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Abstract

The main focus of this thesis is the development and feasibility testing of a proposed gait biometric

screening system based on the Kinect v2 sensor. To achieve contactless gait biometric extraction

the system uses a virtual Kinect 3D skeleton to construct models in real time. These models are

then used to identify an individual’s gait characteristics. The features found from the virtual models

are passed through a gait recognition system which provides insight into what type of gait pattern

is being observed by the camera. Extensive experiments with different classi�cation methods such

as Support Vector Machines, K-Nearest-Neighbors, and Dynamic Bayesian Networks are tested to

determine the effectiveness of the system. The proposed gait recognition network is tested using

locally collected and publically available databases to validate the results and prove that the system

is feasible.
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Chapter 1

Introduction

This thesis contributes to the �eld of biometrics, speci�cally, gait biometrics. The primary focus

of this thesis is to develop a system that is able to collect gait data using the Microsoft Kinect v2

for the purpose of analyzing and classifying various gait abnormalities or conditions. The data

considered for developing and testing the proposed system includes: color (RGB), Near-Infrared

(NIR), and depth, from which 3D skeletal data is extracted from. In this thesis, the following

classi�ers are used to test the feasibility of classifying an individual’s gait type: K-nearest neigh-

bors (KNN), support vector machines (SVMs), and dynamic Bayesian networks (DBNs). Results

from the investigation include deriving gait related features such as cadence, stride length, and

joint �exion, which allow for the accurate prediction of an individual’s current gait status. These

predictions have potential applications in forensics (identifying individuals with noticeable gait

abnormalities recorded by forensic investigators), as well as healthcare for tasks such as detecting

gait deterioration in elderly people, fall risk analysis, and rehabilitation respectively.

1.1 Background

Biometrics have become a fundamental part of daily life. Using our inherent features we are able

to see, touch, and communicate with various objects and people each and every day. By utilizing

features of the human body, the �eld of biometrics aims at improving quality of life in areas such

as security, healthcare, and intelligent systems. In addition, biometrics can be used for many other

purposes, such as describing and individual’s physiological features (face, �ngerprint, and iris)

as well as behavioral features (signature, voice, and gait). These various biometrics can be used

for monitoring a patient’s health status [1], detecting intoxication [2], or for authentication and

veri�cation which is investigated further in this thesis work.
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In areas such as forensic sciences, biometric identi�ers including but not limited to face, �n-

gerprint, and iris are often used to identify people of interest. One feature that many of these

biometric identi�ers have in common is the requirement to use direct contact or high resolution

images. However, these images are often limited due to factors such as camera position and hard-

ware constraints. To overcome these limitations, biometrics can be used in combination with other

physiological or behavioral features to achieve a partial contact or contactless machine assisted

recognition system.

One type of biometric that can be used to provide supporting evidence for these type of systems

is gait. Gait is a biometric that de�nes the locomotion of an individual and can be described with

many different features. Some examples of gait features include: speed, stride length, and joint

�exion. Visible gait abnormalities such as limping can also help with identifying individuals. This

is signi�cant because often standard biometrics such as face or �ngerprint do not provide enough

evidence to establish congruent identity. However, by incorporating gait more evidence can be

provided to the system to increase overall performance. This is achieved by adding an additional

layer of biometric screening (gait), to help �lter out the individuals who are misidenti�ed. For

example, if two people have similar facial features but different known gait patterns, they can be

differentiated from one another via gait. In such case, the gait type is being identi�ed, rather than

the individual. This is often seen in practice where a textual record of gait abnormalities (injury of

limb, limp, stooping etc.) is contained within an individual’s forensic record, rather than a template

gait sequence that is derived from a recorded video.

Gait can be categorized as a type of �soft� biometric. Other examples of soft biometrics include

facial expression, age, or gender. Using photogrammetry (the process of extracting the position of

an object) [3], soft behavioral biometrics such as gait can be integrated into a contactless authenti-

cation system without compromising performance. Often complex and computationally intensive,

photogrammetry provides very important information regarding the position of an object from a

photo or video frame. To investigate the potential of behavioral features such as gait for screen-
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ing applications it was necessary to employ such techniques. Luckily, recent advances in camera

technology have led to the development of multi-spectra cameras such as the Microsoft Kinect v2.

Capable of obtaining position data as well as color (RGB) and Near-Infrared (NIR), the Kinect

v2 has created more opportunities to explore the possibility of integrating gait into contactless

biometric systems.

To test the validity of using gait as supporting evidence, experiments were conducted to deter-

mine how effectively an individual’s gait type can be classi�ed. Many gait types are known to exist

in literature (hemiplegic, diplegic, neuropathic) [4], however, this thesis examines how effectively

antalgic gait (commonly known as a limp) can be classi�ed to ensure minimal error is introduced

when integrated with other biometrics. Local (UCalgary) and external (UPCV) datasets containing

subjects with normal and antalgic gait were created and used to train and test the classi�ers. Fur-

thermore, a feasibility study is conducted on fusing gait with more traditional biometric identi�ers

such as facial features.

This thesis proposes two different system architectures that implement classi�cation, and the

required training/testing associated with classifying gait abnormalities. The �rst uses KNN and

SVM to determine gait type, the second uses DBN for the same purpose. Experiments are run

on both the locally created UCalgary dataset and the UPCV (University of Patras Computer Vi-

sion Group) dataset. Results are presented by comparing the proposed approach using various

classi�ers with previously reported approaches.

1.2 Objectives

The solution to this task can be separated into three different modules which work together to solve

the problem of classifying different types of gait. The �rst module is the gait extraction program

which receives depth data from the camera and organizes it into a labeled matrix that contains

the geometric positions of each joint detected by the camera. The second module derives critical

features from the input geometric positions which will be used to classify the gait types (normal,

3



left limp, and right limp). Lastly, the third module performs classi�cation of the gait type using

various techniques such as KNN, SVM and DBN. The best results from these modules are then

used to fuse together gait with other biometric identi�ers such as face.

The main objectives of this thesis are as follows:

� Design and create a system for recognizing the selected gait types. The gait types

considered are the following: normal and abnormal, which is further partitioned

into left limp, and right limp. This system should be modular and capable of future

integration with other biometrics such as face, iris and �ngerprint.

� Organize the experiments and present the results in a way that is unbiased, and

can be easily compared with similar research. This includes creating a dataset that

should be compatible with other external databases which are appropriate for real-

life applications. This includes designing an experiment that would show that com-

bining other biometric data, with records containing gait type can improve recogni-

tion rates.

� Introduce a novel and improved approach for gait type recognition using Bayesian

Networks (BNs), which will be compared with other gait type classi�ers. The al-

gorithms will be modi�ed and �ne-tuned for the UPCV as well as Ucalgary dataset

to ensure robustness in real-life applications.

� Demonstrate how gait can be incorporated into a multimodal biometric system to

increase overall system performance.

The main hypothesis of this thesis is formulated as follows: human gait features derived using

RGB-depth (RGB-D) cameras can be used to distinguish between different gait types such as

normal versus abnormal (e.g. limping) using discriminating features.

To test this hypothesis, a high level illustration of the proposed system can be seen in Figure 1.1.

The data acquisition is performed using the Kinect v2 camera to record an individual’s gait data.
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The Kinect sensor has the capability to record one’s data by utilizing open source libraries such

as OpenCV and Microsoft’s Kinect SDK [5]. Depth data recorded by the camera is used to create

a skeleton model which contains the geometric coordinates of each joint. The skeleton model is

created using an algorithm developed by Microsoft which has been trained on numerous subjects

[6]. The obtained coordinates for each frame in the video are stored in a vector and are passed into

the Gait Trait Analyzer, a program which performs feature extraction from the coordinates as well

as classi�cation using a variety of classi�ers. More details about the decision making process is

described later in Chapter 3. Lastly, the result is output in a semantic form such as �normal gait�

which is intended to be used to assist with user veri�cation when fused with other biometrics.

Figure 1.1: Proposed framework integrated with other components of a system for gait analysis.
After receiving user input, the camera uses depth data to create a skeletal model for each frame
recorded. The frame data is sent to the Gait Trait Analyzer that will derive features and perform
classi�cation. The result is an output in semantic form that will be used to assist with establishing
congruent identity.

As for the other components illustrated outside the proposed framework, they serve to demon-

strate how this proposed work can be integrated with future projects via an inference engine and

decision network to assess an individual’s identity and risk factor which is based on many charac-

teristics including but not limited to, age, gender, etc.
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1.3 Publications

The contributions made during the course of this research are re�ected throughout multiple pub-

lications. Papers directly related to this research were submitted or published in the following

proceedings:

� P.Kozlow, N.Abid, and S.Yanushkevich, �Utilizing Gait Traits to Improve E-Border

Watchlist Performance,� in IEEE Symposium Series on Computational Intelligence

(SSCI) 2017, pp. 1-8, 2017.

� P.Kozlow, N.Abid, and S.Yanushkevich, �Detecting Gait Traits using Dynamic

Bayesian Networks,� MDPI journal in Sensors [ID# sensors-341641], under re-

vision after the �rst round of review.

� O. Obi-Alago, P.Kozlow, A. Noor, S.C. Eastwood, H.M. Wetherley, and S. Yanushke-

vich, �Pilot Project: Biometric-Enabled Risk Assessment for City Emergency Shel-

ters,� in IEEE Transactions on Computational Social Systems, submitted.

� N. Abid, P. Kozlow, S. Yanushkevich, �Detection of Asymmetric Abnormalities in

Gait using Depth Data and Dynamic Bayesian Networks�, in IEEE Signal Process-

ing Proceedings (ICSP) 2018, pp. 1-6, 2018.

The contributions made through the publications primarily involves around developing and test-

ing various classi�cation algorithms that will be used to create a decision regarding an individual’s

gait status. The �rst publication mainly focused on developing the framework for the system and

exploring its applicability in screening systems such as e-borders [7]. Contributions made during

this study include developing the camera interface, data collection techniques, and pre-processing

algorithms. For this study a database containing 50 samples from 10 subjects was collected and

combined with external data [8, 9]. Basic features such as knee angles were extracted from the

obtained geometric data and used to determine an individual’s gait status. The motivation for this

6



study was not to verify an individual’s identity based on their gait, but rather determine what gait

features are prominent when different gait patterns are observed.

The second paper proposed a novel approach to classifying gait using a DBN [10]. In this paper,

features such as cadence, stride length, and joint �exion are derived and used for classi�cation.

This approach improves on the previous work [7] by including non-binary classi�cation (normal,

left limp, and right limp) as compared to binary classi�cation (normal, abnormal), which was used

earlier. Results show that the performance of the proposed approach is comparable with other

state-of-the art classi�ers.

The third paper describes a multi-biometric enabled identity management and risk assessment

system for clients that are part of an emergency shelter. As part of a smart-city concept, this system

proposes to improve authentication by fusing many data channels such as gait, face, and thermal

imaging. For this system an individual’s physiological as well as behavioral features can be used

to grant permission to access certain services. Based on Bayesian decision networks the proposed

system is capable of providing a risk assessment which is based on available biometric data. An

example of such includes conducting an automated risk assessment for individuals requiring access

to certain services.

The �nal paper listed above proposes using additional upper body features that can assist with

recognizing asymmetric abnormalities that are present during an individual’s gait cycle. In this

paper, features such as shoulder displacement, and upper body rotations were used in conjunction

with lower body joints to derive not only an individual’s gait status, but the severity of the gait.

1.4 Outline

The rest of this thesis is organized into the following four chapters. Chapter 2: Literature Review

contains a relevant literature review on gait recognition, virtual modeling, databases available, and

a detailed description about some common algorithms and techniques currently being used. Chap-

ter 3: Methodologies & Proposed Approach describes the methodologies and algorithms used to
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capture and derive gait data from the camera, as well as conduct experiments with a detailed expla-

nation of approaches used. Chapter 4: Experimental Results builds upon Chapter 3 and contains

a discussion of the experimental setup, database collection, and presents results found. Lastly,

Chapter 5: Conclusions & Future work summarizes important observations made throughout the

thesis and presents ideas for future work.
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Chapter 2

Literature Review

Gait biometrics have been investigated for many years, primarily in the �eld of medicine and

rehabilitation [11]. However, in terms of security and forensic applications, utilizing gait remains

as a relatively novel subject. In this section an overview of relevant background information will

be presented. Details for existing approaches regarding gait analysis and gait type recognition,

modeling techniques, and classi�cation will be discussed.

2.1 Overview of Data Collection Techniques

Typically used in applications such as border security and forensics, biometric recognition is of-

ten based upon physiological and/or behavioral traits. The acquisition of biometric traits can be

derived from image processing and computer vision. From the 1950s computer vision has been

heavily researched and developed for various applications in areas ranging from medicine, se-

curity, prediction systems, and simulation. Early computer vision methods proposed by Roberts

were mostly based on 2D images, where complex mathematics had to be used in order to derive

and model 3D shapes or structures [12]. In the 1970s, researchers from MIT began exploring com-

puter vision more in depth resulting in the formulation of algorithms which continue to see use

today. Examples include: edge detection [13], motion estimation [14], and object segmentation

modeling [15].

Contemporary computer vision attempts to derive 3D structures from image sequences, such

as video, views from multiple cameras, or mutli-spectral data (thermal, NIR, depth). Early works

proposed by Lucas and Kanade [16] demonstrated a video-rate stereo machine that was capable of

generating a depth map at a video rate.

Until recently, depth or range sensors were expensive and cumbersome. Therefore, the low-
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cost digital stereo camera proposed in [16] was often used to simulate human binocular vision. By

comparing two images, the relative depth information can be obtained in the form of disparities,

which are inversely proportional to the differences in distance to the objects [17]. Another tech-

nique used to capture 3D information is done directly using a motion capture system (MOCAP).

Widely used in the entertainment industry since 1994 for video game development and movies

[18], MOCAP proves to be effective as it provides low latency and less complexity when com-

pared to using range sensors available at the time. By using optical sensing markers placed on the

object a MOCAP system utilizes multiple cameras which are calibrated to perform triangulation

and estimation the 3D position of the marker. Thus, resulting in a virtual model represented by

a vector containing geometric information. However, collecting data with a MOCAP system can

prove to be cumbersome and ineffective depending on the application. In the case of biometrics,

where the goal is to achieve contactless recognition, the use of physical markers is often undesir-

able.

