 7575 (2.37)
Defining A}_;,; and Bj_;., by:
_ k
A1 = Ak—inr H (41 + D)
J=k+1-1
. k-1
Bi_iv1 = Be—iva [ GI-D) (2.38)
j=k—1
we find Jiq4q to be:
P P - P
Jey1 = i k (Gk(Ak’BL) tz,lcc—i)

PP_ 2P,
= NG (AL, BEL) - )

PP iPy_;

= 2 (Gk—t+1 (Ak—x-l-l’ Bk—t+1) m)
kI
= t2k(G1 (A1, Bf) — <) (2.39)
Py IcI

Jerr = (A, Af, Bf) - _t—) (2.40)



where the matrices A¥ and Bf are:

k
Af=AJ[GI+ D)
Jj=1
k-1

Bf = B, [[(jI - D) (2.41)
Jj=0
and Ji(¢, Ay, B1) is given by:
1 1 —1y-1 1 -1 P

Equation 2.40 is our simple formula for J; and is the main result of this chapter.
To compute the matrices in the sequence {J,} we merely need to substitute into the
function J; given by 2.42.

It is clear from 2.1 and 2.2 that if V, and V; are given then all the matrices Vi
and J; can be generated from 2.1 and 2.2 (as long as the required inverses exist),
once the single differential equation 2.2 with £ = 0 is solved for J,. Hence, the only
arbitrary constant parameters on which Ji depends are the constants in V5 and W
and the integration constants in J;. We see that the expression 2.40 for J; agrees
with this fact. However, generation of J; via 2.1 and 2.2 from V5, V; and J; yields
such highly complicated expressions for Ji that it can only be carried out for small
values of k£ , whereas our method of solving all the differential equations 2.2 produces
the simple and useful formulas 2.23 and 2.40 valid for all £ > 0. The set of Jis given
by equation 2.40 can be extended to a full sequence {Ji} including negative values of

k by noting that the equation 2.1 with k = 0 implies Jo = J{' and then 2.9 implies:

Joe=Jgh (2.43)
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for all ¥ € Z which makes {J;} be a almost self-adjoint matrix Toda lattice as defined

in section 1.4. For the sequence {Vi} equation 2.6 implies:
Ve = V1 (2.44)

for all £ which makes {V;} be a self-adjoint matrix Toda lattice [4]. Of course, since
Vi is diagonal , {V;} is a trivial generalization of self-adjoint scalar lattices. {Ji},
however, is a nontrivial matrix generalization of almost self-adjoint scalar lattices

such as:

e = g = Ik (2.45)
The method of this section could easily be adapted to find a nontrivial self-adjoint
matrix Toda lattice. We need only choose Ji to be a diagonal matrix whose elements
are almost self-adjoint scalar Toda lattices of the form 2.45. Then in analogy to 2.22

the ansatz:

‘/k = Jk@;ilaték.*.l (2.46)

yields a solvable linear differential equation for ®44, thus determining Vi. We do
not carry out the calculation in this thesis. In this case Vi will satisfy V_x = V!
for all £ # 0, but we must take the solution of 2.1 with V5 # I in order to have
Vi non-diagonal. Thus, in using the Kac equations in generalizing the definition of

self-adjoint lattices to the matrix case we must drop the requirement that Vo = I.

2.2 An example of an explicit Kac potential sequence

In this section we would like to give an example how the claim 2.1.5 can be applied

to derive an explicit formula for the Kac sequence of 2 x 2 matrix potentials. Let us
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first consider the general form of the potential J;. From the claim 2.1.3 we have:

adj (¥,)

| —
det(Ty) 0:¥; , where U, =t(AT + tBT ) (2.47)

