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Abstract 

Background: Genetic variation databases provide invaluable information on the presence and frequency of genetic 
variants in the ‘untargeted’ human population, aggregated with the primary goal to facilitate the interpretation of 
clinically important variants. The presence of somatic variants in such databases can affect variant assessment in undi‑
agnosed rare disease (RD) patients. Previously, the impact of somatic mosaicism was only considered in relation to 
two Mendelian disease‑associated genes. Here, we expand the analyses to identify additional mosaicism‑prone genes 
in blood‑derived reference population databases.

Results: To identify additional mosaicism‑prone genes relevant to RDs, we focused on known/previously established 
ClinVar pathogenic and likely pathogenic single‑nucleotide variants, residing in genes associated with early onset, 
severe autosomal dominant diseases. We asked whether any of these variants are present in a higher‑than‑expected 
frequency in the reference population databases and whether there is evidence of somatic origin (i.e., allelic imbal‑
ance) rather than germline heterozygosity (~ half of the reads supporting alternative allele). The mosaicism‑prone 
genes identified were further categorized according to the processes they are involved in. Beyond the previously 
reported ASXL1 and DNMT3A, we identified 7 additional autosomal dominant RD‑associated genes with known 
pathogenic single‑nucleotide variants present in the reference population databases and good evidence of allelic 
imbalance: BRAF, CBL, FGFR3, IDH2, KRAS, PTPN11 and SETBP1. From this group of 9 genes, the majority (n = 7) was 
important for hematopoiesis. In addition, 4 of these genes were involved in cell proliferation. Further assessment of 
the known 156 hematopoietic genes led to identification of 48 genes (21 not yet associated with RDs) with at least 
some evidence of mosaicism detectable in reference population databases.

Conclusions: These results stress the importance of considering genes involved in hematopoiesis and cell prolifera‑
tion when interpreting the presence and frequency of genetic variants in blood‑derived reference population data‑
bases, both public and private. This is especially important when considering new variants of uncertain significance in 
known hematopoietic/cell proliferation RD genes and future novel gene–disease associations involving this class of 
genes.
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genes, Clonal hematopoiesis of indeterminate potential (CHIP), Cell proliferation
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Introduction
The advent of high-throughput sequencing created a 
revolution in the discovery and diagnostics of Mendelian 
diseases [1, 2]. Large amounts of genomic data obtained 
by exome sequencing (ES) and genome sequencing (GS) 
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are continuously being aggregated to assemble cata-
logs of ‘normal’ human variation (i.e., a population not 
affected by severe pediatric conditions or an untargeted 
population). Examples of such publicly available refer-
ence population databases (all blood-derived) include: 
Exome Aggregation Consortium (ExAC, 60,706 exomes; 
now merged with the Genome Aggregation Database, 
gnomAD) [3, 4], gnomAD (v2.1.1 with 125,748 exomes 
and 15,708 genomes and v3.1 with 76,156 genomes) [4], 
DiscovEHR (50,726 exomes) [5] and the TOPMed project 
BRAVO dataset (> 100,000 genomes) [6].

A powerful way to deprioritize potentially non-con-
tributing variants in patients with undiagnosed Mende-
lian diseases is to assess their presence, frequency and 
corresponding genotypes in such reference population 
databases [1, 3, 7]. A variant present in reference popu-
lation databases with a higher-than-expected frequency 
for the disease being investigated is considered important 
support for a benign interpretation [8, 9]. In the past few 
years, these databases have also been utilized to under-
stand and estimate penetrance in Mendelian disease [1, 7, 
10], as well as gene properties (e.g., a gene’s tolerance for 
loss-of-function (LoF) variants calculated as constraint 
scores [3, 4]).

While reference population databases offer great power 
for variant interpretation, the information these data-
bases contain and their limitations need to be well under-
stood to ensure appropriate use. For example, public 
reference population databases may contain data on some 
individuals who are not healthy despite the efforts to 
exclude all individuals with severe pediatric disease (e.g., 
individual phenotype data may not be fully consented 
for sharing or carrier individuals may be included due to 
incomplete penetrance, variable phenotypic expressivity 
or late disease onset). Moreover, both public and private 
reference population databases may contain variants of 
variable quality due to sequencing errors, and despite 
attempts to apply various filtering strategies for quality 
control, they may persist and in some instances com-
plicate analyses. Importantly, all of the currently avail-
able public reference population databases also suffer 
from ancestry and diversity biases and hence the efforts 
to increase the diversity. Some examples of such efforts 
include the Silent Genomes Indigenous Background Var-
iant Library (IBVL; https:// www. bcchr. ca/ silent- genom 
es- proje ct/ ibvl), the Greater Middle East Variome project 
(GME) (http:// igm. ucsd. edu/ gme/) and the Iranome pro-
ject (http:// www. irano me. ir/). Currently, the reference 
population databases are based on blood-derived DNA, 
due to the ease of data collection and quality. Here, we 
explored the blood-derived reference population data 
for the presence of somatic variants and their potential 
impact on diagnostics of rare genetic diseases.