Despite range sensors being around for over thirty years, it was not until 2010 when a low-cost

consumer range sensor was introduced into the market, named the Microsoft Kinect. Originally

intended for gaming, the Kinect utilized an infrared projector and a special microchip to detect

movement, gestures, and voice to achieve a contactless user experience [19]. The Kinect camera

contains three sensors that work together to track and model an individual’s gestures, these include

a RGB video camera, depth sensor, and a microphone. With a pixel resolution of 640x480 at 30

frames per second, the camera is capable of collecting color (RBG) video as well as body-type and

facial features [20]. The depth sensor is comprised of a CMOS sensor and an infrared projector

that generates a grid from which the location of a nearby object in 3 dimensions can be obtained,

this is commonly known as using structured light [21]. Lastly, the built in microphone, capable

of isolating voices from background noise allows people to use additional features such as voice

commands.

The camera selected for this thesis work was the revised Kinect version 2 (v2), which was com-
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mercially available in 2014. The Kinect v2 was an improvement to the original release in respect

to resolution and computational power as seen in Table 2.1 [20]. One distinction between the two

cameras is that the Kinect v2 uses a time of �ight (ToF) sensor instead of a structured light sensor to

compute the distance between an object and the camera. The ToF sensor works by sending a pulse

of laser light that is re�ected off an object when a subdivided sensor pixel is partially active. When

the light is received by a portion of the pixel the time it takes can be measured and used to compute

the distance. One advantage of using this method is that it provides a much higher depth resolution

point cloud and an overall reduction of noise allowing for more detailed models to be created [21].

To validate the accuracy of the the Kinect v2 for biometric recognition a review by [22] was ex-

Table 2.1: Listing the speci�cations of the two devices in detail

Feature Microsoft Kinect v1 Microsoft Kinect v2
Measurement Method Structured Light Time of Flight
Color Camera at 30 fps 640x480 1920x1080
Depth Camera 320x240 512x424
Skeleton Joints De�ned 20 joints 26 joints
Number of Models Tracked 2 6
Minimum Latency (ms) 102 20-60

amined. In this study, the authors investigated 12 papers that were available during October 2015.

In these papers a total of 273 participants: 182 healthy and 91 suffering pathological abnormalities

were examined. From these studies, 7 were compared to the Vicon system (MOCAP) as a gold

standard and 2 studies compared their results to the Optotrak Certus system. The agreement be-

tween the Kinect and the selected gold standard was assessed using Bland-Altman 95% bias and

limits of agreement, Pearsons correlation coef�cients, intraclass correlation coef�cients, or concor-

dance correlation coef�cients. From the results of the selected studies the following conclusions

were made: step width, step length, and stride length all demonstrated excellent agreement. Ad-

ditionally, gait speed, step time, and stride time also all showed moderate to excellent agreement.

However, [23] found that pelvis displacement and ankle �exion does not share much agreement

when compared to the gold standard. In summary, the review by [22] showed that the Kinect v2 is
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an effective device for applications such as healthcare and rehabilitation [24], fall prediction [25],

pain detection [1], authentication [26], activity recognition [17], and surveillance [27].

Unfortunately in 2017 the Microsoft Kinect camera was of�cially discontinued. However, the

work presented in this thesis is transferable to any depth camera currently available due to nature

of the developed framework. Successors to the Kinect include cameras such as the Intel Realsense

d435, which are capable of performing tasks such as skeleton extraction and 3D modeling in real

time when combined with an applicable software development kit (SDK). An SDK typically con-

tains premade libraries and functions that assist with program development. The work presented

in this thesis was conducted using the Kinect SDK, however, it can also be con�gured with any

other SDK and depth camera with slight modi�cations.

2.2 Gait Recognition Methods

Gait analysis is conducted for the purpose of detecting features that are later used for classi�cation.

A common application for gait is human recognition, where works from [28] and [29] achieved

recognition rates of 73.6% to 85% respectively. However, this thesis presents a different approach.

Here, soft biometrics that do not directly identify individuals, but rather speci�c features, such as

type of gait, are used and cover a variety of other applications. Examples include: healthcare appli-

cations such as motion analysis for kinesiology and sport medicine, motion analysis for developing

rehabilitation exercises, gait analysis in elderly for fall detection and prediction, gait controlled in-

terfaces for public or secure devices, and gait type analysis used for forensics. In order to apply

gait to these various �elds, methods regarding gait collection will be investigated in this thesis.

In this section, the following popular approaches for analyzing/modeling human gait and action

recognition are considered: model-free methods, and model-based methods [30].
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2.2.1 Model Free Methods

Model-free approaches focus on the entire motion of the human body presented in the form of

a silhouette. Often created from static images, model-free methods are widely popular among

researchers in the area of human identi�cation using gait, due to the low computational costs and

robustness associated with the data [31]. By de�ning a silhouette that is changing over time one

can measure changes in an individual’s gait. The images captured in model-free methods consist

of two components: a static component that is related to the size and shape of an individual, and a

dynamic component that describes an individual’s frequency and phase of movements [32].

Temporal correspondence was one of the �rst methods used to compare image features and

classify images. Proposed by [33], the authors used silhouettes as input features as part of the

HumanID project. In [33], a baseline gait recognition algorithm was proposed which enabled

a sequence to be compared against a gallery. Results demonstrated that information collected

from below the knee provided for 80% of the recognition and that changes in surface type caused

dramatic changes in gait patterns [32]. This information would be later used to develop the methods

proposed in chapter 3. Improvements to [33] were also proposed by Kale et al. [34] which used

Hidden Markov Models (HMM) to distinguish between temporal data found in a �ltered binary

silhouette.

Processing the silhouettes on a frame by frame basis can often be cumbersome and inef�cient.

To model an individual’s motion [35] describes creating a Motion History Image (MHI). By identi-

fying the moving pixels in between each frame a MHI can be used to assign values to these pixels.

This information was used by Han and Bhanu [36] to model gait as a Gait Energy Image (GEI).

Unlike other gait representations which consider gait as a series of templates, the GEI technique

represents an individual’s locomotion with a single image. This image is acquired by fusing a

series of silhouettes together while preserving important temporal information. An example of the

fusion is illustrated by Figure 2.1. Later, Yang et al. [37] improve the dynamic information of gait

sequences through their proposed enhanced GEI (EGEI) to overcome unfavorable conditions such
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as clothing, lighting, etc.

(a)

(b)

Figure 2.1: Converting sequential gait silhouette (a) to a gait energy image (b).

To improve on some �aws of the GEI (obstructive clothing and incomplete silhouettes) [38] and

[39] proposed using an Active Energy Image (AEI) and Frame Difference Energy Image (FDEI)

respectively. The AEI was proposed by [38] with the goal of eliminating any in�uences from an

individual’s clothing or accessories such as a handbag. By averaging the difference of successive

frames, dynamic characteristics can be obtained which yield good results. On the other hand,

the FDEI proposed by [39] was computed by taking the positive portion of the frame differences.

However, this resulted in a large bias towards varying appearances due to the lack of dynamic

information.

More recently, other model free methods have been proposed such as frequency-domain fea-

tures (FDFs) [40] and chrono-gait images (CGIs) [41]. In [40] the authors propose using FDFs to

expand on the idea of using a fused silhouette along with other identifying features such as fre-

quency to tackle the problem of recognition from various views [40], while CGIs rely on encoding

14



gait contour images with color to improve overall performance [41].

2.2.2 Model Based Methods

A more complex approach to modeling gait can be illustrated with model-based methods. In

model-based approaches, movements of body components such as limbs, legs, arms and thighs

are used to derive gait signatures [31]. A signi�cant advantage of model-based approaches is that

they are view, as well as scale independent. However, deriving static and dynamic features from a

virtually constructed model of the body in real time is often regarded as computationally expensive

and complex [42].

As an example, Cunado [43] and Nixon [30] analyze the dynamic movement of various joints

such as the thigh and calf. Tracking these features using a Fourier series, the authors observed that

using a phase-weighted magnitude is a good distinguishing feature when tested on a small dataset.

BenAbdelkader et al. [44] also uses features such as stride length and cadence to assist with gait

recognition. Later, Bobick and Johnson [45] calculate four static parameters that exist during an

individual’s gait cycle. These parameters form the bounding box of the walker’s silhouette and

include: the distance between the head and pelvis, the maximum distance between the pelvis and

left/right foot, and the distance between the right and left foot, resulting in a very primitive stick

�gure comprised of four nodes [31]. Works from [46] improve on this technique and are able to

extract nine coordinates that result in a more realistic model.

The utilization of dynamic parameters such as trajectories and joint angles was proposed by

Tanawongsuwan and Bobick in 2001 [47]. Using magnetic sensors, they were able to compute the

parameters of the joint angles over time. Other researchers such as Yam et al. [48] and Cunado

[49] were also able to use dynamic parameters for identifying subjects based on their walking and

running patterns. By creating a model of an individual’s legs and using a Velocity Hough transform

(VHT), [50] was able to achieve good performance on moderately noisy data.

A third approach to modeling gait is done by assuming that time is a third dimension in the XY

axis [32]. Therefore, a gait sequence can be represented in a XYT three-dimensional plane. Some
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authors who use this technique include [51], where the time component of a gait sequence can be

used to model certain features in instances that would normally be unknown in a 2D situation, such

as a subject’s ankles. Kellokumpu et al. The study in [52] also performs XYT gait recognition and

achieves promising results when tested on databases such as the CMU Mobo database.

The development of model-based gait has shown rapid progress throughout the 21st century.

By using the discussed methods proposed in various literature, gait sequences can be modeled in

a 3D space via the combination of feature extraction techniques with sophisticated hardware such

as depth cameras. Modeling a person’s gait often requires sensors to be paired with a sophisticated

algorithm like Microsoft’s Decision Forest [6] or other available libraries such as OpenNI along

with NiTE [53]. The purpose of these algorithms and libraries is to use machine learning to match a

skeleton template to a depth map that is acquired by a camera. The templates used can be matched

to each frame of the video sequence, giving the illusion of a continuous model that is synchronized

with a corresponding video. The newly created model can also be partitioned into multiple joints.

For example, the Kinect is capable of creating a model with 20 labeled skeleton joints, as shown

in Figure 2.2. The Kinect v2 improves on this by providing more detail in the hands and feet. In

gait recognition applications, parameters for each joint are calculated over time in half or full gait

cycles [54]. These parameters can then be used to identify features that characterize an individual’s

gait. Examples of gait features include: cadence, stride length, and joint rotation. Works from [55]

and [56] demonstrate the signi�cance of using skeleton features such as total center of mass [55]

as well as distance features [56] to perform gait recognition.

2.2.3 Summary

The locomotion of an individual can be modeled in many different ways. In model-free approaches

features are obtained either by frame by frame analysis of a silhouette or through a summary of

one’s gait cycle. Early works compared gait sequences using pixels in a 2D array [57]. Using

dynamic time warping (DTW) the researchers from [58] were able to align the images to perform

gait recognition. This lead to the idea of using dynamic parameters that are derived from the
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(a)

(b)

Figure 2.2: Using a skeleton model (b) to map gait sequences (a).

overall motion of an individual. Popular approaches include variants of the MHI technique which

employ image recognition techniques as a spatiotemporal summary of an individual [32]. These

approaches report promising results despite not using features of the human body. However, when

comparing motion there are often issues regarding alignment of the motion with data that is nor-

mally processed of�ine. Additionally, model-free approaches are not usually robust to viewpoints

and scale [59].

Model-based approaches rely on creating a simpli�ed human model from images. By combin-

ing static and dynamic parameters, features that are unique to the subject can be derived and used

for identi�cation. Often regarded as computationally complex, many model-based approaches are
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limited by hardware and processing power. However, devices such as the Kinect v2 or the In-

tel Realsense series are able to perform multidimensional model construction in real time using

pre-trained deep learning approaches.

This thesis will examine the signi�cance and applications of model-based approaches for gait

using the Kinect v2 camera. Reasons for choosing to follow this approach include the following:

the hardware selected is inexpensive and contains pre-built libraries created for developers that

allow for fast, real-time processing. Additionally, the implementation of model-based methods

is much more robust for dynamic scenarios such as access control, authentication, and patient

monitoring.

2.3 Gait Type Classi�cation

After extracting important features, the next step in any kind of gait recognition application is

classi�cation. A classi�er can be de�ned as an algorithm that assists with mapping input data

to a category, also known as class. The classi�er is trained using input or training data. This is

necessary in order to allow for the prediction of new unseen data from a different data set, which

will be referred to as a testing set. Choosing the proper classi�er depends on many factors such as

the type of data, the amount of data, or if the classes are discreet or continuous [60].

2.3.1 K-Nearest Neighbors

One way to classify gait is through direct classi�cation. Direct classi�cation can be categorized

by the disregard for temporal information obtained from gait sequences [31]. Classi�ers such as

K-nearest neighbors (KNN) fall into this category as they use only key frames extracted from a

sequence containing relevant information. KNN conducts predictions by observing the classes of

features that are in close proximity to the test feature. Using approaches such as Euclidean dis-

tance, KNN can assign the label of the test feature based on the closest common K training features.

Additionally, other approaches such as Manhattan and Minikowski can be used, depending on the
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application [61]. Examples of this can be found in [62] where key frames are extracted from a

gait cycle and used with KNN to compute scores. Works from [49] also used KNN to classify fre-

quencies that correspond to the hip motion of a subject. Overall, KNN is a powerful classi�cation

approach when using smaller datasets, however, it tends to reduce in performance when tested on

datasets that are in the order of tens of thousands of samples [63].

2.3.2 Support Vector Machines

Discriminative classi�ers such as support vector machines (SVM) can also be used for gait clas-

si�cation. Introduced in [64], SVM are a supervised binary classi�er which adapt well to testing

data and are easy to train. SVM also do not have the challenge of dealing with a local minima.