Jl = —\I’l-lag‘l’l =

Since a determinant of a matrix is a multi-linear function of its columns, then det(¥,)

can be expressed as:

det(¥,) = dothitiat? 4 g gh—leFl | g ple=litl 4 g 4—h—h (2.48)

do = do(A,B)=det([a1,as])
di = di(A, B) =det([a1, br])
d2 = d2(A, B) =det([b1,a2q])
dz = d3(A, B)=det([br,b2])
dy = d4(A, B) = det([ar,b])

d5 = ds(A, B) = det([ag, bg]) (2.4.-9)

where a,,a, and by, b, are the columns of matrices A and B, respectively. Next

consider the product adj¥,8,¥,. We have:
[adj¥18,¥,]; ; = det(M(z, 7)) (2.50)

where M(z,7) is the matrix ¥, with the i-th column replaced by j-th column of the

matrix 3;¥;. Since the matrices ¥; and 3;¥; are of the form

ayith* 4 byt agatl?t 4 byt~

=
Il
~~
[
[$)}
[
N

Aottt byt ™ty agatl2F 4 bypt 2

50 (L + L)anth — Lbt™ Y (14 l2)agat’? — lbypt=21 (2.52)
t¥1 — .
(14 h)ant"™ = Libat™" 71 (1 + l)aget!? — lpbyat 1271



then the elements of adj¥,8;¥; can be expressed as:

(‘I} a \I; ) d ¢ (1 + l]_ )autll et llbllt—‘l_l; algt““ + blgt_lz
10t¥1 )11 = €
(1 + ly)agth — libyt~17 1 a0t t! + byt~

= (]. + 11)d0t11+12+1 + (]_ + Il)dltll"l2 — Ild2t12—11 _ Ildst—lx—lz—l

— t_ll_lz-l[(]. + 11)d0t211+212+2 + (1 + l1)dlt2h+1 — Ild2t212+1 _ lld3]

(2.53)
(III 8.U ) det (1 + 12)012t12 —_ 12b12t—12-1; a12t17+1 + blzt-l2
10t¥1h2 = €
(1 4 lp)agat’? — lpbyat 271, agpt'2¥1 + byyt ™2
= (1 +2bL)ds (2.54)
(T,0,0,) det ay ttt byt (14 L)antht — byttt
10t¥1)2n = €
a21t11+1 + bglt_ll; (1 + ll)azltll t bglt-ll_l
= (1+20)ds (2.35)

antF + bty (14 b)agat’? — bt~ !
(¥10:¥1)2,2

agrt' T 4 byt (1 4 lp)agst!? — labgat 271
= (1 + L)dott2 ¥t — Lhd th 712 4 (1 4 1y)dat?™" — lpdat ™27t

— t"'ll_ll’_l [(1 + 12)d0t211+212+2 _ 12d1t211+1 + (1 + 12)d2t212+1 _ l2d3]

(2.56)
The elements of J; are then:
1 (1 + h)dot?1#2242 4 (1 + I)d 821+ — 11 d,pt?2*! — I 1ds
(Ju = —< (2.57)
$ d0t211+212+2 + d1t211+1 + d2t212+1 + d3
—(1 + 2ly)dst"r 2
(Ji)2 = (L+2b)ds (2.58)

d0t2l1+212+2 + d1t211+1 + d2t212+1 + d3



(1 + 2L;)d e+

(S)a = dot21+202+2 4, $2h+1 4 g2+l 4 d, (2.59)
L(1 + lp)dot?1+22%2 — [hd 21+ 1 (1 4 L) dat?2t! — Lydy

(Ji)2 = —= (2.60)
t dot211+2lz+2 + d1t2lx+l + d2t2[2+1 + d3

Since we now have a general expression for the potential J;(A, B), we can calculate
the potential J;(A¥, B¥). Observe, that the only parts of the matrix J; depending
on the matrices A and B are the functions d;(A, B),d2(A, B),...,ds(A, B). Define

functions eg(k), e1(k),- .., e13(k) as:

k k k—1
eolk) = JI[G+WG+k) ; ea)=JIG+h) [IG-1) (2.61)
=1 =0

ki:. k k-1 k—1
ek = JIG-WIIG+k) ; eak) =[G —0) [IG—8) (262)
7=0 =1 =0 3=0
k+1 k+1
es(k) = eo(k) H (Lh+7) ; es(k)=-e(k) H (L+7) (2.63)
j=1—k j=1—k
k k
esk) = —ex(k) [ (h+7) ; erlk)=—es(k) I] (h+5)  (264)
==k j=-k
k+1 k
es(k) = eo(k) I (+7) ; es(k) = —eulk) IT (L2 +7) (2.65)
y=1-k j=—k
k41 k
ero(k) = ex(k) JI (e+7) ; eu(k) = —es(k) I] (la+7) (2.66)
Jj=1-k 1=—k
k k k-1
en(k) = ] (+)IIG+0)IIG-h) (2.67)
j=1-k j=1 Jj=0
k k k-1
ewa(k) = [ (L+NIIG+0)JIG-10) (2.68)