Somatic mutation burden is known to increase with 
age [11], and somatic variants have also been shown to 
arise in healthy tissues, especially in those with a rapid 
turnover such as blood, which has a high mutation load 
compared with other tissues [11–13]. The function of 
the genes implicated in mutation load has been asso-
ciated, not only with healthy tissues, but also with can-
cer mutagenesis [11]. The variants that confer a growth 
advantage may allow for ‘clonal expansion’ of a sin-
gle mutant blood cell, referred to as age-related clonal 
hematopoiesis (ARCH), or clonal hematopoiesis of inde-
terminate potential (CHIP) [14] (Fig.  1). This results in 
the propagation and accumulation of driver variants 
which can be detected using high-throughput ES and GS 
data. Sequencing data underlie the reference population 
databases, and thus, such driver variants may become 
part of the dataset, potentially complicating variant inter-
pretation (Fig. 1) [7, 15]. Driver variants have previously 
been described as ‘having such a large impact on fitness 
that they do not commonly occur in the germline DNA 
of populations’ [16]. These types of variants (referred to 
as cancer drivers) have been widely investigated in cancer 
but may also be the cause of some Mendelian diseases in 
rare instances when they occur in the germline [17].

Previously, others [15] and we [7] reported unexpected 
presence of ASXL transcriptional regulator 1 (ASXL1) 
nonsense variants in ExAC. This was unexpected as 
ASXL1 haploinsufficiency has been implicated in severe, 
pediatric, autosomal dominant (AD) disease, Bohring–
Opitz syndrome (BOPS [MIM: 605039]). The presence 
of such ASXL1 variants in non-BOPS individuals has 
not been described (i.e., complete penetrance) [7, 9, 15]. 
Closer inspection of the ExAC dataset suggested that the 
pathogenic ASXL1 variants observed in ExAC individu-
als are of somatic rather than germline origin, likely as a 
consequence of CHIP [7, 15]. To further understand the 
effect of mosaicism in blood-derived data and its impli-
cations on variant assessment using either public or 
private reference population data, we searched for addi-
tional AD, early onset, severe diseases, like BOPS [MIM: 
605039], where well-established pathogenic variants have 
a higher-than-expected prevalence in a reference popula-
tion database. Albeit the ExAC database has been merged 
with the gnomAD database, we decided to use ExAC 
(v 1.0) for our core analyses. This decision was made to 
avoid filters applied to gnomAD after the initial publica-
tion on ASXL1 [7, 15] and to get a complete overview of 
the presence of somatic variants in reference population 
databases, as some private databases do not use as strin-
gent filtering criteria as those applied in gnomAD.

The main goal of our study was to understand the 
extent of mosaicism in unfiltered data, so that this knowl-
edge can be generally applied to blood-derived reference 
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population databases (public or private) regardless of fil-
tering strategies and thus improve reliability of variant 
prioritization workflows.

Here, we identified additional known AD rare disease-
associated genes prone to acquiring somatic variants. 
Our work provides important insights on types of genes 
that may cause severe pediatric conditions when altered, 
yet where somatic mosaicism in a reference population 
may affect variant assessment.

Results
Genes associated with autosomal dominant diseases 
and the presence of ClinVar pathogenic and likely 
pathogenic SNVs in the ‘untargeted’ population
To learn more about the extent of somatic mosaicism in 
blood-derived reference population data and its poten-
tial effect on variant assessment of early onset, severe AD 
diseases like BOPS [MIM: 605039], we first assembled a 
list of 1388 genes implicated in 2010 AD diseases (Addi-
tional file  1: Table  S1) which we refer to as AD genes. 
Using this information, ClinVar [18] pathogenic and 
likely pathogenic SNVs residing in these 1388 AD genes 
were compiled. Then we asked whether any of these 
SNVs were present in the reference population database 

ExAC [7]. We decided to use ExAC (v 1.0) rather than 
gnomAD as our goal was to understand the extent of 
mosaicism in unfiltered data. This would make our find-
ings more globally applicable to both public [3, 4, 19] and 
private reference population databases (https:// www. 
bcchr. ca/ silent- genom es- proje ct/ ibvl) regardless of the 
presence and quality of currently used filters.

We identified 664 ClinVar pathogenic and likely 
pathogenic SNVs that are present in individual exomes 
aggregated in the ExAC database (Additional file  1: 
Table S2). These SNVs resided in 353 AD genes asso-
ciated with 390 AD diseases (Fig.  2; Additional file  1: 
Table  S2 and Table  1). Next, we applied the criteria 
adopted from Chen and associates [10] (Additional 
file 1: Table S7) to focus on AD diseases characterized 
as early onset with severe outcomes (with scores of 1 
and/or 2) where the presence of pathogenic genotypes 
in reference population databases could lead to diffi-
culties in variant interpretation and/or delays in diag-
nosis [7]. The majority of the 390 diseases (~ 80%) was 
associated with milder or not obvious/life-threatening 
phenotypes and/or was not early onset (Additional 
file  1: Table  S2) which could explain the presence of 
individuals with disease-associated genotypes in the 

Fig. 1 Clonal expansion in Clonal Hematopoiesis of Indeterminate Potential. A Somatic driver mutation acquired by a hematopoietic stem cell 
leads to clonal expansion in the peripheral blood. The mutant clone becomes more abundant in the blood samples, taken as the source of DNA 
for sequencing. B Allelic imbalance as seen in the Integrative Genomic Viewer [37], compared with the examples of true homozygosity and 
heterozygosity. Recent studies [7, 15] showed that allelic imbalance can be used as an indicator of variant somatic origin

https://www.bcchr.ca/silent-genomes-project/ibvl
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Page 4 of 13Avramović et al. Human Genomics           (2021) 15:71 

ExAC population. However, we found that 115 of the 
664 (~ 17%) ClinVar pathogenic and likely pathogenic 
SNVs present in the ‘general’ population (based on 
ExAC) resided in 72 genes which were associated with 
76 AD early onset conditions, with phenotypes being 

severe or severe with variable expressivity (Additional 
file 1: Table S3 and Table 1).