This is because SVM calculates a decision boundary that is dependent on various parameters.

The most common type of SVM is the C-support vector classi�cation approach (C-SVC) [65].

Here, C, which represents a cost parameter, indicates the trade-off between how many samples are

misclassi�ed versus the simplicity of the decision boundary. The signi�cance of using C-SVC for

classi�cation is that it allows outlier samples to be misclassi�ed in order to create a simplistic and

smooth decision boundary. As a result, this reduces computational costs and enables more general

models to be created.

Another type of SVM proposed in [64] was a model that utilizes multiple kernels. Also known

as multiple kernel SVM (MK-SVM), it is an effective approach that uses a prede�ned set of kernels

that helps reduce bias as well as the opportunity to combine multiple types of data. Applications

of SVM in gait recognition appears in [66], where the authors used it for wavelet decomposed

features derived from GEI.

2.3.3 Dynamic Bayesian Decision Networks

Predictive modeling can help patients and investigators by providing appropriate support services

and assisting with decision making tasks involved in either clinical or forensic settings. One type

of predictive approach that will be investigated in this thesis is the Dynamic Bayesian Network
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(DBN). A DBN is model that can be used to represent complex correlations using probabilities

and causality. To incorporate this model for applications such as gait, two different approaches can

be taken: the �rst is discriminative (conditional distribution model) and the second is a generative

(joint probability model) approach [67].

Generally, it is dif�cult to model all variances for all points in time. The advantage of using a

DBN is that time can be transformed in order to make the process homogeneous. Early works from

Xu et al. [68] proposed a state space based model to estimate mean and variance for time varying

(temporal) data. Another approach is to assign and update weights for the likelihoods at each time

slice using techniques such as feed-forward or sparse Kalman �ltering [67]. These approaches of-

ten outperform sparse models, however extreme care needs to be applied to the sampling technique

as inconsistencies can make model assumptions or prior probabilities incorrect [69].

2.4 Training Methodologies

To train any of the classi�ers mentioned above, the input dataset must be separated into two cate-

gories: a training set and a testing set. Both of these sets may not contain any shared data as that

will lead to abnormally high accuracies. To separate the data there are generally two different ap-

proaches: image level and subject level separation [1]. Image level separation refers to separating

the data without considering ‘who’ the data belongs too. This approach is often utilized in smaller

datasets where training data is limited. The alternative approach is to separate the data based on

the subject. This often involves removing entire subjects from the training set and using them for

testing as the machine would have no previously trained data on the individual. This approach

tends to require larger datasets in order to achieve a valid result. In model-based gait recognition

either approach is acceptable, however, image level separation is generally used due to the lack of

available data.

A common technique used to achieve this level of separation is cross-validation. Generally

referred to as K fold cross-validation, this approach separates the input dataset into K subsets. The
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network being tested is then retained K times and the accuracy is recalculated each time using

a different subset. For example, leave-one-out-cross-validation (LOOCV), also known as 1 fold

cross validation, occurs when 1 sample is removed from the dataset for training and used for

testing. This process repeats for the number of samples the set contains, with a different sample

being removed each time. An extension to the approach is when K is changed to a different

number such as 5. In 5 fold cross validation, 5 samples are removed and used for testing while

the remainder are used for training. In general terms, when using K-fold cross validation with a

dataset of size N, the training set in each run will be of size N� N
K , and the testing set will be of

size N
K respectively.

To represent the accuracy of a classi�er a confusion matrix is often used. A confusion matrix is

a tool used for illustrating the sensitivity and the speci�city of the classi�cation result. Sensitivity

often referred to as the true positive rate (TPR), is a value that measures the portion of samples that

are correctly identi�ed as positive by the classi�er. The speci�city or true negative rate (TNR), does

the opposite and measures the portion of samples that are correctly identi�ed as negative. These

values are positively correlated to accuracy, so if the TPR and TNR is 100% then the accuracy will

be 100%. However, there are also values that measure incorrect positive and negative predictions.

These values are known as false positive rate (FPR) and false negative rate (FNR) respectively.

Table 2.2 illustrates how the rates are represented in a simple 2�2 confusion matrix in the case of

binary classi�cation. In non-binary classi�ers, the confusion matrix will be of size N�N where

N represents the number of potential classes or output labels. To calculate each rate inside the

confusion matrix the number of responses from the classi�er must be known, i.e. true positive

(TP), false negative (FN), false positive (FP), and true negative (TN). To calculate the overall

accuracy for a classi�er the following equation can be used:

Accuracy =
T P + T N

T P + T N + FP + FN
(2.1)
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Table 2.2: A sample confusion matrix for a binary classi�er.

Predicted: Positive Predicted: Negative
Actual: Postive T PR = T P

T P+FN FPR = FN
FP+T N

Actual: Negative FNR = FP
FN+T P T NR = T N

T N+FP

2.5 Conclusion

This chapter discusses relevant literature related to gait recognition and the various approaches

found in recognition systems. Many modeling techniques have been proposed over time ranging

from GEIs to 3D human modeling. As shown, model free approaches are very well developed,

however, this thesis will explore the potential of using a model based approach for conducting gait

trait recognition due to available hardware and the novelty of the research. In the past, model based

approaches required direct interaction with an individual. However, recent work involving sensors

such as the Kinect have been proposed and solutions from this thesis aim at contributing to the

development of contactless gait recognition systems.

Testing various classi�ers is important in the presented work, because instead of identifying

an individual by their gait, this thesis proposes using machine reasoning to predict an individual’s

gait type. To test the validity of this approach it is necessary to test it against other classi�ers using

a large amount of data. Datasets used for this thesis consist of samples from the UPCV database

[8, 9] and a locally collected database also known as the Ucalgary gait database. Classi�ers tested

include KNN, SVM, DBN, as well as Logistic Regression (LR), and Na¤�ve Bayes (NB), which are

discussed later in Chapter 4. Results are compared with other literature in order to make further

improvements. Details about the methods and approaches used for the proposed experiments are

described in the next chapter.
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Chapter 3

Proposed Methodology & Approach

This thesis focuses on developing a modular gait trait recognition system that can be integrated

with other biometrics to create a multi-biometric system for the purpose of recognition and au-

thentication. Figure 3.1 illustrates how the proposed gait trait detection system. Throughout the

course of this thesis several methods for collecting gait were developed. Various known approaches

were also tested and used as a comparison for system performance.

Figure 3.1: System architecture of the proposed gait trait recognition system.

The system architecture for the gait trait detection system includes: a depth camera interface,

data pre-processing, feature extraction, and classi�cation via LR, NB, KNN, SVM, and DBN.

Here, input depth samples from a subject are collected and are used to derive important gait fea-

tures. The derived features are then input into a classi�er to perform gait trait prediction. Results

from the classi�er can be fused with results from other biometric systems to increase system per-

formance.

In this chapter, the methodologies and approaches for data collection and feature extraction will
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be presented �rst, followed by a discussion of the classi�cation techniques such as KNN, SVM,

as well as others. An alternative classi�cation technique based on machine reasoning, also known

as a DBN is also proposed. The DBN presented is compared with results from other classi�ers

for the application predicting an individual’s gait type. Lastly, to demonstrate the potential for

fusion with other biometric modalities, a facial recognition algorithm is introduced and fused with

gait characteristics at the decision level. Results are presented for the application of individual

veri�cation.

In summary, this work begins by classifying gait either as normal or abnormal. By de�nition,

an abnormality is understood as the asymmetry that exists within various parts of the body, leading

to gait distinctiveness from a regular walking pattern. In medical sciences, such abnormalities

help to detect whether an individual has Parkinsons [70], Multiple Scoliosis (MS) [24], or other

conditions manifested within one’s gait. In forensics, gait abnormalities such as limping, also

known as antalgic gait, can be used to help identify individuals based on their gait abnormalities

and other distinctive attributes [3],[7].

In this study, the following methodologies will be applied to develop an approach capable of

distinguishing speci�c abnormalities such as antalgic gait:

1. Data collection using a model based-approach.

2. Data processing using various �lters and feature selection techniques.

3. Classi�cation using various approaches and a comparable analysis of the results.

4. Proof-of-concept demonstration of the potential for multimodal biometric system

using fused features such as gait and face biometrics.

This Chapter describes the methodologies and techniques listed above. The experiments on

classi�cation, as well as a demonstrative experiment on multimodal biometic fusion involving gait

type detection is presented in Chapter 4. Observations and conclusions are discussed in Chapter 5

5.
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3.1 Gait Biometric Data Collection

As discussed in section section 2.2, while model-free methods had certain advantages such as

reduced complexity, and more publicly available datasets, model-based methods were ultimately

chosen as the proposed approach for this thesis due to the novelty and increase of commercially

available model-based technologies. Examples of such technologies include the Kinect v2. With

the ability to provide frames that depict an object with relatively high accuracy, the Kinect system

was an appropriate choice for this research. Figure 3.2 illustrates samples of the frames provided

by the camera in RGB, NIR, and Depth spectra.

(a) (b) (c)

Figure 3.2: RGB (a), NIR (b), and depth (c) images of a subject with a skeleton overlay.

The skeleton data is collected through a custom built C++ program that uses libraries provided

from the Kinect SDK. The data is stored and labeled as a N�M matrix where N represents the

number of features and M corresponds to the number of frames. The matrix obtained through

recording is used to �nd feature level characteristics such as Joint Relative Angles (JRAs) and

Joint Relative Distances (JRDs). These features will be used to �nd basic features such as an

individual’s gait cycle as well as model the dynamic relationships that exist in between various

joints.
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3.2 Gait Cycle Extraction

To identify various gait types, the �rst step in this approach is to �nd and model an individual’s

gait cycle. The gait cycle begins when one foot becomes load bearing as the opposite foot lifts

from the ground. In this moment, various joints and muscles make adjustments to keep the center

of gravity near the torso stable. As the unburdened foot swings forward, past the load bearing foot,

it begins to lower and the process repeats for the opposite side of the body. This is de�ned as a

cyclic pattern, where different limbs repeat movements at a relatively constant frequency [31]. To

illustrate the gait cycle more clearly it is commonly modeled as a sequence of seven phases as seen

in Figure 3.3. For additional clarity, the foot that begins the gait cycle will be addressed as the

primary foot and the opposite will be known as the secondary foot. Each phase of the gait cycle

can be de�ned in the following way:

1. Initial contact (IC) This is the �rst phase that is often used to de�ne the start of

the gait cycle. It begins when the primary foot contacts the ground and begins to

become load bearing.

2. Opposite toe off (OTO) When the primary foot becomes load bearing and the sec-

ondary foot prepares to swing past the individual’s torso. This occurs from 0 10%

of the gait cycle.

3. Heel rise (HR) At this point the secondary foot swings past the torso and forward

motion is experienced. This lasts from 10 30% of the gait cycle.

4. Opposite initial contact (OIC) This phase is used to signify the midpoint (30 50%)

of the gait cycle when the secondary foot contacts the ground and the individual’s

weight is transferred to it.

5. Toe off (TO) At this point the process described above repeats, however the sec-

ondary foot is now conducting tasks the primary foot was previously doing and vice
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versa. This occurs for 50 60% of the gait cycle.

6. Feet Adjacent (FA) As the gait cycle approaches the end point, this phase is used

to describe the primary foot swinging past the torso for 60 80% of the gait cycle.

7. Tibia Vertical (TV) The �nal phase of the gait cycle (80 100%) occurs when the

primary completes swinging past the torso and sets up to become load bearing.

Upon completion the cycle resets, beginning with the initial contact phase.

To measure the gait cycle with the Kinect, each individual frame is examined. The gait cycle

is then modeled using two different features: the JRD and the JRA.

Figure 3.3: The seven sequential periods and two phases of the gait cycle [71].

3.2.1 Joint Relative Distance

Originally proposed by [72], using JRD for feature level gait recognition has gained traction re-

cently. The JRD approach works by measuring the Euclidean distance between any two joints in

a frame containing skeletal data. The main advantage of using this approach to detect a gait cycle

is that it preserves characteristics such as being invariant against view and scale changes [73]. In
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other words, to isolate an individual’s gait cycle, the subject is not required to walk in a speci�c

direction or maintain a constant distance from the camera.

To determine a gait cycle using the JRD approach the geometric positions of an individual’s

left and right ankles are observed and recorded. The positions pi(xi;yi;zi) are stored in a vector that

is N length where N represents the number of frames captured. Then the corresponding distance

between the subject’s ankles are calculated for each frame using the following equation [74]:

D(p1; p2) =
q

(x1� x2)2 +(y1� y2)2 +(z1� z2)2 (3.1)

The result is a value that corresponds to the individual’s left ankle position p1 and their right

ankle position p2 or vice versa.

Proposed by [72], the JRD values can be used to model a gait cycle through plotting and

computation of the local maxima as illustrated in Figure 3.4. To �nd a complete gait cycle, three

local maxima must be found. The time difference or number of frames that exist between the

�rst and third maxima are used to represent a single gait cycle. Since an individual’s gait cycle is

naturally cyclic, the distance between their ankles will re�ect a peak in the waveform. This peak

can be used to mark the start of a gait cycle and will also be used to mark the end. The second

peak that occurs during the gait cycle represents the transition that happens approximately half way

(50%) through a complete cycle. Although it is not directly used to �nd a gait cycle, the second

peak will assist with �nding other important features such as stride length.

3.2.2 Joint Relative Angle

Accurate and ef�cient detection of a gait cycle relies on observing speci�c phases such as the

initial contact (IC) and a toe off (TO). Since the JRD method is only able to approximate when

these phases happen a different approach must be considered. To identify a gait cycle from a

RGB-D recording, this thesis proposes using JRA in addition to JRD to identify an individual’s

gait cycle. Unlike JRD, the JRA approach focuses on �nding the angles between two joints p1
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Figure 3.4: Detecting the gait cycle from local maxima based on the JRD values from a subject’s
ankle positions.

and p2 and can be de�ned as the angle formed by p1 and p2 with respect to a reference joint pr.