j=1-k Jj=1 j=0
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Using the above definitions and the equation 2.40 we can express the elements of

Jr41 as:

J _ ]. 64(k)dot2[1+212+2 —+ 85(k)d1t2ll+1 + Cs(k)dgtﬂz-*-l + 87(k)d3
er ) =~ eo(k)dot2hi+22+2 1 ¢, (k)d 121+ + e5(k)dat?2*1 + e3(k)ds
(J ) _ —(1 + 212)613(k)d5t11+l2-2k

BHUIZ T o o(k)dot?ht2242 ey (k)dy 2t 4 ep(k)dpt?etl + e3(k)ds
(J ) _ (1 + 211)612(k)d4t1l+12_2k
RHLZL T oo (k) dot2+2242 gy (k)dy 22+ + ey(k)dpt22+] 4 ea(k)ds
1 Cg(k)dot2ll+212+2 + eg(k)d]_tzll-i-l + elo(k)d2t212+1 + eu(k)d3
(Jrt1)22

TTTS eo(k)dot?+22+2 ¢, (k)d1£2h+1 + ey(k)dyt2+1 + eg(k)ds
(2.69)



Chapter 3

Reduction of the wave equation and

Kundt-Newman sequences

3.1 Reduction

In this section, we would like to show how the problem of finding a solution to the
wave equation involving n X n dimensional matrix potentials can be reduced to a
problem involving potentials of lesser dimensions, when some of the I’s are integers.
In order to do this we first need to discuss some of the properties of the Kac sequences
we found in chapter 2. To simplify the notation, we will assume that in the definition
of the matrices V; the I's satisfy 0 < [, < l,_; < ... <, where [, is assumed to be
an integer. All the arguments, we will present, can be easily extended to the case
when 0 < [, < [y <...< ;. Recall that if [, is a positive integer then the matrix
Vi, +1 1s singular and matrices J; are invertible only up to k+1 = [, +2. The matrix

Ji4+1 can be written in the block diagonal form as:

err 0
/P Bl A A (3.1)
0 o0

where jr4+1 is 2 s X s matrix (0 < s < n). In our approach, we would like to lower

the dimension of the problem by relating solutions of the equations:
(3th3t - Jk+1)‘p[¢ = 0 (3.2)

(8eJk410: — Jep2)oen = O (3.3)

31



32

for some appropriate s x s matrix potential jr42. To show how the dimension reduc-

tion can be accomplished we will need the results of following claims.

Claim 8.1.1 Let l},1,,... 1, be such that, 0 < I, < l,_; <...<!l;y. Then

ik 0
Gu(Ax(kI + D), Be(k[—D —I)) = | ** for k=1l +1 (3.4)

al b

where ji is an (n — 1) x (n — 1) matriz and 0 is an n — 1 dimensional zero column

vector.
Proof: Let A = Ax(kI+ D) and B = Bi(kI — D — I) then
Gi(A, B) = —ViU7Y(A, B)3:Y«(A, B) (3.5)
where U = t&( AT+-:—BT‘1). To see what form Gr(A, B) takes, consider the product
U:Y(A, B)3, Y (A, B) (3.6)

in the definition of Gx(A,B). If £ = [, + 1 then the last column of the matrix
kI — D — I is a zero column. But then, the last column of the matrix ¥, and the
matrix J; ¥y are scalar multiples of each other. It follows that the last column of

¥;'9,, is a multiple of the last column of I. Hence by 3.5 G(A, B) is of the form :

Gu(A,B) =
al b

O

Up to this point, we have considered sequences of n x n matrices {J} and {Vi}.