Fig. 2 Variant extraction and processing workflow. The extracted variants, present in Exome Aggregation Consortium (ExAC) [3], were assessed 
for supporting evidence in the current literature (PubMed peer‑reviewed articles) and subsequently, for the ratio of reads using the Integrative 
Genomic Viewer (IGV; used as an indicator of somatic evidence) [37]. For the final nine genes associated with early onset, severe Mendelian diseases 
and with good evidence of somatic mosaicism, the assessment of allelic imbalance was compared with gnomAD data [4] (Additional file 1: Table S4)
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Genes associated with early onset, severe autosomal 
dominant diseases prone to somatic mosaicism and their 
association with hematopoiesis, proliferation and cancer
Each of the 115 ClinVar pathogenic and likely patho-
genic SNVs was assessed to determine whether any of 
them displayed evidence of somatic mosaicism. Our 
assessment revealed that at least one SNV in 21 of the 72 
genes associated with early onset, severe AD conditions 
displayed allelic imbalance (Additional file  1: Table  S3; 
Table  1). Nine of those AD genes, including the known 
genes ASXL1 and DNMT3A, showed the presence of 
allelic imbalance in two or more alleles, which we define 

as good evidence of somatic mosaicism (Table  2). The 
data on age distribution showed that the vast major-
ity of the SNVs that have alleles with imbalanced read 
ratio come from individuals older than 40  years of age 
(Additional file  1: Tables S3 and S4). Only 5 of the 30 
SNVs that show allelic imbalance in ExAC (Additional 
file  1: Table  S3) have alleles that come from individuals 
younger than 40  years of age. Further analysis of those 
nine AD genes with good evidence of somatic mosaicism 
revealed that most of them (seven genes) play some role 
in hematopoiesis (as presented in Table  2 based on our 

Table 1 Summary of analyzed genes, genetic variants and the associated autosomal dominant (AD) diseases

*AD conditions with ClinVar pathogenic and likely pathogenic ClinVar variants in ExAC (Additional file 1: Table S2)

**Severe and early onset AD diseases with ClinVar pathogenic and likely pathogenic variants in ExAC (Additional file 1: Table S3)

***Severe and early onset AD diseases with ClinVar pathogenic and likely pathogenic variants in ExAC with some evidence of allelic imbalance (at least one allele was 
found with < 35% of read support; Additional file 1: Table S3). Nine of these genes have evidence of mosaicism (at least two alleles show signs of somatic origin (allelic 
imbalance))
β Age of onset—Severity. Age of onset score 1 means congenital or very early (< 2 years), age of onset score 2 means mostly early (< 18 years) + variable, severity score 
1 means severe, significantly reduced mobility or increased mortality in early life, and severity score 2 means severe plus variable expressivity

Characteristics AD conditions

All* Severe and early onset** Severe and early 
onset, allelic 
imbalance***

Number of gene–disease associations 394 77 23

Number of AD diseases 390 76 23

Number of genes 353 72 21

Number of genes per AD disease 1–2 1–2 1

AD diseases, %β

1–1 1.8 9.1 17.4

1–2 13.5 68.8 60.9

2–1 0.5 2.6 4.3

2–2 3.8 19.5 17.4

Number of variants 664 115 30

Number of variants per AD disease 1–16 1–9 1–3

AD variants, %

PubMed articles

> 1 peer‑reviewed publication 60.4 67.0 80.0

1 peer‑reviewed publication 39.6 33.0 20.0

Variant type

Intron 0.3 ‑ ‑

Missense 76.7 80.0 80.0

Nonsense 16.4 14.8 16.7

Splice acceptor 2.4 3.5 ‑

Splice donor 3.3 1.7 3.3

Synonymous 0.8 ‑ ‑

Non‑coding transcript exon 0.1 ‑ ‑

ClinVar classification

Pathogenic 79.7 83.5 90.0

Pathogenic/likely pathogenic 7.1 8.7 10.0

Likely pathogenic 13.2 7.8 ‑
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Table 2 Analyzed genes and variants with their involvement in blood‑related functions and cancer

A total of 16 variants (80.0% of variants reported here) residing in genes with good evidence of somatic mosaicism were also present in the Catalogue of Somatic 
Mutations in Cancer (COSMIC; info obtained on February 4, 2021). Across the genes, the variants were found in 1 to 29,274 samples. It is expected that the more 
frequent a mutation is in cancer samples, the higher the chance is that it is a driver mutation (the mechanism that makes those cells and the variants they carry more 

Gene** AD 
condition

Variant*** Variant 
type

Allele count 
(< 35% of reads)

COSMIC

ExAC gnomAD AA 
mutation

Confirmed 
somatic

No. of 
samples

Samples being 
‘hematopoietic 
and lymphoid’

ASXL1 *▲ Bohring–
Opitz 
syndrome

NM_015338.5:c.1210C>T► Nonsense 3 3 p.R404* Yes 10 90.0%

NM_015338.5:c.2893C>T► Nonsense 1 2 p.R965* Yes 17 70.6%

NM_015338.5:c.1117C>T► Nonsense 0 2 – – – –

BRAF*∆ Cardio‑facio‑
cutaneous

NM_004333.5:c.1799T>A► Missense 1 2 p.V600E Yes 29,274 3.0%

syndrome NM_004333.5:c.1406G>A Missense 1 0 p.G469E Yes 28 0.0%

CBL* Noonan 
syndrome‑
like disorder 
with or with‑
out juvenile 
myelo‑
monocytic 
leukemia