To clarify, the reference point pr can be any joint that connects two different joints together. For

example, the ankle can be used as a reference point to establish the connection between the foot

and the knee. To calculate the JRA for a reference point pr the following equations can be used:

D(p1; pr) =
q

(x1� xr)2 +(y1� yr)2 +(z1� zr)2 (3.2)

D(p2; pr) =
q

(x2� xr)2 +(y2� yr)2 +(z2� zr)2 (3.3)

Q(p1; p2; pr) =
cos�1 ~P1 � ~P2

D(p1; pr)D(p2; pr)
(3.4)

The angles obtained from the equations can be used to �nd the JRA of the ankles and to label

periods such as IC and TO. It is known that a gait cycle starts with an IC from one foot and ends

with an IC of the same foot [75]. This approach focuses on partitioning an individual’s gait cycle

into three phases: Initial Contact, Foot Flat, and Toe Off. By relating the cyclic JRA pattern to

these phases an individual’s gait cycle can be established and used for gait trait detection.
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The JRA approach also has many other uses for �nding features other than just the gait cycle.

Literature from [76] examined the dorsi�exion range of motion in speci�c joint connections such

as the ankle-foot to �nd out how other joints are affected in individuals with gait conditions such

as cerebral palsy. The modi�ed approach proposed in this thesis will use JRA to examine how the

kinematics of multiple joints used during locomotion are affected when an abnormality such as

antalgic gait is present.

3.3 Noise Reduction

In the �eld of signal processing, �ltering is often necessary to remove unwanted noise or artifacts

that introduce error into the data. In gait analysis, noise is often described as high-frequency

components that are caused by various sources such as systematic errors caused by the external

environment, multiple light reception, or motion blurring [77]. Therefore, due to the nature of

contactless based RGB-D data, some measurement error is expected to occur. To minimize this

error, various �ltering methods found in other gait related applications such as a moving average

�lter (MVA) [78], Butterworth �lter [79], and multi-level wavelet decomposition & reconstruction

[80] are investigated.

One of the most common �lters used in signal processing is the MVA. Characterized by its

simplicity and features such as reducing random noise while maintaining a sharp step response,

it proves to be optimal for time domain encoded signals [81]. The MVA operates by averaging a

number of points from the input signal to produce each point in the output signal. The number

of points taken from the input signal is often described as the window size, and it is important to

de�ne a window size that is appropriate for the application. In equation form the MVA is de�ned

as:

y[i] =
1
N

N�1

å
j=0

x[i + j] (3.5)

In this equation, x represents the input signal and y represents the output signal. While N is
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the number of points or window size. As seen in [78], the MVA is useful for gait applications

speci�cally gait cycle detection because it is able to �lter out unwanted noise while still preserving

much of the original input signal.

An alternate approach some papers use [79] is a Butterworth �lter. The Butterworth �lter is a

lowpass �lter designed to have a frequency response as �at as possible. The advantage of using this

type of �lter is that it is optimal in the sense of having a maximally �at amplitude response. This is

important because it does not �lter the input signal for as much of the band-pass as possible. The

Butterworth Filter is de�ned by an amplitude response represented by the following equation:

jH( jw)j=
1

q
1 + w

wc
2n

(3.6)

where wc represents the cutoff frequency of the �lter and n denotes the order of the �lter.

Examples appear in [79], where the authors used a zero phase fourth order Butterworth �lter with

a cutoff frequency of 7 Hz to �lter their displacement time data for a gait cycle input signal. The

�ltered data was used to identify the IC and TO phases of subjects who had normal gait and spastic

diplegia.

Lastly, the other common approach to �ltering gait input signals is multi-level wavelet decom-

position and reconstruction. In [82] the authors collected a dataset which consisted of accelerom-

eter data obtained from a mobile device such as a smartphone. However, the data was low-quality

and contained many irregularities as well as a great deal of noise. To �lter out this noise they

utilized a multi-level wavelet decomposition where the detail coef�cients of levels 1 and 2 are set

to 0 to eliminate the noise. To reduce the noise of the JRD and JRA input data used for gait cycle

detection, this thesis adopts a similar approach. As illustrated in Figure 3.5, the original signal

is denoted by x(n) and it is passed through a series of high-pass and low-pass �lters denoted by

HF and LF respectively. The outputs from the high-pass �lters are denoted as detail coef�cients

and likewise, the low-pass �lters preserve most of the information from the input signal and their

output is denoted as raw coef�cients. The raw coef�cients are then used as the input to the next
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series of cascading �lters and the sampling rate is reduced by 2. To rebuild the signal, the detail co-

ef�cients are set to 0 and the signal is restored by concatenating the coef�cients of high-frequency

with low-frequency [83].

Figure 3.5: Multi-level wavelet decomposition with M levels. Each level contains two �lters which
return coef�cients. Reconstruction is done by setting the detail coef�cients to 0 and concatenating
the coef�cients of high-frequency and low-frequency.

RGB-D data obtained from the testing datasets was �ltered using the MVA and Butterworth �l-

ter. Multi-level wavelet decomposition and reconstruction was considered, but ultimately rejected

due to the unnecessary complexity in return for negligible noise reduction.

3.4 Feature Selection & Representation

As described in 3.2 locomotion is achieved through the use of certain muscles and joints. Intu-

itively, it can be assumed that joints which experience more motion during a gait cycle will be

more critical than others that do not. To detect and record these joints, the skeleton-tracking algo-

rithm that is included with the Microsoft SDK was used to process data matrices from the image

and depth sensors. The processed data provides spatial coordinates of all joints in the model as

illustrated in Figure 2.2b. Additionally, the skeleton data can be described using the following

representation [84]:

T (m;n; j;k)20;3;J;K (3.7)
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where each recorded frame j = 1;2; ;J in the selected segment k = 1;2; ;K of a sample with

three coordinates n if each joint m = 1;2;20 is stored in a matrix. To reduce the dimensionality

of the matrix, this thesis will only consider the lower body joints for investigation because of the

large dynamic changes observed in addition to the supporting literature [32] presented in chapter

2. Therefore, the skeletal data used in this study can be de�ned as:

T (m;n; j;k)9;3;J;K (3.8)

This representation is modi�ed to re�ect only the lower body joints and their corresponding

connections as illustrated in Figure 3.6 by the red markings. Now the range of m is reduced from

m = 1;2;20 to m = 1;2;9. Presenting the data in this modi�ed format simpli�es the data and

reduces the amount of processing needed.

Figure 3.6: Lower body joints and connections selected for gait feature extraction as indicated by
the color red.

The resulting matrix output by the system is size 27�M where M represents the number of

frames recorded. This matrix contains the Cartesian data of all 9 joints selected with respect to the
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camera stored as rational numbers. These coordinates will be used to extract gait related features

for each subject which will in turn be used for testing and training the classi�ers.

To extract key features from geometric points obtained from the frame data, the features must

�rst be identi�ed. The features that were selected for this thesis were obtained from a combination

of expert analysis and results presented in [25]. In [25], G.Cuaya et al. examined what features

should be used to investigate fall detection for elderly people. In order to achieve their proposed

goal the authors examined the temporal and spatial gait parameters from literature regarding the

GaitRite system [85]. The work from [85] proposed a list of 31 features ranging from ambulation

time (s) to toe in/out angles (�). However, the work from [25] proposed using only relevant vari-

ables by reducing the dimensionality of the data using expert selection and a Sequential Forward

Selection (SFS) algorithm.

The �rst list of features de�ned by experts from the Human Motion Analysis Laboratory of the

INR for individuals at the risk of falling is illustrated in Table 3.1.

Table 3.1: Features Selected by Experts for Predicting Falls

Selected Variable Name using Experts Abbreviation
Left step length (cm) LPI
Right step length (cm) LPD
Base of support left step (cm) BSI
Base of support right step (cm) BSD
Left stride length (cm) LPCI
Right stride length (cm) LPCD

To verify the features selected a SFS algorithm was used to reduce the original 31 variables

in [85] to 7 relevant variables. The SFS is a type of search algorithm that is used to reduce a

feature space of size A to a B dimensional feature subspace where A > B. To perform feature

selection, features are removed from the original set while classi�cation is performed until the

desired set size of B is reached. Classi�er performance is recorded and used along with a threshold

to determine which feature subset will be accepted or rejected. The SFS algorithm can be modeled

in the following way, with the input A denoted as:
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Yinput = y1;y2; ;yA (3.9)

The corresponding output from the SFS is returned as a subset of features of size B:

XB = x j j = 1;2; ;B;x j 2 Y ; where B = (0;1;2; ;A) (3.10)

Here, the output subset is initialized and the priori is set to p, which will be used for the stop

criterion.

XB = f ; B = (0;1;2; ; p) (3.11)

Then a loop is performed that continues to add features to the subset XB up until the predeter-

mined priori value p. During feature selection, the feature that maximizes classi�er performance

when added is denoted by x+ and is retained in the subset XB. A pseudocode for the SFS algorithm

is shown in Algorithm 1.

Algorithm 1 Feature selection using SFS
1: while B� p do
2: x+ = arg max J(xB + x); where x 2 Y �XB
3: XB + 1 = XB + x+

4: B = B + 1
5: end while

The SFS algorithm was able to reduce the original feature set into a subset shown in Table

3.2. To select the appropriate features for detecting antalgic gait as well as asymmetry, this thesis

proposes to use statistical correlation combined with the features presented in Table 3.1 and Table

3.2.

For the proposed classi�ers it was logical to use features that were closely correlated (Rj1j)

for observations regarding the gait type in question. Since this thesis is investigating antalgic gait,

one of the known features which experiences the greatest change during an abnormal gait cycle

is cadence (CAD) [44]. CAD denotes the speed of the individual, and is often expressed in steps
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Table 3.2: Features Selected by the SFS Algorithm

Selected Variable Name using SFS Abbreviation
Right step time (s) LPI
Left double support (%Gait Cycle) SDI
Base of support left step (cm) BSI
Base of support right step (cm) BSD
Right step/extremity ratio RPED
Left toe in/out angle TIOI
Right toe in/out angle TIOD

per minute. To �nd other features that are similar to cadence the features listed in Table 3.1 and

Table 3.2 are considered along with other features from [85]. The correlation is represented by a

given set of observations (xn;yn) as well as their respective scores (Sx;Sy) where the correlation

coef�cient (R) re�ects the similarities or differences observed. The following equation is used to

represent the correlation between two features such as CAD and stride length:

R =
1

n�1 å(
x� flx

Sx
)(

y� fly
Sy

) (3.12)

Through a combination of literature review [85, 86, 87], experimental testing, and statistics,

this thesis proposes to use the features listed in Table 3.3 to identify antalgic gait. However, it can

be argued that different features are more prominent in different gait types such as Parkinson’s or

MS. Although this is true, many features share similar behavioral characteristics in the presence

of an abnormality [88]. Therefore, the work proposed in this thesis aims at using as many of these

generic features to diagnose common gait conditions such as antalgic gait at various severities

ranging from mild to extreme.

Several features such as CAD and various joint angles exist over many frames in a sequen-

tial time-series format. In order to classify the features, they must be aligned and represented in an

analogous way. Popular methods in literature include using Dynamic Time Warping (DTW) to �nd

the optimal non-linear alignment between two time series. Many studies have used this approach

to perform recognition via gait signatures (by comparing waveforms), however it is computation-

ally expensive as it is quadratic in the length of the time series used [89]. As an alternative, the
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Table 3.3: Features Selected using Proposed Method

Selected Variable Name using Proposed Method Abbreviation
Cadence (steps/min) CAD
Left ankle joint angle (�) LAA
Right ankle joint angle (�) RAA
Left knee joint angle (�) LKA
Right knee joint angle (�) RKA
Left stride length (m) LSL
Right stride length (m) RSL

proposed methodology in this thesis uses other acceptable parameters such as mean and variance

to determine gait abnormalities in order to save computational complexity and time.

The selected features are passed to the classi�cation stage of the system and will be used as

training data for the classi�ers proposed in this thesis (KNN, SVM, DBN, and others).

3.5 Classi�cation

3.5.1 K-Nearest-Neighbors

For this thesis, one of the classi�cation methods chosen as a comparison point for the proposed

approach is the K-Nearest-Neighbors (KNN) classi�er [90]. One of the more traditionally used

classi�ers, KNN works by �nding the distance between different feature vectors. To perform KNN

classi�cation, the input data must be presented in the form of a feature vector. From the previous

section in this chapter, many different approaches for obtaining gait related feature vectors from

RGB-D data were discussed. For this thesis, a combination of statistical calculations as well as

features that performed well in similar tasks [25] were used.

To perform the classi�cation, the distance between a test feature vector and a series of training

feature vectors is calculated. The different types of calculations used for computing KNN dis-

tances are presented in Section 2.3.1, however, Euclidean distance was ultimately selected due to

simplicity for binary classi�cation. Once a calculation method is selected, the KNN classi�er can

be initialized using a training with a known labeled dataset that consists of various feature vectors.

37



The accuracy of the classi�er can be determined by tested it with an unknown testing set. The

unknown features are labeled by the classi�er based on the closest number of K training features.

3.5.2 Support Vector Machines

The second method of classi�cation that was chosen for comparison is Support Vector Machines

(SVM). For this study a SVM was chosen because it is known to provide good separation in

regards to complex distributions in feature vector domains [91]. A SVM is a type of supervised

binary classi�er, meaning it requires the data to be labeled and that it can only classify between

two classes. Classifying multiple labels using SVMs is also possible through fusion of multiple

binary SVMs. One of the main differences between KNN and SVM is that SVM is not a learning

classi�er, this is because SVMs rely on calculating a decision boundary between the classes based

on the labeled training input data.

The main idea with SVM classi�cation is to project the data onto a higher dimension so that

is can be divided by a hyperplane. A SVM classi�er operates based on a function that maps the

input data to a higher dimensional space, also known as a kernel function [91]. By transforming

the data to the higher dimension using the kernel function, the majority of the computation time

on the feature vector size is reduced. There are a number of kernel functions available to be used

such as, linear, polynomial, radial basis function (RBF), and many more [92]. For this thesis it was

decided to use the RBF kernel to ensure that the risk of over �tting and under �tting is minimal

as well as to allow for �exibility regarding additional gait feature data. One downside of using a

RBF kernel is that it takes more time to train as compared to a SVM using a polynomial or linear

kernel. However, because the application created conducts training of�ine, computational time is

not a large factor.