Now, we show how to define lower dimensional (n — 1) x (n — 1) Kac sequences
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{ve}, {j+} which can be used to derive the solution to the original wave equation
with » x n matrix potentials when {Jr} becomes singular. In general to determine

the Kac sequence {v, jk} satisfying the equations:

Jetr = O+ veji ok (3.7)

Oejr+t = Jr+1Vf Jre1 — Uksr (3.8)

we need one pair of matrix potentials j; and one pair of the potentials vx. If [, is a
positive integer then:
M 0
J1n+2 = T (39)
00 0
where M is a (n — 1) x (rn — 1) matrix. A natural choice for one of the jis is then
Ji.+2 = M. The other j necessary to determine the sequence can be defined in

reference to the potential J;,4+,. Let the potential J;,4+; have a form :

a b
Ja41 = (3.10)
c d

where a is an (n — 1) x (n — 1) matrix. Define the (n — 1) x (n — 1) matrix potential
as :

Jta41 = (a — bd™1c) (3.11)

The {vi} sequence can be chosen to be the sequence of the upper (n — 1) x (n — 1)
blocks of the matrices Vi. Next we would like to show that our choices for the
starting points of the Kac sequence vy, ji satisfy the equations 3.7 and 3.8. Let us
first show that

Jint2 = OtVlag1 + Vigp1J] 31 Vint1 (3.12)
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The higher dimensional potentials satisfy:
-1

Jint2z 0 _ Oevi41 O 4| v 0|l|a b Vl,t1 (3.13)
0 0 0 0 0 0 c d 0 0
Consider J}, to have the form:
e f
Jh = (3.14)
g h
The upper (n — 1) x (n — 1) block of the equation 3.13 then satisfies:
Jtat2 = V141 + Vi 1€V, 41 (3.15)

Since e = (a —bd~'c)~! = j;}, then the equation 3.12 follows immediately. To prove
the second equation we cannot use the Kac equation for higher dimensional matrices,
since it is not well defined. We can, however, use the alternative equation derived
in the claim 2.1.5. To simplify the notation denote Jj, 41 = Gros1( Al 41, By, +1) The

higher dimensional matrices satisfy the equations:

Jiny2z O PPt Vi
Jisz = = L“t‘z_n_J,nH - 't“ (3.16)
¢ O
Jiitr = JiurtVi7 i1 — Vit (3.17)
From the claim 3.1.1, we have that .f,,,+1 is of the form:
. Jtatr O
Jln+1 = (318)
0 0

where jj,41 is an (n — 1) x (» — 1) matrix. If we consider the upper (n —1) x (n —1)

block part of the equation 3.17, we get:

OeJtatl = Jint1V Jlntl — Vlnt1 (3.19)
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Take the derivative of both sides of the equation 3.16:

-1
- plu Ipn ~ vln+1
Oejin+z = 3t(—:21 Tttt = =)

= jln+2vl-:;}f-ljln+2 — VI +2 (3.20)

Hence the reduced dimension matrices satisfy both Kac equations. Next we would
like to show how to construct a solution to the higher dimensional problem from
a known solution of the lower dimensional wave equation. To simplify the index

notation let m = [, + 1. Consider first following claim.

Claim 3.1.2 Let ¢ m41 be a solution of the equation

(OtJm+10 = jm+2)b1.me1 =0 (3.21)

and let
d1m = / T Im+101,mer1dl (3.22)
b2m = "/d-lcj;ljm+1¢1.m+1dt (3.23)

If 02, m+1 is an arbitrary function of t and

Jn ¢ m
g, = | ” cand Upp=| 0 (3.24)

¢2.m ¢2.m+1

then ¥, and V., are a solution of the equation J 0tV = Jm+1¥ms1-
Proof: Consider following equalities:

a b Il imt101,mt1
Jmat\pm = " "

c d d il me1P1,me1
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(@ = bd71¢)i M jmt+101,me1

(c—dd™'c)j  jmt101,m+1

jm+1 0 ¢1,m+1 -
= = Jmt1¥mt1 (3.25)