NM_005188.3:c.1186T>C Missense 1 0 p.C396R Yes 13 100.0%

NM_005188.3:c.1259G>A► Missense 2 2 p.R420Q Yes 27 77.8%

NM_005188.3:c.1111T>C► Missense 1 2 p.Y371H Yes 30 96.7%

DNMT3A* Tatton–
Brown–
Rahman 
syndrome

NM_022552.5:c.2312G>A► Missense 3 2 p.R771Q Yes 8 50.0%

NM_022552.5:c.2644C>T► Missense 4 3 p.R882C Yes 398 98.5%

NM_022552.5:c.2536C>T Nonsense 1 0 p.Q846* No 1 100.0%

FGFR3▲∆ LADD 
syndrome/
Thanato‑
phoric 
dysplasia, 
type I

NM_000142.5:c.1537G>A Missense 1 0 – – – –

NM_000142.5:c.746C>G► Missense 1 0 p.S249C Yes 1,525 0.0%

IDH2*∆ D‑2‑hydrox‑
yglutaric 
aciduria 2

NM_001289910.1:c.263G>A Missense 4 3 – – – –

KRAS*∆ Noonan 
syndrome 3/
RAS‑associ‑
ated autoim‑
mune leuko‑
proliferative 
disorder

NM_004985.4:c.40G>A► Missense 1 0 p.V14I Yes 34 14.71%

NM_004985.4:c.35G>A► Missense 1 1 p.G12D Yes 15,834 1.67%

PTPN11* Noonan 
syndrome 1

NM_002834.5:c.1471C>T► Missense 1 NA – – – –

NM_002834.5:c.794G>A► Missense 1 0 p.R265Q Yes 4 100.0%

NM_002834.5:c.188A>G► Missense 0 1 p.Y63C No 4 100.0%

SETBP1 Schinzel–
Giedion 
midface 
retraction 
syndrome

NM_015559.3:c.2608G>A► Missense 2 1 p.G870S Yes 72 98.61%
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cross-analysis with the hematopoietic genes identified by 
Jaiswal et al. [13]).

In addition to the previously known examples of 
ASXL1 and DNMT3A, the list was expanded to include 
B-Raf proto-oncogene, serine/threonine kinase (BRAF), 
Cbl proto-oncogene (CBL), isocitrate dehydrogenase 

(NADP(+)) 2 (IDH2), KRAS proto-oncogene, GTPase 
(KRAS) and protein tyrosine phosphatase non-receptor 
type 11 (PTPN11), genes known to have a role in hemat-
opoiesis, the formation of cellular components of blood 
(Fig.  3). The remaining genes with evidence of somatic 
mosaicism, fibroblast growth factor receptor 3 (FGFR3) 

abundant in blood). A driver mutation is by definition a genetic change that gives an advantage to the cell. The advantage enables the cell to grow and proliferate 
better than other cells, which is a hallmark in cancer

AA, amino acid; AD, autosomal dominant; ASXL1, ASXL transcriptional regulator 1; BRAF, B-Raf proto-oncogene, serine/threonine kinase; CBL, Cbl proto-oncogene; 
COSMIC, Catalogue of Somatic Mutations in Cancer; DNMT3A, DNA methyltransferase 3 alpha; FGFR3, fibroblast growth factor receptor 3; IDH2, isocitrate 
dehydrogenase (NADP(+)) 2;; LADD, Lacrimo-auriculo-dento-digital; KRAS, KRAS proto-oncogene, GTPase; PTPN11, protein tyrosine phosphatase non-receptor type 
11
▲ Evidence of somatic mosaicism involving the germline reported by Erickson [39] or Bedoukian et al.[30]
∆ Genes involved in stem cell and/or cell population proliferation
► Variant reported to affect or probably affect function based on Leiden Open Variation Database (LOVD; hg19/GRCh37) version 3.0 [40]

*Genes with evidence of mosaicism that overlap with the list of 156 hematopoietic genes provided by Jaiswal et al. [13] in their Additional file 1: Table S2 (n = 7)

**A gene shows good evidence of mosaicism when at least two alleles show signs of somatic origin (allelic imbalance)

***Rare disease- and/or cancer-related known pathogenic or likely pathogenic variants (in ClinVar and/or COSMIC)

Table 2 (continued)

Fig. 3 Venn diagram illustrating the classification genes according to the selected feature categories. A total of 16, 9 and 25 genes were considered 
as hematopoietic, mosaic and proliferative, respectively, based on our categorization [13, 38] and assessment of allelic imbalance [7, 15]. The genes 
with evidence of mosaicism, BRAF, IDH2 and KRAS, belonged to each of the categories (Additional file 1: Table S3). BRAF, B‑Raf proto‑oncogene, 
serine/threonine kinase; IDH2, isocitrate dehydrogenase (NADP(+)) 2; KRAS, KRAS proto‑oncogene, GTPase;
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and set-binding protein 1 (SETBP1) were involved in 
other blood-related functions [14, 20]. Of the AD genes 
with evidence of somatic mosaicism, BRAF, IDH2 and 
KRAS were, in addition to being hematopoietic genes, 
involved in regulation of cell population proliferation 
(GO0042127) based on our gene ontology (GO) catego-
rization (FGFR3 was also annotated to this GO term; 
Fig. 3).