One of the main objectives of this thesis is to be able to classify gait data into different classes

which describe an individual’s gait type. As a proof of concept this thesis work attempts to �rst

classify gait into two classes: normal, and abnormal. In order to achieve this, the work presented

uses C-Support Vector Machines (C-SVM), which is different from support vector regression be-
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cause the data is separated into discrete classes.

C-SVM requires solving for a decision boundary between two classes while also maximizing

the margin. To address outliers in classes that may not be perfectly separable a penalty parameter

C is used. The RBF kernel used in Matlab for implementation can be de�ned with the following

equation:

K(xi;x j) = e�gjjxi�x jjj2 (3.13)

where g is a parameter which is determined during optimization and controls the weight of a

point. The relationship between g and the boundary is that when gis increased the �exibility of

the boundary is increased but can lead to over �tting. Conversely, if g is reduced the boundary

reduces and might exclude useful input data. Additionally, xi and x j are the training vectors that

are mapped to a higher dimensional space or resultant kernel K(xi;x j) [65, 93].

3.5.3 Linear Discriminant Analysis

Another classi�cation technique that is explored in this thesis is known as Linear Discriminant

Analysis (LDA). Similar to Principal Component Analysis (PCA), LDA is used to �nd the com-

ponent axes that maximize the variance of the data as well as maximize the separation between

multiple classes (LDA). To achieve this, LDA projects a feature space onto a smaller subspace

k (where k � n� 1) while preserving class discriminatory information. To perform LDA the d-

dimensional mean vectors for the different classes must �rst be computed. Next, the eigenvectors

(e1;e2; :::;ed) and corresponding eigenvalues (l1;l2; :::;ld) for the intraclass scatter matrices are

calculated. The eigenvectors are sorted by decreasing eigenvalues for k eigenvectors to form a

d� k matrix W . Lastly, the d� k matrix can be used to transform the samples onto the new sub-

space using 3.14, where X is a n� d-dimensional matrix for n samples, and Y correspond to the

transformed n� k-dimensional samples in the new subspace.
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Y = X�W (3.14)

One characteristic about using LDA is that it assumes that the data is normally distributed. Ad-

ditionally, it also assumes that features are statistically independent and have identical covariance

matrices for each class. However, for classi�cation tasks, LDA has been shown to be quite robust

to the distribution of the data [94].

3.5.4 Na¤�ve Bayes

Na¤�ve Bayes (NB) is a classi�cation technique bayed on Bayes’ rule 3.16. The NB approach is

similar LDA because it also assumes that the features are unrelated to the presence of any other

feature, or independent. Due to these assumptions NB is often known as an easy and fast classi�er,

that is also able to perform multi-class prediction well. Additionally, the NB classi�er also tends

to be comparable to other models such as logistic regression while requiring less training data.

However, because the predictors are assumed to be independent, it does not usually model real-life

relationships well where features are often dependent on one another.

3.5.5 Dynamic Bayesian Networks

An extension of the NB technique, and the �nal method of classi�cation chosen for comparison is

the Dynamic Bayesian Network (DBN). These networks rely on using probability theory, Bayes’

rule, and conditional independence. DBNs are comprised of causal nodes that use probabilities to

predict the likelihood of an event occurring. An event E is a subset of a sample space W, where it

is de�ned as a set of outcomes wn as shown below:

W = w1;w2; ;w3; where E �W (3.15)

This is useful to know because the probability distribution P is a function of events whose range

is from 0 to N, or in other words the number of outcomes. To specify the probability of two events
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E and F the following equation can be used:

P(EjF) =
P(F jE)P(E)

P(F)
(3.16)

The above equation is Bayes’ rule and describes the probability of event E occurring, given that

F has occurred. Conditional probabilities are one of the fundamental functions used in Bayesian

networks because they are used to compute the likelihood P(EF) of internal and output nodes

based on the posterior probability P(FE), prior probability P(E), and normalizing term P(F). To

determine whether a set of events is independent the following can be used:

P(EF) = P(E) and P(FE) = P(F) (3.17)

where if the above relationship is true for events E and F then it can be concluded that they are

independent [95]. The above equation can also be used to de�ne conditional independents when

a third event G is introduced. Two events, E and F are conditionally independent, given another

event G if:

P(EF \G) = P(EjG) and P(FE \G) = P(F jG) (3.18)

Additionally the joint distribution of a set of random variables is the multi-variate alternative

of the single variable example. To specify a probability distribution for an event P(X) from a joint

distribution P(X ;Y ) the following can be used:

P(X) = åy 2M(Y )P(X ;Y = y) (3.19)

where M(Y ) is the domain of Y and that the probability of an event X or Y takes on the cor-

responding value of x or y respectively. Joint probability distribution and conditional probabilities

are important in modeling Bayesian networks, however static causal networks are unable to model

temporal processes without modi�cation.
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Dynamic Bayesian networks (DBNs) are a useful representation for temporal processes be-

cause they are speci�ed into two parts, a static Bayesian Network (BN) that is used to compute

probabilities at one time frame and a transitional BN that models how the variables change from

one time sequence to another as shown in Figure 3.7. In this thesis, a DBN is used for comparison

against the other classi�ers because it is able to model the temporal features found over multiple

gait cycles.

(a) (b)

Figure 3.7: Example Bayesian network structures where (a) is static and (b) is dynamic.

To create a DBN for gait detection, nodes must be selected that are able to represent an individ-

ual’s gait while also being able to distinguish between the known output classes. For this portion

of the thesis, three different output classes are selected which include: normal, left limp, and right

limp. To determine the likelihood of each of these classes, the corresponding nodes are indicated

in Table 3.3.

In a DBN each node must have a number of categorical outcomes wn associated with it. In order

to assign outcomes for each node, the probability density functions (PDFs) produced by each of

the data types was investigated. An example illustrating the PDFs for features such as CAD can be

seen in Figure 3.8. Here, the �gure illustrates how various outcomes are assigned for events such

as cadence.

To assign outcomes for the continuous probability distributions of features, the mean and stan-
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Figure 3.8: Logistic distribution of cadence collected from UCalgary and UPCV datasets. Labels
are assigned based on distribution using mean and standard deviation.

dard deviation is �rst computed. Next, literature is examined to verify the assignment of the out-

comes. For example, for cadence (one of the selected features), the work in this thesis examined

literature from [96, 97, 98] and found that normal cadence for adults was de�ned to exist in the

range between 90 and 120 steps per minute. The results from Figure 3.8 re�ect similar observa-

tions with the mean mu = 100:1 (steps/min) as well as a standard deviation of s = 10:4. From

these observations, the assumption was made that any measured cadence within one standard de-

viation to the left or right side of the normal curve mean is considered normal, this corresponds to

approximately 65% of the total cadence data. To label abnormal gait which contains either slow or

fast the following range was used:

Slow < 90 and Fast > 110 (3.20)

To summarize, the cut off proposed can be represented as m(normal) + 1s , this equation is

formed to minimize bias for the tests done on the UPCV and UCalgary datasets. PDFs for the

other features reported in Table 3.3 are also examined, details are included in Chapter 4.
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After selecting and labeling the features de�ned in Table 3.3, the input data is now ready to

be used for training and testing. To train and test the DBN this thesis uses Hugin (Hugin Experts

Aalborg, Denmark) [99], a sophisticated software package capable of modeling and testing various

types of causal networks, including DBNs. To model the DBN in Hugin we used the features from

Table 3.3 as nodes labeled with their corresponding abbreviations and the connections between the

nodes were determined via correlation as described in section 3.4. The structure of the resulting

DBN can be seen in Figure 3.9 where the various outcomes for each node is depicted alongside the

corresponding node.

Figure 3.9: Proposed DBN structure to be used for identifying a subject’s gait type.

The proposed network uses categorical information to describe each node which is derived

from pre-processing steps described earlier. To assign probabilities for each corresponding node,

conditional probability tables (CPTs) as well as probabilistic inference was utilized. Using CPTs

is a well-known approach for describing the conditional and joint probabilities each node contains,

an example of a CPT can be seen in Table 3.4. In a DBN, transitional nodes, or nodes that contain
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temporal information must be initialized with a CPT, non-temporal node tables can be computed

by using probabilistic inference techniques [95]. To construct CPTs statistical information from

the collected data is used to specify the value, however, this is unreliable and unrealistic because it

can result in subjective assessment or imprecision due to the speci�c data used.

Table 3.4: CPT for the Left Ankle Joint Angle (LAA)

Left Stride Length (LSL) Normal Abnormal
Normal 0.9 0.1
Abnormal 0.1 0.9

To update the CPTs the adaptation algorithm developed by [100] was chosen because it allows

quantitative aspects to be carried over for future cases. The adaptation algorithm functions based

on the notion of experience. According to [100], experience is a quantitative memory which can be

based on both expert judgment and past cases. Experience can be represented as a set of ‘counts’

a0;a1; ;a(n�1), where n is the number of con�gurations of the parent nodes. Here, ai represents

number of times the parent nodes have been observed in the ith con�guration. The experience

‘counts’ are stored in a table often referred to as an experience table. When initialized, an ex-

perience table is set to zero. To perform adaptation, positive values must be stored in the table

[101].

Experience consists of a probability distribution P(Q) over a parameter space Q. The core

is a joint distribution abbreviated as P(V jQ) and is used to express the relationships between the

nodes in the DBN. Experience and the core are linked via dissemination which is used to produce

a marginal distribution P(V ) as follows:

P(V ) =
Z

P(VQ)P(Q)dQ (3.21)

The result P(V ) from the above equation can then be used to evaluate the event. The core,

or node that is being updated with some data E is updated based on the posterior probability

distribution P(QE). The relationship between these three variables is illustrated in Figure 3.10.

45



Figure 3.10: High-level overview of how experience is utilized and updated. [100]

One disadvantage of using experience over a sequence of cases is that it creates a bias which

assumes that all experience is relevant. Intuitively, past experiences should be gradually eliminated

in order to give more recent experiences more impact on the outcome. Fading is a method proposed

by [102] that does exactly this; making nodes ignore things they have learned a long time ago. In

order to apply fading the experience count ai is discounted by a fading factor qi which is a positive

real number that is less than but typically close to 1. An example of fading can be represented by

the following equation:

Pi = ai(1� pi + piqi) (3.22)

where the ith parent given the propagated evidence Pi is computed before adaptation takes place.

Similar to experience, the fading variable for a node is stored in a fading table that has a range of

[0,1], where 1 indicates no fading (all experience is stored) and 0 indicates maximum fading (all

experience is ignored). Figure 3.11 illustrates a high level model of this approach. Here, for each

time slice, except for the initial slice (n = 0), the network stores the input information X as a form

of experience E which is discounted by a fading factor F and then propagated to the future time

slice to compute the result Y .
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Figure 3.11: A depiction of experience & fading for n time slices in a DBN.

3.6 Multimodal Biometric Fusion

Multimodal biometric systems consist fusing together different types of biometrics at various lev-

els. While single (unimodal) biometrics have remained heavily used for applications such as foren-

sics, veri�cation, and identi�cation. They tend to suffer with various challenges such as classifying

noise sensitive data, intra-class variations, and inter-class similarities etc. The purpose of fusing

together unimodal biometrics such as face, �ngerprint, and gait is to increase the robustness and

resistance to spoof attacks [103]. There are various levels at which fusion can be performed [104]:

� Sensor level - where two or more images from different sensors are combined.

� Feature level - which focuses on combining critical features extracted from two or

more modalities.

� Score level - where the scores obtained from various matchers/classi�ers are com-

bined.

� Decision level - where the decisions of classi�ers for various systems are combined.

In this thesis, the fusion of the proposed system with a traditional modality (face images) is

evaluated. In this section a unimodal face detection system is created and compared against a
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system which contains two fused modalities (face & gait).

3.6.1 Face Detection System

Face recognition is a mature biometric for which many recognition approaches exist. For this

reason, it was deemed unnecessary to design a new approach. From the many possible choices, this

experiment used a Histogram of Oriented Gradients (HOG) [105] to extract the features necessary

for classi�cation. Other approaches such as Gabor �lters, Local Binary Patterns (LBP), and Scale-

Invariant Feature Transform (SIFT) [106] are also feasible. The reason for choosing to use HOG

features is because it is easy to implement and also tends to fail on images which include dynamic

backgrounds (objects, lighting, etc.). Therefore, improvements via decision level fusion can be

better observed.

The purpose of a HOG features is to describe an image by using the distribution of intensity

gradients or edge directions. To create a HOG image, the image is �rst divided into small regions

called cells, and from the pixels within each cell, HOG features can be found. HOG features are

de�ned as the gradient of the pixels within each cell, and contain both magnitude and direction.

When each oriented gradient is plotted in a histogram, the �nal graph contains unique patterns that

can be used to identify an individual.

HOG features have a few key advantages over other methods. As previously mentioned, HOG

features are fast and simple to implement. In addition, [105] found that the HOG descriptor is

particularly suited for human detection in images when sampled using various approaches.

To test the robustness of HOG features a simple face detection system was created. The pro-

posed system uses HOG features which are derived from images found in the Caltech 1999 facial

dataset [107]. This dataset was speci�cally chosen because it contained color images with dynamic

backgrounds, similar to what would appear in forensic applications. Results from the experiment

are presented in chapter 4
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3.6.2 Decision Level Fusion

The purpose of this section is to determine whether gait can be fused with other biometrics to

improve performance. As described above, the biometric that was selected for fusion was the face

modality. In order to fuse face images with gait some factors had to be considered. First, since

the system proposed in this thesis relies on distinguishing an individual’s gait type, rather than the

individual themselves, the data collected differed quite signi�cantly compared to data collected

for the face detection system. For example, since this thesis used Kinect based skeleton models

fusion at the sensor or feature level was quite complex and unnecessary. To fuse the modalities at

the score level would also prove to be challenging because of the different dimensions and weights

associated with the scores used for classi�cation. Therefore, this work utilizes decision level fusion

to combine gait with face modalities.