0 0 ¢2.m+1

Claim 3.1.3 [fU,,. U, are defined as in the previous claim, then they also satisfy

the equation:

atJm.{.l‘I’m.f.l = Jm+1\pm (326)

Proof: Since ji is a Kundt-Newman sequence then

Jm+z = —FJma1 + (Ome1)Ims1 (Bedme1) + Jma1dm Imsr (3.27)
and hence
Il ime1Otme1 = Jmprim+2®1me1 +j1;-1§-1(812jm+1)¢1,m+1
— I 1(Bedmt1)7 41 (Oeimt1) B1,meen (3.28)

Since &1 m+1 is a solution of the equation 3.21 then
jm+2¢1.m+1 = atjm+lat¢1,m+1 (3-29)
and hence the equation 3.27 will become:

Jmlimi1bimer = Jmp1(Oime18:b1mt1) + Jmia (02 im1) b1, m1
_j;li-l (BFm+1)Imi1 (OeFmt1) B1,m1

= atjr;-li-latjm+1 ¢1.m+1 (3~30)
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But, then :

3tjm+1¢1,m+1 = jm+1 /j;;ljm+1¢l.m+1dt = jm+1 ¢1.m (3-31)

Hence we have for the higher dimensional potentials:

atJ'n'l.-i--]. \I’m-i-l = Jm+1 lIJm. (3‘32)

If we, now, combine the results of the claims 3.1.2 and 3.1.3 it immediately follows

that ¥,, is a solution of the wave equation:

(atJmat - Jm+1)‘pm =0 (333)

3.2 An example of reduction

As an example of the methods discussed in the previous chapter let us consider the
2 x 2 case. We will first generate the sequences of potentials {Vi} and {vi}. For
simplicity we would like the potential sequences to terminate in few steps and hence
we choose low integer values for the parameters [; and l,. Let [; = 2 and I, = 1.

Then equation 2.12 gives:

X 10 o |20 |00
{V;:}k=0 = b} 3 v (3.34:)
01| |o2{|oo]||oo0

o

The matrix V3 is well defined in 2.12 but we could not have generated it from V,
and V] via Kac equations since V; is singular. We can now identify the first three
elements in the lower dimensional sequence of potentials as:

24
yand vy = — (3.35)

Uo=1 a1 = 4

]
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Given potentials v; and v,, we can use either the equation 2.5 or the equation 2.12
to generate vs. In either case, we will find that the lower dimensional Kac sequence
terminates i.e. vs = 0. Next we can consider the sequence of potentials {J.} and

{7k} In the equation 2.23, we can make following choices for the constant matrices:

10 1 2
B= ,and A= (3.36)

2 1 11

If we now use the equation 2.22 to generate J;. We obtain:

__3t8-3t5—6t342 6t
t9—t643t4—¢ t8—t54383-1
J1 = (3.37)
_ 5¢3 _2t843466341
B3 -1 96434t

To determine the next two potentials we can use either the equation 2.40 or the

equation 2.1. In either case, we obtain:

144472547283 412 72t ___240
6114318121623 6t84315—-1283-2 28541 s
Jo = ;,and J3= (3.38)
60¢ _ 36t5-72 0 0
6t84+3t5~12t3-2 6t84315~1283-2

Using the equations 3.9 and 3.7 we can identify by examination of the potentials J;
and J3 the lower dimensional potentials j» and j3 as:

24¢° +12 . 240
- ;and  j3 = —

T E+1 (3.39)

If compute the next potential j;, we will find that the sequence {j;} terminates i.e.

j+ = 0. But then the equation
(0eja0: — ja)ib3 =0 (3.40)
can be easily integrated to find the solution for 13 :

Y3 =cr—c; (t°+3¢) (3.41)
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where ¢; and ¢; are arbitrary constants. The solution of the equation 3.40 can be then

used to construct a solution of the problem involving higher dimensional potentials:
(athat - Js)‘pg = 0 (3.42)

by taking advantage of the relationships given by equations 3.22 and 3.23. If we let

m =2, &1 m+1 = Y3 and substitute into 3.22, 3.23 we will get:

—[a ity 93— t8—6cy tA 420 12 dt
4t10448541

—f 5¢; 80415¢ 255 tt dt
128104128543

_2ct'425¢ _ c t5 + 192c,

- 46542 (343)
25¢it—c2 25t c
6t5+3 3 3

We have previously shown that the sequence {Jx} is a Kundt-Newman sequence

and hence using the equation 1.26 we get:
U, = J;18,J,0, (3.44)

If we substitute in the equation 3.47, we get:

2¢) 13461 £19412¢1 8 =22 t7—6c1 t5—(2c3+¢2 ) t1+18 ¢ 343
- 61943161214 —-2¢
U, = " (3.45)
10c; 843 c3t7—5¢; t54+5¢; 3—(6c3+2c2) 2+ o
618 F3t5—12t2—2

where W, is the solution of wave equation:
((9:J13t - Jz)‘I‘l = 0 (3.46)
The calculation could be continued further to determine ¥y using the equation:

To = J16 T, (3.47)



Chapter 4

Multichannel scattering and Kundt-Newman

sequences

Consider the matrix Schrodinger wave equation:
BV -V¥ =K (4.1)

where the wave number matrix K = diag(k1, k2, .. ., kn) is such that k& = k2 +62 and
the potential matrix V' is symmetric. This type of matrix Schrodinger equation arises
in problems of multichannel scattering of particles without spin. In this chapter we
consider a special case of the equation 4.1 for which the wave matrix K is such
that A2 is a multiple of the identity and hence commutes with any matrix. It was
suggested in [2] that the method of terminating Kundt-Newman sequences could
be used to derive solutions of the equation 4.1. A class of potentials V for which
there are known exact solutions was presented in [10]. We would like to examine
a simple potential from this class to determine whether or not it can be related to
a class of one step terminating symmetric Kundt-Newman potentials and compare

the corresponding solution sets.

40
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4.1 One step terminating Kundt-Newman potentials and

the Multi-channel problem

In this section we will summarize some of the properties of self-adjoint one step
terminating Kundt-Newman sequences presented in [2]. In general the potentials in
a self-adjoint Kundt-Newman sequence are related by J_x = J;-! which immediately
implies that Jo = I, where [ denotes the n x n identity matrix. The sequence of
matrix potentials {J;} terminates in one step if J, = 0. Hence one step termination

implies that the equation 1.14 has, for £ = 1, the following form:
le - J13,.J1"18,J1 = 0 (42)

where J; is considered to be a symmetric matrix function of a single coordinate r.
Multiplying both sides of the equation 4.2 we obtain a termination condition on the
matrix potential J;:

J1 = arJflarJl (4.3)

Since J; in the above equation is symmetric then:
0-(JTto,Jy) — 0.((8; W)JY) = Jp — 1T =0 (4.4)

Integrating both sides of the equation 4.4 gives us another termination condition on
Jli

JTHO ) — (B )Tt =R —Jf=C (4.5)
where C is a constant antisymmetric n X n matrix. Note that the matrix C is

invariant under similarity transformations of potential J; by constant matrices.
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The coordinates u,v in the equation 1.14 and the coordinates r,t in the equation

4.2 are related by:

u+v=2r and u—v=2t (4.6)

Then the partial differential operators satisfy:
8, =0,+8 8,=0,—9; and 8,0, =0—8? (4.7)
When u. v and Jp are defined as above, for £ = 0 the wave equation 1.12 becomes:
(97— 0f — J1)¥o =0 (4.8)

Since the sequence {J; } is terminating the solution ¥q can be derived by the methods

described in previous sections. We have:
\IIO = Jl—larle(T’ + t) (4.9)

Let A(r +t) = eB*%) and let £ = —1e=B(+) | for any constant n x n matrix B.