Looking further into the driver potential of the SNVs 
with evidence of allelic imbalance in reference population 
databases (Table 2), we found that some of these SNVs, 
known to cause Mendelian disease when inherited via 
the germline, can be found in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database [21], described 
as associated with malignancies. An example includes 
the CBL variant NM_005188.3:c.1259G>A (p.R420Q), 
which is known to cause the early onset, severe meta-
bolic disorder Noonan syndrome-like disorder [MIM: 
613563]. This variant can be found in COSMIC in rela-
tion to cancer; it has been confirmed to be somatic and is 
predominantly observed in hematopoietic and lymphoid 
samples (Table 2). We noted similar findings for the other 
AD genes with evidence of mosaicism, where 16 of the 20 
SNVs residing in eight of nine detected mosaicism-prone 
AD genes were found in COSMIC database (Table 2).

Next, we wanted to compare our findings in nine AD 
genes with good evidence of somatic mosaicism in ExAC 
(Additional file  1: Table  S3), with gnomAD data (v2.1.1 
based on genome build GRCh37/hg19; as presented 
in Additional file  1: Table  S4). The assessment of SNVs 
residing in the nine AD genes using the gnomAD data-
set revealed that some alleles that belonged to FGFR3, 
KRAS, PTPN11 and SETBP1 SNVs, which had evidence 
of mosaicism based on ExAC’s exome data, have been 
removed from the gnomAD dataset by gnomAD filters 
(Table 2). The following five AD genes showed good evi-
dence of mosaicism in gnomAD, as found using ExAC: 
ASXL1, BRAF, CBL, DNMT3A and IDH2 (Table 2; with 
only DNMT3A and IDH2 alleles being flagged for failing 
of the gnomAD random forest filter). These results sup-
port our decision to use the ExAC database as our pri-
mary source of information, which allowed us to get a 
better overview of the mosaicism phenomenon in blood-
derived reference populations in general. Furthermore, 
our findings emphasize the importance for better ways to 
flag, rather than filter, potentially mosaic variants based 
on knowledge on the mosaicism-prone genes in reference 
population databases.

Somatic mosaicism in other hematopoietic genes
To expand our analysis to other Mendelian diseases 
(beyond early onset, severe AD diseases) that may 
be affected by CHIP driver variants, the list of 156 

hematopoietic genes compiled by Jaiswal et  al. [13] was 
analyzed. We identified 108 Mendelian diseases with dif-
ferent inheritance patterns which were associated with 
77 out of the 156 hematopoietic genes. For the 77 genes, 
SNVs associated with Mendelian diseases and with evi-
dence of allelic imbalance were selected (Additional 
file 1: Table S5). By searching the ExAC dataset, we found 
in total 34 ClinVar pathogenic and likely pathogenic 
SNVs (nonsense and missense) with read ratio imbalance 
for at least one allele, residing in these genes. Most of 
those SNVs (29 of 34 variants) have also been reported as 
somatic and in relation with different types of cancer in 
the COSMIC database (Additional file 1: Table S5).

In addition to the already known somatic ClinVar path-
ogenic and likely pathogenic SNVs in ExAC, we found 
125 SNVs of the same variant types (nonsense or mis-
sense) which have not yet been associated with a Men-
delian disease but have at least one allele with read ratio 
imbalance, residing in 40 of 156 hematopoietic genes. 
Some of the hematopoietic genes (besides those nine 
AD genes we described earlier) have two or more of such 
SNVs, and 84 of these 125 SNVs have been reported in 
COSMIC (Additional file 1: Table S5).

The evidence of somatic mosaicism in reference pop-
ulation data and the presence of the majority of these 
SNVs in the COSMIC database are supportive of a 
driver potential and thus pathogenicity (Additional file 1: 
Table  S5). This can be explained via examples of the 
ASXL1 (for nonsense SNVs) and DNMT3A (for missense 
SNVs) genes. As mentioned earlier, the severe, early onset 
AD disease BOPS [MIM: 605039] is caused by nonsense 
ASXL1 variants. By searching the ExAC dataset, we found 
two such ASXL1 SNVs which have been reported in Clin-
Var, and show allelic imbalance in ExAC (Additional 
file  1: Tables S3 and S5). At the same time, the ExAC 
dataset contains additional 20 nonsense ASXL1 SNVs 
with some evidence of a somatic origin (allelic imbal-
ance for at least one allele), which are currently not asso-
ciated with BOPS, but may be in future. The majority of 
these SNVs (16 of 20 variants) can be found in COSMIC 
where they were described as somatic and in relation to 
malignancies (Additional file 1: Table S5). Similarly, some 
missense DNMT3A variants have been reported to cause 
Tatton–Brown–Rahman syndrome [MIM: 615879], 
another severe, early onset developmental disease [22]. 
We found three (two of them missense) DNMT3A Clin-
Var likely pathogenic and pathogenic SNVs, related to 
Tatton–Brown–Rahman syndrome [MIM: 615879], 
with read ratio imbalance for at least one allele in ExAC. 
These SNVs were also reported in COSMIC, in relation 
to cancer (Additional file  1: Tables S3 and S5). Besides 
these variants, the ExAC dataset contains 19 DNMT3A 
missense SNVs with some evidence of somatic origin, 
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which are currently not described in relation to Mende-
lian diseases. Similar to the ASXL1 example, the major-
ity of these SNVs (14 of 19) have been found in COSMIC 
where they were reported as confirmed somatic and in 
relation to different malignancies. In addition to ASXL1 
and DNMT3A, we found similar examples in genes such 
as CBL, IDH2 and KRAS (Additional file  1: Table  S5). 
For most of the other genes from the list, ClinVar patho-
genic SNVs related to Mendelian disease with evidence 
of allelic imbalance have not yet been found (Additional 
file  1: Table  S5). Many of those genes, however, harbor 
somatic SNVs implicated in malignant diseases and are 
reported in COSMIC (Additional file 1: Table S5).