To combine the two different modalities a simple algorithm was proposed. First, the data is

examined in two stages: select top rated ranks output from the face detector, followed by �ltering

the ranks via gait type. For example, for a dataset that contains 10 subjects u1;u2; ;u10 subject

u1 is matched with the following individuals ranked highest to lowest, u3;u1;u5. In this scenario,

subject u1 would be misclassi�ed as subject u3 followed by being correctly classi�ed as u1. By

incorporating an additional piece of evidence, such as u3Le f tLimp, indicating that subject 3 has a

left limp, it would be possible to distinguish between subjects 1 and 3 by their known gait type.

This process is further illustrated by Figure 3.12.

To measure the performance of the system, a comparison will be made using the unimodal

(face) and multimodal (face+gait) systems. In the unimodal system, face images will be ranked

based on score and faces with the highest rank will be accepted. For the multimodal system, face

images which lie in the top 30% will be used for additional �ltering via gait. The purpose of the

additional �ltering is to introduce additional evidence to the decision system which will reduce the

false acceptance rate, thus improving performance.
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Figure 3.12: Illustrating multimodal biometric fusion of face images and gait.

3.7 Summary

This chapter presents a novel method to perform gait feature detection using a Kinect v2 RGB-D

camera and various spatio-temporal relations that exist as geometric and angular changes during

an individual’s gait cycle. Throughout the research work for this thesis various recording ses-

sions were conducted to collect enough data for classi�cation. Several different experiments were

designed to validate the methods proposed in this chapter.

The �rst experiment was conducted to see how well a gait cycle can be modeled using JRA

or JRD methods. In this experiment, Matlab is used to automatically identify a gait cycle from a

locally collected dataset as well as an external gait dataset using the JRA and JRD methodology.

In a second experiment, basic features are extracted and used as an input into a variety of

classi�ers, including: SVM, KNN, NB, and LDA. Results from the classi�ers are compared with

each other and the performance was evaluated and used as comparison for future experiments.

The third experiment focuses on designing a DBN that is able to achieve higher accuracy than
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reported in the �rst experiment. Using specialized software and information obtained from the �rst

experiment, more features were extracted and used to create a temporal causal network that is able

to represent gait more accurately.

Lastly, a �nal experiment will be performed that will attempt to fuse the proposed DBN with

other biometrics at the decision level. The other biometrics chosen for fusion will consist of facial

images obtained from the publicly available Caltech 1999 dataset.

The following chapter will go into further detail about the implementation of the two experi-

ments as well as the methods of collection and labeling used for the local UCalgary Gait dataset.
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Chapter 4

Experimental Overview & Results

This chapter is dedicated to discussing the experimental results for gait type classi�cation using

the proposed system. The chapter is divided into three different sections which includes the exper-

imental design, dataset description, and results obtained from the proposed gait trait recognition

system using different machine learning approaches. Lastly, the performance of the system is

compared to other state-of-the-art gait recognition methodologies as reported in literature.

4.1 Experimental Overview

A series of different experiments were designed for the purpose of this thesis work. The �rst ex-

periment was designed for the purpose automatically extracting gait cycles using the JRA and JRD

approaches discussed in Chapter 3. This experiment used various types of RGB-D data obtained

from the Kinect v2 camera as well as other available databases. The second experiment proposes

using the extracted gait cycles from experiment one to detect features which can be used to classify

gait. Comparison was made regarding the performance of different machine learning approaches.

The third experiment was an investigation into using using a Dynamic Bayesian Network (DBN).

Using the derived features, this approach was used for comparison with other results because it was

able to model the temporal relations that de�ne gait more effectively. Lastly, a proof-of-concept ex-

periment was conducted which tested to see whether gait can be fused other biometrics to improve

overall system performance. This section will provide a brief overview of the four experiments

before going into more detail.
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4.1.1 First Experiment: Automatic Gait Cycle Extraction

For this experiment the goal was to create a program capable of interfacing with the Kinect v2

sensor that can automatically extract an individual’s gait cycle using the JRA and JRD approaches.

For this experiment C++ was chosen due to its compatibility with the NUI libraries provided by

Microsoft that are used for object/skeleton tracking. Matlab was also used to conduct the pro-

cessing needed for gait cycle extraction. The purpose of this experiment is to build the necessary

foundation needed for future data collection and gait analysis. As this was one of the �rst exper-

iments much of the processing work was dedicated towards designing an experimental procedure

to collect the data. More details on the reasoning and description of this database is included later

in this chapter.

4.1.2 Second Experiment: Classifying Gait

For the second experiment the goal was to determine the performance of different machine learning

algorithms for classifying various gait types. The two output classes for this experiment consisted

of: normal, and abnormal gait. Additionally, information from the �rst experiment was used to �nd

various relations that would assist in feature extraction from the RGB-D data output by the Kinect

v2 camera. As the data used for the �rst experiment was quite small, more data was collected

using similar methods and used to increase the size of the dataset used for the work presented in

this thesis.

4.1.3 Third Experiment: Gait Recognition using Machine Reasoning

The third experiment in this thesis combined the �ndings from the previous experiments to cre-

ate an application that uses machine reasoning techniques such as Dynamic Bayesian Networks

(DBNs). The reason for exploring this branch of classi�cation is because of the temporal infor-

mation gait sequences contain. Classi�ers used in the previous experiments struggle with repre-

senting temporal relations and can often be related to common curve �tting techniques. Using
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DBNs is different because they rely on conditional probabilities and sequential structures to rep-

resent temporal relations. Results are reported and compared to previous experiments as well as

state-of-the-art techniques found in literature.

4.1.4 Fourth Experiment: Fusing Gait and Face to Improve Performance

The fourth experiment attempts to combine the proposed gait recognition framework with other

biometrics to improve system performance. In this experiment, a subset of 10 subjects from the

Caltech face dataset [107] is used to perform facial recognition. Afterwords, the same subset is

modi�ed to include gait information and fused at the decision level. To perform the fusion, a

two-step procedure is proposed. First, the sample face undergoes classi�cation using an SVM

and is scored accordingly. Next, the top 3 ranking faces are selected and are �ltered via gait type

veri�cation. Through this process it is possible to eliminate imposters who might share similar

facial characteristics, however, have different gait traits, thus improving overall performance.

4.1.5 Hardware

All of the listed experiments were conducted using the same hardware and peripherals. The desktop

computer used for this set experiments was running a Windows 10 operating system equipped with

an Intel Core i7-4790 CPU at 3.60 GHz, corresponding CPU integrated graphics module, and 16

GB of RAM. Due to the bandwidth required by the Kinect v2, each sensor was connected to a

separate computer. However, the work in this thesis only uses information from the front facing

camera which is connected to the described workstation.

4.1.6 Data Collection

One of the main objectives of this thesis was to create a local dataset comparable to a publicly

available benchmark dataset, namely the UPCV gait dataset [8, 9]. The goal would then be to

combine the two datasets to increase the size of the available data, this is important due to the fact

that gait datasets which contain abnormalities are not publicly available.
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The UPCV dataset comprises of gait sequences obtained from 30 individuals which is divided

into 30 subsets. In each subset, 5 labeled sequences are available for use. Therefore, the total num-

ber of sequences for the UPCV dataset is 150. Reason for choosing to use the UPCV dataset was

because it was created using the Kinect v2 camera and corresponding skeletal models. However,

this dataset only contains subjects walking normally, in other words, no labels exist of individual’s

walking with the presence of an abnormality.

In order to classify gait abnormalities in future experiments this thesis work contributes to

the collection and labeling of abnormal gait data following the labeling conventions found in the

UPCV dataset. To collect the local dataset, which from now on will be referred to as the UCalgary

dataset, the following setup was used as illustrated in Figure 4.1.

(a) (b)

Figure 4.1: Diagram of setup used for gait data collection where (a) is an angular view of the actual
setup and (b) is a view from above.

To collect the data the subjects walked through a 4 meter path that contained markings at 50

cm increments which are used as the ground truth. Additionally, two Microsoft Kinect v2 devices

were used to record the person’s gait features. The devices were placed in perpendicular and frontal

orientations relative to the subject’s path to obtain different observation points. The two devices
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were not concealed in any way.

Each of the subjects walked in their own footwear and clothing and were instructed to walk in

the following sequence:

� Walk normally towards the camera (Kinect 1) and return to the starting position.

Repeat 2 times.

� Walk towards the camera (Kinect 1) while simulating an injury to the left leg and

return to the starting position. Repeat 2 times.

� Walk towards the camera (Kinect 1) while simulating an injury to the right leg and

return to the starting position. Repeat 2 times.

The following procedure would yield 6 recordings per subject which were labeled according

to the corresponding gait type that was requested. Additionally, the Ucalgary dataset has the ad-

vantage that it can be easily combined with the UPCV dataset due to the similar labeling criteria

chosen.

During the recordings, the degrees of freedom for an individual’s gait were relatively unre-

stricted. Therefore, the data is subject to potentially high intraclass variance between each record-

ing. To determine the repeatability of the experiment the intraclass correlation (ICC) between the

same and different subjects for each of the classes (normal, left, and right limp) was computed. Sta-

tistical analysis was performed using SPSS statistics v.20 software (IBM SPSS, Chicago, USA). In

this work, a two-way mixed model was used to calculate the ICC. From results we found the ICC

be statistically suf�cient between the same individuals (ICC>0.91 based on comparing 2 record-

ings from the same individual) and acceptable for different subjects (ICC>0.86 for 28 different

subjects performing the same task) respectively. The 95% con�dence intervals were calculated for

the ICC and the absolute and percentage differences to verify the uncertainty of these differences.
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4.2 First Experiment: Automatic Gait Cycle Extraction

4.2.1 Gait Cycle Detection

As brie�y mentioned, the purpose of the �rst experiment was to design a procedure that would be

capable of deriving an individual’s gait cycle from data collected by the RGB-D camera. As the gait

cycle detection algorithm was implemented based upon the work of [73], it was deemed necessary

to verify the implementation and propose alternatives approaches. Details on the implementation

of this approach were presented in Chapter 3, where the gait cycle is detected by �nding the peaks

corresponding with an individual’s JRD of their ankles. For this experiment a custom application

written in C++ was used to interface with the Kinect v2 camera to capture the data described earlier.

To perform gait cycle detection comma separated value (CSV) �les output by the application were

analyzed using MATLAB R2016b. These �les contained information such as geometric positions

of each joint as a function of time.

To verify the JRD algorithm originally proposed by [73] the following pseudocode was used in

Matlab as shown in Algorithm 2. Figure 4.2 shows a sample output resulting from the process.

Algorithm 2 Detecting Gait Cycle using JRD
1: for subject i do
2: for each frame f do
3: store the coordinates of Le f tAnklePos & AnkleRightPos for frame f
4: compute and store the JRD for the current frame f and subject i
5: end for
6: smooth the JRD vector using a MVA �lter and plot as a function of f
7: plot the JRD vector and draw lines to indicate peaks
8: end for

The JRD gait cycle detection algorithm was tested by measuring the acquisition rate Ar for 60

recordings randomly selected from the UPCV and Ucalgary dataset. To calculate the acquisition

rate the following formula was used:
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Figure 4.2: Resulting waveform of a gait sequence. The dashed lines represent the (a) start of a
gait cycle and (b) end of the gait cycle.

Ar =
P
T

(4.1)

where P denotes the number of valid gait cycle sequences automatically derived, while T rep-

resents the total number of samples tested. To test for a valid gait cycle, this thesis manually

examined the output from Algorithm 2 and checked to see if it was able to distinguish the start and

end of a gait cycle. A valid gait cycle can be denoted by 3 sequential peeks as seen in Figure 4.2.

4.2.2 Results

For the �rst experiment the UCalgary dataset was created using a study group which consisted of

2 men aged 25 � 2 with a height of 186.5 � 6.4 cm and 3 women aged 37 � 12 with a height

of 170.7 � 5.5 cm. All participants were informed about the aim of the experiment and signed a

consent form. Note, that the Ucalgary dataset is initially created for the �rst experiment, however,

it is gradually expanded throughout each experiment presented in this chapter.

From the dataset, 60 gait sequences from a pool of 180 recordings (150 from UPCV and 30

from Ucalgary) were examined over 10 batches. Details about each batch can be seen in Table

4.1. The resulting Ar mean and standard deviation was 91.6% � 2.3%, this represents the success

rate for �nding a valid gait cycle using the JRD approach. To illustrate error, samples which did
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not pass the validity check can be seen in Figure 4.3. When compared to the waveform obtained

in Figure 4.2 it becomes evident that the JRD has some inherited error from the Kinect camera

occurring during calibration.

Table 4.1: Acquisition Rates for Gait Cycle Recognition using JRD

Batch No. UPCV Sequences Ucalgary Sequences Acquisition Rate (%)
1 30 30 88.6
2 33 27 89.2
3 36 24 91.7
4 39 21 89.8
5 42 18 89.2
6 45 15 94.6
7 48 12 92.7
8 51 9 91.8
9 54 6 95.1
10 57 3 93.3

(a) (b)

Figure 4.3: Samples from the (a) UPCV dataset and (b) Ucalgary dataset which did not pass the
validity check used in this experiment.

Some common issues from detecting the gait cycle using the JRD approach is that it is subject

to view angle as well as clothing. For example, it was observed that when the Kinect camera

is positioned perpendicular to the subject or at an angle, tracking the joint angles becomes more
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dif�cult and noisy. Additionally, when tested on subjects who’s JRD was obscured by an item,

such as a dress, the algorithm was not able to detect a gait cycle.

As an alternative approach this thesis proposes using JRA of the ankle joints to detect the gait

cycle. Unlike the JRD approach, using the JRA relies on tracking the �exion of the ankle based on

the geometric positions of the knee, ankle, and foot. This approach was tested because it addresses

come common issues like camera position.

From literature [4, 11] it is known that a gait cycle can be modeled as a sequence of phases. To

model the gait cycle based on the JRA of the ankles, this experiment examined the following three

phases: heel strike (HS), Foot Flat (FF), and Toe Off (TO). These phases occur one time for each

foot during a gait cycle.