From the equation 4.8 it follows that for any t, ¥q satisfies:
02Wo = J1 ¥ + UoB? (4.10)
Further more, the potential J; can be expressed as:
J1 = =20,V F (4.11)
The following claim is a matrix generalization of some of the results in [11].
Claim 4.1.1 Let G be a matriz solution of the differential equation

0’G =VG + GB? (4.12)
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where V is a matriz function of r such that
V=-20.GE and 0.E=—BE (4-13)

and B is a constant matriz. Then F = [[+iG(K +iB) 'E]e’R™ is a solution of the

differential equation:

O*F —VF = —-FK?* (4.14)
Proof: Proof is a simple matter of substituting for F' in the equation 4.14

O

Since in our case K? commutes with the matrix F, then F is also the solution for
the Schrodinger differential equation 4.1. Hence if the potential V in the equa-
tion 4.1 is one step terminating Kundt-Newman potential then the solution to the
Schrodinger equation 4.1 can be found using the claim above and the properties of
Kundt-Newman sequences. Note that in the case when K? is a multiple of identity
the Kundt-Newman potentials are independent of the matrix B and the matrix B
is independent of the wave number matrix K. In the next section we will show that

this is not true for Cox’s potentials.

4.2 Cox’s matrix potentials

In this section we describe class of potentials V, presented in [10], with known exact
solutions. We will show that if K2 is a multiple of identity then these potentials are
contained in the class of one step terminating Kundt-Newman potentials . Cox’s
potentials involve a parameter ¢. It is our conjecture that this parameter determines

in how many steps the potential terminates. Since we are considering only one step



44

terminating potentials we assume for rest of this section that ¢ = 1. Then Cox’s

matrix potential can be expressed as:
V =2EY T(AB+BA)Y'E (4.13)

where A is an n x n invertible constant matrix. The matrix B is diagonal such that
if B = diag(by, ba, - ..,bs) then 82 = b2 — 62 for i = 1,2,...,n. The constants §; are
same as in the definition of the wave number matrix K in the equation 4.1. Since
the matrix K2 is a multiple of of identity then §2 =0 for i = 1,...,n and the matrix
B? is then also a multiple of the identity matrix. The matrices £ and Y are defined

as:

1
E=¢? and Y=I-;B"'e?"4 (4.16)

Since the definition of V involves Y ! then the constant matrices A and B have to

be such that Y is non-singular. Let G = FAY 1, then
U = [[ +iG(K +iB) " E]e'r (4.17)

is Cox’s solution of equation 4.1. Since B? commutes with any matrix, it can be
easily shown that the above G satisfies equations 4.12 and 4.13 in the claim 4.1.1
and the potential V also satisfies the termination condition 4.3. It was determined
by direct calculation that in the case of general 2 x 2 Cox’s potential the matrix C
in equation 4.5 is zero. Since an example of one step Kundt-Newman terminating
potential with C % 0 was presented in [2], Cox’s potential is not the most general

one step terminating potential.



Conclusion

In the conclusion to this thesis, we would like to present some of the open problems
that we encountered and which may pose interesting topics for further research.

One of the main results of this thesis was the construction of a non-trivial Kundt-
Newman matrix potential sequence {Ji} which we were able to explicitly describe
in terms of the variable ¢ and the index k. To construct the {J;} sequence we used a
trivial generalization of terminating scalar Kundt-Newman potential sequence to di-
agonal matrix sequence {V;} and the Kac coupling of two Kundt-Newman potential
sequences. The diagonal potential sequence, {Vi} we used, was self-adjoint. It may
be of interest to carry out the construction based on 2.35 mentioned in chapter 2
using a diagonal almost self-adjoint potential sequence.

One can also consider whether or not it is possible to use the Kac equations
and the non-trivial Kundt-Newman sequence {Ji} again to derive further examples
of Kundt-Newman sequences which could be determined explicitly in terms of the
index. One candidate for this is 2.10 with t replaced by cosht. With this modification
the diagonal elements of V] are still terminating when values of lis are integers.

Of particular interest is also the reduction method of the chapter 3. It would
be interesting to find further examples of Kundt-Newman sequences for which one
could apply this method of generating solutions to wave equations.

In the chapter 4, we were considering application of the Kundt-Newman substi-
tution method to the Schrodinger wave equation. Our attention was restricted to
the case when all channels have the same energy i1.e. the square of the wave number

matrix was a multiple of identity. At present, it is not quite clear if one can use
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the same approach to derive the solutions in the case of an arbitrary wave number

matrix.
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