Overall, when considering both ClinVar pathogenic or 
likely pathogenic SNVs and the SNVs of the same type, 
which are still not associated with rare diseases, this sums 
up to 30.8% of the hematopoietic genes (48 of 156 hemat-
opoietic genes) having at least some evidence of somatic 
mosaicism (at least one allele with read ratio imbalance 
in ExAC).

Discussion
Here, we revealed the presence of somatic ClinVar patho-
genic and likely pathogenic SNVs associated with early 
onset severe AD diseases in the reference population 
database ExAC for seven additional genes (beyond pre-
viously known ASXL1 and DNMT3A). Given the mech-
anism by which these variants arise in blood tissue, we 
expect that our findings are applicable to other public and 
private blood-derived reference population databases. 
The list of genes prone to acquiring somatic variants will 
enable variant interpretation computational pipelines 
to flag variants residing in those genes as ‘potentially 
somatic’ and thus select them for closer inspection.

A higher-than-expected frequency of variants in an 
‘untargeted’ reference population for a given Mende-
lian disease is generally considered as strong evidence 
for a benign interpretation when a disease is severe and 
highly penetrant [9]. Even though the carriers of ger-
mline variants associated with such diseases (and their 
close relatives) usually are recognized and removed from 
the reference population databases, it is well known that 
some pathogenic variants are still present [7, 15]. ClinVar 
pathogenic or likely pathogenic variants of somatic ori-
gin (products of CHIP) have been previously detected 
in these datasets and their potential to affect variant 
interpretation has been described [15]. However, until 
now, the only genes associated with Mendelian diseases 
reported in connection with somatic mosaicism in the 
context of reference population databases were ASXL1 
and DNMT3A [15].

We used the ExAC database with the main goal to 
avoid the filters applied to the gnomAD database to 

capture, as comprehensively as possible, genes prone to 
somatic mosaicism. We found seven additional genes 
associated with severe, early onset AD rare conditions 
with good evidence of somatic mosaicism. The majority 
of these genes has been linked to clonal hematopoiesis 
(‘expansion of a clonal population of blood cells with one 
or more somatic mutations’) [23] in the literature (e.g., 
ASXL1, DNMT3A and IDH2; Additional file 1: Table S4) 
[13, 23–25]. By profiling the compiled list of 156 hemat-
opoietic genes [13], we were able to identify SNVs with 
evidence of somatic origin in genes that are associated 
with the entire spectrum of Mendelian diseases, beyond 
those with an AD inheritance pattern (Additional file 1: 
Table  S5). This further stresses the importance of con-
sidering this mosaicism-prone class of genes when 
interpreting variants associated with Mendelian dis-
eases regardless of mode of inheritance. Importantly, 
we also detected somatic SNVs in the reference popula-
tion, which have not yet been associated with Mendelian 
conditions. Many of those SNVs have been previously 
reported as ‘confirmed somatic’ in the COSMIC database 
in relation to cancer (Additional file 1: Table S5). We pro-
pose that for SNVs with unknown significance, the evi-
dence of somatic mosaicism in reference population data, 
supported by the presence in the COSMIC database, may 
in fact be considered as a good indicator of their driver 
potential and thus their potential pathogenic effect in 
Mendelian diseases, when in germline. Another hallmark 
of cancer (a prominent form of somatic mosaicism [26]) 
is sustaining proliferative signaling [27] where increased 
proliferation has been reported as a consequence of 
mutations in genes implicated in the hematopoietic sys-
tem [23]. Seven out of the nine mosaicism-prone AD 
genes were hematopoietic. Yet, of the remaining genes, 
FGFR3 was involved in proliferation (Fig. 3) and SETBP1 
somatic mutations have been connected with myeloid 
malignancies [28, 29]. This supports our findings provid-
ing additional information on a common mechanism by 
which the somatic variants in these genes arise.

There are several study limitations associated with our 
work that we would like to highlight to aid in the inter-
pretation of our findings. First, this work was based on 
the analysis of aggregated data in publicly available ref-
erence population databases. Therefore, we did not have 
access to DNA samples to allow for a direct comparison 
of sequencing results from different tissues and thus 
confirm the true genotypes of the individuals. Instead, 
several important hallmarks of somatic mosaicism were 
used for characterization of alleles and SNVs. Second, 
several SNVs with detectable imbalance in ExAC and/
or gnomAD were excluded due to low quality (e.g., did 
not pass quality control filters) which was done to reduce 
the number of false positives. Nevertheless, some of the 
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potential false positives might in fact be true positives 
meaning that our study was not able to capture all genes 
prone to acquiring somatic SNVs. Third, the SNVs with-
out read support available in the IGV were excluded from 
this study. Those SNVs could potentially have evidence of 
somatic mosaicism that is not accounted for here. Also, 
we only focused on the ClinVar pathogenic and likely 
pathogenic SNVs associated with early onset severe AD 
conditions in the reference population databases that are 
due to mosaicism. Other SNVs that do not show signs 
of mosaicism could be present because (i) they are not 
pathogenic even though reported as being so, (ii) it was 
not possible to detect mosaicism using the chosen meth-
odology for those SNVs, (iii) they may not be contribut-
ing to AD conditions, (iv) sequencing errors could have 
occurred that we do not know of and/or (v) occurrence of 
incomplete penetrance and/or variable expressivity that 
affects the likelihood of whether a condition develops 
or not [7]. Finally, as previously described, we used the 
predefined threshold of < 35% of read support to assess 
allelic imbalance for the ClinVar pathogenic and likely 
pathogenic SNVs. However, several studies reported the 
presence of mosaicism but with 36% of read support [30], 
and others even report read ratios up to almost 45% for 
somatic variants, which can be explained by the presence 
of cancer and aging [15]. Such read ratios were not con-
sidered as evidence of somatic mosaicism in our study. 
Knowing this, it is clear that by applying this threshold 
we may have lost some valuable data. However, stringent 
criteria make us more confident that the variants which 
we focused on in this study are likely of somatic origin. 
To be even more confident that our selection is not a 
product of a mere chance (e.g., sequencing errors), we 
included another criterion, whereby only the existence of 
at least two alleles with less than 35% of reads is consid-
ered as good evidence of somatic mosaicism for a given 
gene.