Similar to the JRD portion of the experiment we selected 60 random gait sequences from a pool

of 180 (150 from UPCV and 30 from Ucalgary) and calculated the acquisition rate. This process

was repeated over 10 batches of equal size. Details regarding each trial can be seen in Table 4.2.

From this experiment it was observed that the Ar for the JRA method was 81.7% � 3.3%.

Table 4.2: Acquisition Rates for Gait Cycle Recognition using JRA

Batch No. UPCV Sequences Ucalgary Sequences Acquisition Rate (%)
1 30 30 75.8
2 33 27 77.3
3 36 24 80.6
4 39 21 79.1
5 42 18 82.8
6 45 15 83.5
7 48 12 84.2
8 51 9 84.7
9 54 6 83.9
10 57 3 84.4

This result demonstrated that the JRA method underperformed when compared to the JRD

method. One main source of error associated with using JRA was that it relied on �nding three

sequential phases. When the data from the experiment was examined it was found that there was

more variance in regards to being able to identify each unique phase (HS,FF,TO). This could be due
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to the fact that when recording the Kinect camera would occasionally stop tracking the skeleton

model followed by a quick correction. These micro adjustments during recording resulted in some

phases being missed, making it dif�cult to �nd the HS,FF, and TO in sequence that constitute one

gait cycle.

A signi�cant observation from the experiment was that as the combined dataset became more

biased (towards UPCV), the overall Ar for both methods was higher. Reason for this could be

because of the different environments and processing techniques used to collect the data. For

future experiments, more emphasis was placed on �ltering artifacts from the Ucalgary dataset to

ensure that it does not contain any corrupted recordings.

4.2.3 Summary

From the experiment it was concluded that the JRD (91.6%) was a more effective way to derive a

gait cycle compared to the JRA (81.7%) method [7]. Therefore, the rest of the experiments in this

thesis used the JRD approach to collect gait cycle data. Consideration was taken into fusing the two

approaches together in a layered structure to increase the overall Ar, however, this was abandoned

in order to focus on the next experiment that examines feature extraction and classi�cation.

4.3 Second Experiment: Classifying the Gait Type

A second set of experiments were conducted that contributed to the objective of this thesis, which

is to automatically detect and label gait characteristics using non-contact methods. The purpose

of this experiment is twofold; to create an approach that is able to derive useful features for gait

analysis and to classify the derived feature vectors using a variety of methods such as SVM, KNN,

Na¤�ve Bayes (NB), and Linear Discriminant Analysis (LDA). Additionally, more data was col-

lected and used to expand the Ucalgary dataset. To conduct this experiment the setup illustrated

in Figure 4.1 was used with a dual camera con�guration. However, the data processed to obtain

the results was only from the front facing camera (Kinect1). The purpose of the secondary camera
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(Kinect2) was only for preliminary experiments which yielded more unreliable data.

4.3.1 Feature Extraction

As described in chapter 3, several features were selected to be used for training the classi�ers.

These features consisted of the following: cadence, left/right ankle joint angle, left/right joint an-

gle, and left/right stride length. To train the classi�ers each sequence was examined and the mean,

minima, and maxima of each feature for each gait cycle was determined. Figure 4.4 illustrates

this process of creating the feature vector of size 21�1 for each sequence which is used as input

into the classi�ers. Examples of how gait features, such as knee �exion change as a result of gait

type are shown in Figure 4.5 and Figure 4.6. In Figure 4.5 it can be seen that the knee angles are

symmetric when aligned with the gait cycle, this is typical for an individual with normal gait. On

the other hand, Figure 4.6 shows how some features such as knee angles are effected under the

in�uence of abnormal gait.

Figure 4.4: Framework for feature extraction: each waveform is automatically extracted and used
to derive key statistics. A concatenated feature vector is formed and used as the input into the
classi�ers.
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Figure 4.5: Knee angles overlaid on top of the gait cycle for an individual with normal gait.

Figure 4.6: Knee angles overlaid on top of the gait cycle for an individual with abnormal gait.

4.3.2 Classi�cation

The investigation and classi�cation of gait is not a novel task as shown through results published

by [30, 33]. However, the availability of databases that are available for public release are limited,

especially ones that contain abnormal gait. In order to derive and classify abnormal gait it was

necessary to expand the locally created Ucalgary dataset. For this experiment one objective was

to expand the Ucalgary dataset to a similar size as the available benchmark (UPCV). During this

experiment a new study group was formed that consisted of 23 subjects which contained 17 men

aged 22.8 � 1.4 with a height of 178.9 � 10.2 cm and 6 women aged 26.5 � 4.8 with a height of

161.8 � 7.1 cm. Once recorded and labeled the total size of the Ucalgary dataset increased to 168

gait sequences obtained from 28 subjects. This dataset was combined with the UPCV dataset to
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create one that is 313 sequences from 58 subjects. The combined set was split into the following

subsets: 201 normal gait samples, 56 left limp samples, and 56 right limp samples. These subsets

were used as the input data for feature extraction and classi�cation.

The �nal phase in this experiment was to evaluate the performance of various classi�ers given

the labeled training data. For this experiment four different classi�cation techniques were con-

sidered, these are: LDA, SVM, NB, and KNN. The input data for this experiment consisted of

two subsets that were used for training and testing (set A and set B). Set A contained only data

from the Ucalgary dataset consisting of 168 sequences from 28 subjects. While set B contained a

combination of data sourced from the UPCV dataset and data from the Ucalgary dataset. Details

about the two input datasets can be seen in Table 4.3.

Table 4.3: Breakdown of the Datasets used for Experiment Two

Dataset A (Ucalgary) Dataset B (UPCV+Ucalgary)
Total Gait Sequences 168 313
Normal Gait Sequences 56 201
Abnormal Gait Sequences 112 112

To train the classi�ers 5-fold cross validation was conducted. Cross validation is a technique

commonly used in machine learning to prevent over�tting. In K fold cross validation, the data is

divided into k subsets. The holdout method is repeated k times, such that each time, one of the k

subsets is used as the test set/ validation set and the other k�1 subsets are put together to form a

training set. The error estimation is averaged over all k trials to get total effectiveness of the model.

According to [97] an appropriate K value is 5 to re�ect less bias towards overestimating the true

expected error, while minimizing computational time. Other K values were experimented with,

however the differences in accuracy were negligible.

For this particular experiment, binary classi�cation was conducted, and consisted of two fol-

lowing class labels (normal and abnormal gait). Using x as the input vectors, each input x 2 Rl (a

l dimensional feature vector) has a known target label y 2 (0;1) [108], where 1 indicates normal

gait and 0 represents abnormal gait. Reason for choosing to conduct binary classi�cation origi-
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nates from work presented in [91] where the authors discuss how multi-class recognition is simply

an extension of binary classi�cation. Therefore, to test whether this approach is valid, binary clas-

si�cation was chosen for simplicity. In further experiments, this approach is modi�ed to allow for

multi-class recognition.

4.3.3 Results

To determine the accuracy of the classi�cation a confusion matrix and receiver operating charac-

teristic (ROC) curve for each of the classi�ers was examined. The confusion matrix can be used

to identify the areas where the classi�er performed poorly via true positive rate (TPR) and false

positive rate (FPR), while the ROC curve shows a graphical comparison of the TPR and FPR. The

purpose of using these tools to observe classi�cation performance is because they help visualize

the details of each classi�er and provide insight into where improvements can be made. Figure

4.7 and Figure 4.8 represent the ROC curves for the various classi�ers when tested on the dif-

ferent subsets. Additionally, Figure 4.9 represents the confusion matrices for the best performing

classi�ers for each subset.

Figure 4.7: Receiver operating characteristic curve for classi�ers when tested on dataset A.
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Figure 4.8: Receiver operating characteristic curve for classi�ers when tested on dataset B.

The ROC curves depicted above are an indication of the overall performance of the classi�ers as

shown in Table 4.4. From the experiment it was observed that the overall classi�cation performance

improved when trained and tested on the larger dataset. Intuitively, this result corresponds with the

assumption that more data allows for more robust classi�cation. From the results it can be noted

that KNN was optimal for classifying dataset A with an accuracy of 77.62% � 1.08%, while the

SVM was better for classifying dataset B with an accuracy of 84.60%� 0.14%. However, the SVM

displayed very poor performance when trained and tested on dataset A. This is another indicator

of how important it is to test on datasets as large as possible.

Table 4.4: Gait Trait Recognition Rate for Dataset A & Dataset B

Classi�er Accuracy (%)
Dataset A Dataset B

Linear Discriminant Analysis (LDA) 64.52 � 1.08 82.04 � 1.09
K nearest neighbors (KNN) 77.62 � 1.08 83.45 � 0.47
Na¤�ve Bayes (NB) 70.24 � 0.73 80.77 � 0.76
Support Vector Machine (SVM) 65.28 � 0.61 84.60 � 0.14
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(a) (b)

Figure 4.9: Confusion matrices for the best performing classi�ers for dataset A (a) (KNN) and
dataset B (b) (SVM).

4.4 Third Experiment: Gait Recognition using Machine Reasoning

The third experiment conducted for this thesis was to implement the knowledge gained in the pre-

vious two experiments to create an approach that is novel in this �eld. The proposed approach for

the third experiment is based on using causal networks and machine reasoning to diagnose antalgic

gait. Results from this approach will be used in comparison to results obtained in experiment two,

as well as other state-of-the art classi�ers.

The difference between machine learning and machine reasoning can be attributed to the char-

acteristics of the algorithms. For example, machine learning approaches such as KNN or SVM

rely on using a large pool of data to distinguish patterns based on existing data. However, in situ-

ations where there is minimal data and lots of constraints these algorithms suffer in performance.

To solve this problem, logical techniques such as deduction and induction can be used to generate

conclusions when large amounts of training data is unavailable [109].

There are many types of machine reasoning approaches, including probabilistic reasoning,

causal reasoning, Newtonian mechanics, and so on [109]. To select the appropriate reasoning
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approach one must �rst understand the problem and what constraints are present. In this thesis

work the objective is to diagnose gait traits using non-contact methods. Therefore, to perform

diagnosis many forms of literature [10, 25, 70] utilize causal relations that de�ne a target condition.

For example, an individual who is experiencing antalgic gait (limping on either side) will often

have reduced symmetry their gait cycle, slower cadence, as well as less �exion in certain joints

[4]. Linking these features together as illustrated in chapter 3 introduces causality and is one

approach that is used to model gait. On the other hand, the chances of these events occurring is

not guaranteed. Therefore, to model gait a probabilistic reasoning approach is also adopted in

conjunction with causal reasoning.

To test this proposed approach a dynamic Bayesian network (DBN) was created and deployed.

The DBN was created using Hugin as it was previously done in [25] which was used to establish a

baseline for performance. For this experiment, the processed data from experiment two was used

as the input for the DBN. However, unlike the classi�ers used earlier the DBN relies on using

categorical labels and probabilities to conduct logical reasoning. Therefore, additional processing

was necessary in order to format the data for the proposed network.

4.4.1 Data Processing

To test the performance of the DBN it was necessary to de�ne the nodes and their corresponding

labels. As illustrated in chapter 3, this thesis work presents a DBN constructed from 7 feature

nodes and 1 output node. Additionally, each node in the network must contain categorical labels

or events that are used as input to the next causal node. Details about the nodes and labels chosen

can be seen in Table 4.5.

One challenge about using a DBN in this application is that the labels associated with each

node are qualitative and descriptive instead of a raw set of numbers. Likewise, the input data must

also be in this format. To reformat the input data from a numerical sequence to a matrix of cat-

egorical labels some statistical processing was necessary. An example regarding cadence (CAD)

was provided in chapter 3, where a general method was proposed that utilized the probability den-
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sity functions (PDFs) of the collected data to determine thresholds for labeling the data. Applying

this same principal to the other nodes yields the following distributions as illustrated by Figure

4.10. These distributions are similar to the one presented in chapter 3 for CAD because thresholds

can be derived from the data and used to label the dataset accordingly. This approach introduces

some error into the labeling process due to the uncertainty for data located at the threshold of the

distributions. Nonetheless, this step is necessary in order to format the data appropriately.

Once the data has been labeled according to the corresponding events for each node, the next

step is to create conditional probability tables (CPTs) for each node. To create the CPTs an initial

prediction for each table was formed based on the distributions obtained in Figure 4.10. Inside the

CPT the posterior probability label is de�ned by the features at the top of the table. To illustrate

this the resulting CPTs are detailed by Table 4.6.

For training, each table was assigned a minimal amount of experience ( 10) indicating that the

initial probabilities are easily in�uenced by new data, this will be important for adaptation. Using

the adaptation and fading techniques proposed by [100] and [102] the experiment was performed

by training the DBN using leave-one-out cross validation (LOOCV) to maximize the number of

training iterations. The purpose of using LOOCV was to estimate the average performance of a

system with a relatively low sample set (< 1000 samples). The other classi�cation approaches

used in previous sections did not require this as they are supervised learning algorithms and work

well with limited input data.

4.4.2 Results

Similar to the previous experiment, the performance of the DBN is measured by examining the

ROC curve as well as the corresponding confusion matrix. However, as shown in Table 4.5, the

output node in the DBN has 3 class labels as opposed to the simple binary classi�cation performed

in experiment two. This change introduces more complexity into the network and brings it one

step closer to demonstrating that a multi-class gait trait recognition system is feasible.

The DBN was trained and tested using the same subsets presented in experiment two (dataset
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(c)

(d)

Figure 4.10: Distributions of (a) knee �exion, (b) ankle �exion, (c) left stride length, and (d) right
stride length.
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(a)

(b)

Figure 4.11: Confusion matrices for the DBN when tested on dataset A (a), and dataset B (b).
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Table 4.5: De�ning all Nodes and Labels used in the Proposed DBN

Node Name Corresponding Labels
Normal
SlowCadence (CAD)
Fast
NormalLeft Stride Length (LSL) Abnormal
NormalRight Stride Length (RSL) Abnormal
NormalLeft Ankle Angle (LAA) Abnormal
NormalRight Ankle Angle (RAA) Abnormal
NormalLeft Knee Angle (LKA) Abnormal
NormalRight Knee Angle (RKA) Abnormal
Normal
Left LimpGait Type
Right Limp

A & dataset B). Reason for this was to make a direct comparison to the results obtained from the

previous experiment. The corresponding confusion matrices for each subset are shown in Figure

4.11. Additionally, results were compared with literature where the authors presented results for

similar experiments using contact and non-contact systems to detect speci�c gait abnormalities.