Consideration of the identified genes prone to acquir-
ing somatic variants during the interpretation process 
will be helpful to reduce the risk of errors due to variant 
misclassification. We showed that the somatic mosaicism 
is present in large blood-derived publicly available refer-
ence population databases, such as ExAC and gnomAD, 
to a higher extent than it was previously reported [7, 
15]. Our preliminary assessments revealed that the same 
issue applies to another widely used reference population 
database, TOPMed BRAVO (data not shown) [19]. As 
we showed by comparing ExAC and gnomAD, the diffi-
culty with the presence of somatic variants in a reference 
population is not easily solvable by current filtering strat-
egies. Furthermore, our results show that the presence 
of somatic variants may in fact be a good indication of a 
driver potential of these variants and thus pathogenicity. 

Being aware of the potential impact of somatic mosaicism 
on variant assessment is critical for the successful utiliza-
tion of these datasets in the variant interpretation process 
when using either public or private reference population 
databases such as the IBVL. This private blood-derived 
reference population database aims to overcome the void 
of Indigenous population genomics data in the currently 
available reference population databases, a problem that 
hinders our ability to efficiently interpret genetic variants 
from individuals of Indigenous origin. The IBVL, as many 
other small, private, blood-derived reference popula-
tion databases, does not have filtering strategies as those 
employed in gnomAD (which have their own limitations 
as indicated by our findings). By considering the spe-
cific class of genes prone to mosaicism, our work has the 
potential to help improve variant interpretation practices 
that rely on blood-derived reference population datasets 
such as the IBVL.

Conclusion
We identified 7 additional AD disease-associated genes 
with recurrent appearance of somatic SNVs in blood-
derived reference population databases. In addition to 
the previously reported ASXL1 and DNMT3A, the list of 
mosaicism-prone genes was expanded to include BRAF, 
CBL, FGFR3, IDH2, KRAS, PTPN11 and SETBP1. All 
of these genes showed the presence of somatic ClinVar 
pathogenic or likely pathogenic SNVs in a reference pop-
ulation. Focusing on some of the most widely used blood-
derived reference population databases, we showed that 
the current filtering strategies employed to mitigate the 
problem of somatic mosaicism were only partially suc-
cessful. In addition to the variants previously described 
in ClinVar as pathogenic and likely pathogenic, we 
revealed other SNVs that show allelic imbalance. Some of 
these variants are associated with non-AD diseases, while 
the others are currently not associated with any Mende-
lian disease, but found in the COSMIC database in rela-
tion to cancer and are residing in hematopoietic genes. 
We expect that at least some of these genes will be asso-
ciated with Mendelian diseases in the future. Overall, our 
results underline the importance of considering CHIP 
and genes involved in hematopoiesis and cell prolifera-
tion when interpreting the presence and frequency of 
genetic variants in both public and private blood-derived 
reference population databases.

Methods
Extraction of genes associated with rare autosomal 
dominant diseases in OMIM
Genes with at least one phenotype inherited in an 
AD pattern were identified using gene–disease infor-
mation stored in the genemap2.txt file (‘May 3, 2019’ 
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OMIM release [22]). The following seven categories 
were excluded: (i) Non-diseases, indicated by brackets 
[] in OMIM, (ii) susceptibilities, indicated by braces {} in 
OMIM, (iii) diseases not inherited in an AD pattern, or 
digenic diseases, (iv) diseases that are exclusively somatic, 
(v) pharmacogenetic entries, (vi) modifiers and (vii) loci 
with no associated HUGO Gene Nomenclature Com-
mittee (HGNC) gene, no precise genomic coordinates or 
without information on type of inheritance for the asso-
ciated disease. This information formed Additional file 1: 
Table S1 (Additional file 1: Table S1).

Variant extraction and filtering using ClinVar and ExAC
Using the AD disease lists (Additional file  1: Table  S1), 
we extracted all ClinVar (VCF v2.0; published on May 
3, 2019) [18] pathogenic and likely pathogenic variants 
that reside in those genes. As previously described [7], 
only variants with associated publications, namely PMID 
records (ClinVar var_citations.txt file; October 20, 2020), 
were considered and assessed for their presence in the 
ExAC v1.0 (February 27, 2017) [3]. The ClinVar dataset 
based on the GRCh37/hg19 build was selected to match 
that of the ExAC database. The variant information was 
extracted and compared between the ExAC and ClinVar 
datasets using an in-house Python script. We decided to 
use single-nucleotide variants (SNVs) as a representative 
variant type. SNVs account for around 80% of all ClinVar 
pathogenic or likely pathogenic variants we detected in 
the ExAC dataset. In addition, compared to some other 
variant types (e.g., insertions or deletions that include 
several base pairs), variant read ratio, which was very 
important part of this assessment, was easier to deter-
mine for SNVs. We filtered out any variants that: (i) had 
conflicting interpretations of pathogenicity in the ClinVar 
database, (ii) had lack of supporting evidence in the lit-
erature, (iii) were not single-nucleotide variants (SNVs), 
(iv) did not pass ExAC quality filters, or were covered in 
less than 80% of ExAC individuals, (v) were mentioned in 
connection with both autosomal dominant and recessive 
diseases in ClinVar and (vi) were found in the homozy-
gous state in ExAC. This formed a part of Additional 
file 1: Table S2 (Additional file 1: Table S2).

Assessment of age of onset and severity of the rare 
autosomal dominant diseases
For every AD gene–disease association related to the 
SNVs present in Additional file 1: Table S2, age of onset 
and severity were graded. This was done according to the 
criteria adopted from Chen and associates [10] (Addi-
tional file 1: Table S7). The AD gene–disease associations 
were categorized into one of five age of onset catego-
ries and one of five severity categories independently by 
three investigators (M.B., M.T.G. and V.A.). After each 

investigator completed the evaluation, the results were 
compared and discrepancies discussed until reaching 
agreement for all AD gene–disease associations. The 
evaluation was primarily based on OMIM [22] gene and 
disease information with support from Malacards [31] 
and Orphanet [32]. Where sufficient information was 
lacking, the AD gene–disease association was given a 
score of 5 (unknown). Only AD gene–disease associa-
tions with age of onset and severity scores of 1 and/or 2 
were included in the study.

Variant origin assessment
We evaluated the ClinVar pathogenic and likely patho-
genic SNVs associated with early onset (scores 1 and 2) 
and severe (scores 1 and 2) AD diseases using the Inte-
grative Genomics Viewer (IGV) [33]. Read support 
count was inspected and the previously published met-
rics of < 35% alternative allele support [7, 15] was consid-
ered as potential evidence of allelic imbalance and thus 
somatic rather than germline origin (Additional file  1: 
Table  S3). In Additional file  1: Table  S3, the ‘Good evi-
dence of mosaicism (ExAC)’ column denotes the pres-
ence of allelic imbalance for at least two alleles for a given 
gene. This criterion was set because allelic imbalance 
can happen occasionally as a consequence of sequencing 
errors. However, recurrent appearance of allelic imbal-
ance in a gene is more likely to be caused by the presence 
of somatic variants. In this sense, we consider the pres-
ence of at least one reported allele with imbalanced read 
ratio for a given gene as ‘some evidence,’ while at least 
two such alleles per gene were necessary to be considered 
as ‘good evidence’ of somatic mosaicism. Somatic muta-
tions in blood samples obtained from young individuals 
are very rare, but rise in frequency with each decade after 
40  years of age [13]. The age distribution of individuals 
with the SNVs of interest was extracted from ExAC and 
included in Additional file 1: Tables S3 and S4.

Comparison of ExAC findings with gnomAD data 
– the effect of the gnomAD filters on the presence 
and frequency of somatic variants in the selected genes
The ExAC data can now be found as a part of the gno-
mAD dataset, in addition to other exome and genome 
data. In contrast to the ExAC database, gnomAD applies 
more stringent filters that remove some variants with 
allelic imbalance from the allele count (< 0.2) [4]. To 
inspect how application of the gnomAD filters affects 
the presence of somatic SNVs in this reference popula-
tion dataset, genes with evidence of mosaicism in ExAC 
(Additional file 1: Table S3) were tested for the presence 
of ClinVar pathogenic and likely pathogenic SNVs in gno-
mAD, as previously described for ExAC.
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Gene ontology association
To categorize the genes according to the processes they 
are involved in, we used selected gene ontology (GO) 
terms. AD genes associated with early onset severe Men-
delian diseases were classified according to their involve-
ment in regulation of hematopoiesis (GO1903706) 
(Additional file 1: Tables S3 and S4) and involvement in 
the following cell proliferation processes: Negative reg-
ulation of cell population proliferation (GO0008285), 
positive regulation of cell population proliferation 
(GO0008284), regulation of cell population prolifera-
tion (GO0042127), stem cell proliferation (GO0072089), 
regulation of stem cell proliferation (GO0072091), posi-
tive regulation of stem cell proliferation (GO2000648) 
and negative regulation of stem cell proliferation 
(GO2000178). Due to differences in approach, the results 
from the list of 156 genes published by Jaiswal et al. [13] 
do not show a complete overlap with the results obtained 
through our search for regulation of hematopoiesis GO 
term. However, the results from these sources can be 
used as complementary to each other. To look up the 
genes annotated to the aforementioned GO terms, we 
used the PANTHER [Protein Analysis Through Evolu-
tionary Relationships] Classification System [34–36] and 
focused specifically on Homo Sapiens. The GO database 
was released on 2020-10-09 and the comparisons were 
made using the statistical software R 4.0.2.

Assessment of hematopoietic genes
The total of 156 previously reported hematopoietic 
genes [13] (Additional file  1: Table  S5) were analyzed 
using ClinVar (pathogenic and likely pathogenic SNVs), 
ExAC (variant frequency) and IGV (variant read sup-
port), as described above (Additional file  1: Table  S5). 
The COSMIC (Catalogue of Somatic Mutations in Can-
cer) [21] database was used to assess the detected SNVs 
for reports in human cancers (Additional file 1: Table S5). 
A detailed description of Additional file 1: Table S5 and 
other supplementary data (Additional file  1: Tables S1–
S5) can be found in Additional file 1: Table S6.
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