At the time of writing this thesis work, two relevant pieces of literature [70, 110] were used for

comparison with the results obtained from the DBN.

The �rst piece of literature [70] by Prochzka et al. examines using depth data from the Mi-

crosoft Kinect to perform Bayesian classi�cation for detecting Parkinson’s disease. The results

from their study yielded good results ranging from 90.2-94.1% correct classi�cation rate (CCR)

using features such as stride length and speed. However, to obtain the maximum CCR (94.1%) the

researchers needed to include age into their feature vector. This is questionable, due to the fact that

age is not always known and needs to be acquired via manual questioning or approximated (which

can introduce error into the system). The DBN proposed for this thesis work results in a slightly
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Table 4.6: Initial Conditional Probability Tables

(a) Initial CPT for Cadence

CADT�1 Fast Slow Normal
Fast 0.8 0.05 0.05
Slow 0.05 0.8 0.05
Slow 0.15 0.15 0.9

(b) Initial CPT for Left Stride Length

LSLT�1 Normal Abnormal
CAD Fast Slow Normal Fast Slow Normal
Normal 0.9 0.9 0.95 0.1 0.1 0.25
Abnormal 0.1 0.1 0.05 0.9 0.9 0.75

(c) Initial CPT for Right Stride Length

RSLT�1 Normal Abnormal
CAD Fast Slow Normal Fast Slow Normal
Normal 0.9 0.9 0.95 0.1 0.1 0.25
Abnormal 0.1 0.1 0.05 0.9 0.9 0.75

(d) Initial CPT for Left Ankle Joint Angle

LSL Normal Abnormal
Normal 0.9 0.1
Abnormal 0.1 0.9

(e) Initial CPT for Left Knee Joint Angle

LSL Normal Abnormal
Normal 0.75 0.1
Abnormal 0.25 0.9

(f) Initial CPT for Right Ankle Joint Angle

RSL Normal Abnormal
Normal 0.9 0.1
Abnormal 0.1 0.9

(g) Initial CPT for Right Knee Joint Angle

RSL Normal Abnormal
Normal 0.75 0.1
Abnormal 0.25 0.9

lower CCR than observed in [70]. However, the output class labels for antalgic gait are inherently

more interrelated than the classes associated with Parkinson’s and are also calculated using data

that can be directly acquired using only the Kinect v2.

The second article examined [110] contains information about an experiment conducted that

attempts to perform automatic recognition of altered gait using wearable inertial sensors. In [110],

Mannini et al. examine 54 individuals with various known conditions such as being prone to a

stroke, Huntington’s disease and Parkinson’s disease, as well as healthy elderly individuals. Using

classi�cation methods such as NB, SVM, and Logistic Regression (LR), the authors attempted

to maximize the discrimination capabilities of each classi�er in order to correctly classify the
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data. Results from this study found that LR yielded the highest CCR (89.2%) when using inertial

measurement units mounted on the subject’s shanks and over the lumbar spine. Comparing the

proposed DBN to this literature shows that a similar CCR is obtainable when using exclusively

non-contact methods, which are more favorable in real life applications such as border control. A

comparison with the methods proposed in experiment two and [70, 110] is shown in Table 4.7.

Table 4.7: Comparison of overall accuracies for each classi�cation method discussed.

Methods Accuracy (%) # of features selected
Logistic Regression (LR) [110] 89.2 18
Na¤�ve Bayes (NB) [70] 94.1 3
KNN (10 Neighbors)1 77.62 � 1.08 21
Support Vector Machines (SVM)2 84.60 � 0.14 21
Dynamic Bayesian Network (DBN)1 86.7 � 0.56 7
Dynamic Bayesian Network (DBN)2 88.9 � 0.23 7

4.5 Fusing Gait and Face to Improve Performance

This experiment aims at demonstrating the combination of gait with other biometrics such as face

can effectively enhance the performance of multimodal veri�cation systems. To conduct the ex-

periment a brief investigation for face recognition was necessary. To compare the performance of

a unimodal (face only) to a multimodal (face &gait) system, two different systems were designed

and implemented.

4.5.1 Face Detection

For the unimodal system, a SVM was trained using a feature vector that contained HOG features

derived from the images. To quickly train and test the SVM classi�er used in this experiment, the

Caltech dataset was partitioned into a smaller dataset which contained 168 images from 10 unique

subjects. The images selected to train and test the classi�er were obtained from the Caltech 1999

1Classi�cation performed on dataset A (Ucalgary)
2Classi�cation performed on dataset B (Ucalgary+UPCV)
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dataset [107]. Reason for choosing to use this dataset was because it contains different lighting,

expressions, and backgrounds as opposed to other datasets such as AT&T ORL face database

[111]. When brie�y tested, using HOG features resulted in a 92.1% CCR for the ORL face dataset,

however, using the same approach yielded a 61.3% CCR for the partitioned Caltech 1999 dataset.

This was due to the dynamic backgrounds, lighting, and changing expressions discussed earlier.

4.5.2 Gait Detection

Similar to faces, many gait biometric approaches now exist. For validation purposes, this experi-

ment will use results from the DBN designed in the third experiment. However, since the purpose

of the DBN was not to distinguish an individual by their gait, rather, determine an individual’s gait

type, some modi�cations were necessary to the partitioned Caltech dataset. To create the appro-

priate dataset for this experiment, it was necessary to attach a gait label to each face as would be

typically observed in a forensic setting. From the experiments conducted earlier in this chapter it

was observed that many individuals naturally have normal gait. To represent this observation when

labeling, the dataset used for this experiment only 2 subjects (80%) were assigned abnormal gait

(left or right limp) as seen in Figure 4.12.

Figure 4.12: Samples of representations for multimodal biometric probes.

4.5.3 Fusion

The objective of this experiment is to improve the performance of the unimodal system (61.3%)

by fusing it with gait at the decision level. As described in 3.6.2, fusion of the modalities at

the sensor, feature, or score level was quite complex and unnecessary due to the processing and
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weights involved. Therefore, to fuse the data at the decision level, the decisions from each system

will be considered in the �nal result. For the face recognition system scores from the SVM are

used to rank the probe against the gallery. Since there are 10 subjects in this experiment, the

corresponding ranks are integer values which range from 1 to 10, 1 indicating the highest matching

score. Decisions are made based on which gallery sample has the highest score. On the other hand,

decisions made by the gait system are based on the DBN designed in experiment three.

To perform fusion a simple algorithm was proposed. The proposed algorithm operates in two

stages: select top rated ranks output from the face detector, followed by �ltering the ranks via gait

type. In the face detector, face images which lie in the top 30% will be used for additional �ltering

via gait. The amount of facial images which are selected can be modi�ed. However, this introduces

either more imposters or removes the genuine scores which can be used to increase CCR.

4.5.4 Results

Results show that when compared to the original SVM face detector, the combined system was able

to achieve 10% improvement (73.5%). Figure 4.13 represents the corresponding ROC curves for

the fused and unfused systems. This demonstrates that gait can be used as additional evidence to

increase system performance. However, this experiment is designed to showcase gait as a proof-of-

concept and if it was to be applied in a real life setting more effort would need to go into designing

the system that it is robust to spoo�ng as well as sensitive to genuine data.

4.6 Conclusion

This chapter presents the implementation details, results, and a discussion of the four experiments

conducted as part of this thesis. In summary, the following experiments were conducted: an in-

vestigation into automatically extracting the gait cycle from a video sequence, classifying the gait

type based on derived features from the video, testing a novel approach that improves classi�cation

accuracy and introduces sub-classes for abnormal gait (left and right limp), and demonstrating a
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Figure 4.13: ROC curve for fused system before and after conducting fusion.

simple application for integrating gait with other biometrics.

The �rst experiment conducted was an investigation into the feasibility of using the data avail-

able from the Kinect v2 camera for the purpose of automatically deriving an individual’s gait cycle.

The purpose of this experiment was to create the foundation that would be later used in later exper-

iments. During experimentation, video sequences were recorded and used to build the Ucalgary

gait database. From the video sequences, two approaches (JRA and JRD) were used to extract

one gait cycle. It was found that the JRA method was feasible for various angles achieving an

acquisition rate of 81.7 � 3.3%. However, when compared against the JRD approach it was found

that the JRD method achieved a better acquisition rate (91.6 � 2.3%). Both of these results were

obtained using a Kinect v2 that was placed directly in front of an individual.

In the second experiment a classi�cation approach was proposed. In the experiment, the data

collected from previous research along with newly collected data was used to test the performance

of classi�ers such as: LDA, KNN, NB, and SVM. The intention of this experiment was to create
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an initial benchmark for gait trait detection that will be used in later comparisons. By using the

gait cycle data from the previous experiment, it provided a good way to create a feature vector

from features such as cadence, stride length, and joint rotations. To measure the performance of

the classi�ers under various conditions, they were tested under with two different datasets which

consisted of data from the Ucalgary and UPCV dataset. In this experiment it was found that

the KNN classi�er resulted in a recognition rate of 77.62 � 1.08% when trained and tested on

the Ucalgary database. However, when the input data was combined with the UPCV dataset, it

was observed that the SVM classi�er achieved better performance with an overall accuracy of

84.60 � 0.14%. While the result is good, it only re�ects the performance when attempting binary

classi�cation. To maintain the high levels of accuracy and perform multi-class recognition an

alternative approach was investigated in the following experiment.

The third experiment conducted in this thesis work was an investigation into using a DBN as

an alternative to KNN or SVM. This experiment was designed to test the performance of the DBN

when attempting multi-class recognition for the following classes: normal, left limp, and right

limp. Using the results obtained from the previous experiments, the DBN was trained and tested

on features extracted from one’s gait cycle. Additionally, more pre-processing was needed on the

input data. Using various statistical methods, the characteristics of the various features selected

were examined and labeled accordingly. While the DBN required more pre-processing it resulted

in a higher accuracy for both datasets it was tested on (86.7 � 0.56% for dataset A and 88.9 �

0.23% for dataset B).

The �nal major experiment performed tested whether gait can be integrated with other bio-

metrics to increase system performance. For this experiment, a small subset of the Caltech 1999

database was used and modi�ed to contain gait related labels. Using a SVM classi�er trained on

the HOG features from the images, the face detection model was able to achieve 61.3% correct

classi�cation rate. When fused at the decision level with the DBN created from experiment three,

the new multimodal system was able to achieve a 12.2%increase in performance (73.5%).
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The following chapter concludes this thesis and will present a discussion of the conclusions as

well as a brief look into possible future work.
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Chapter 5

Conclusions and Future Works

The objective of this thesis was to investigate whether data acquired using the RBG-D cameras can

be used to perform analysis and classi�cation of human gait type, such as normal gait, left limp,

and right limp. The key outcomes of this work prove the initial hypothesis; that using deterministic

features such as cadence, stride length, and joint rotation/�exion, coupled with probabilistic mod-

eling techniques are suitable for the recognition of gait. It was also shown that when combined

with face biometrics, gait type data can help improve the identi�cation rate for individuals. An

overview of the contributions from this thesis are summarized and a discussion regarding future

work is presented.

5.1 Summary of Contributions

This thesis work presents a novel approach for analyzing and classifying gait type using probabilis-

tic models such as a DBN. The proposed method is contactless and utilizes a 3D skeletal model

that is integrated with the Kinect camera to capture underlying spatio-temporal patterns. Using the

captured features, various classi�ers are trained and tested resulting in accuracies as high as 90%

for detecting normal and abnormal gait. This demonstrates that using gait is feasible, especially

when applied in forensic settings where more evidence is often required to establish congruent

identity. The speci�c contributions of this thesis are as follows:

1. Two approaches for detecting an individual’s gait cycle are compared. These ap-

proaches are the joint relative distance (JRD) and joint relative angle (JRA). Both of

these approaches are robust against view and scale variations and utilize different

coordinates from the 3D skeletal model to derive one’s gait cycle. Experimental

results from section 4.2.2 demonstrate that the JRD is more effective for detecting

81



an individual’s gait cycle when the camera is orientated to be directly in front of the

individual.

2. Multiple experiments were designed and implemented on real people to collect the

necessary data that is otherwise limited regarding public availability. Standardized

procedures were developed and well documented for other researchers interested in

repeating the experiments.

3. A new dataset was created that consisted of 168 gait sequences obtained from 28

individuals. Collecting this dataset was necessary due to the low amount of avail-

able public datasets that use skeletal information similar to what is output by the

Kinect sensor. Using similar approaches as reported in literature, the new dataset

was created so that it can be combined with other Kinect based datasets such as

UPCV for other researchers to use.

4. The proposed framework for the system is introduced. It includes using classi�-

cation techniques such as linear discriminant analysis (LDA), na¤�ve Bayes (NB),

support vector machines (SVM), and K-nearest neighbours (KNN) to classify gait

into two categories: normal and abnormal. These methods are tested on two sub-

sets that contained locally collected data as well as external data. Results from the

experiments show that overall accuracy was lower for the local dataset, but when

combined with the external dataset the accuracy for each classi�er increased by

approximately 10%.

5. When binary classi�cation was conducted it was observed that KNN achieved the

highest accuracy on the local dataset (77.62%). However, when the input data

was modi�ed to contain local and external data SVM achieved a higher accuracy

(84.60%). This was due to the introduction of more high quality images for class

labels such as normal gait.
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6. A new dynamic Bayesian network (DBN) based classi�er is introduced for gait type

classi�cation. The proposed classi�er uses probabilities to distinguish an individ-

ual’s gait type into three different classes: normal, left limp, and right limp. When

tested on the same datasets used in previous experiments a signi�cant improvement

in accuracy (10%) was observed on the local dataset as well as a slight improvement

(5%) on the dataset that consisted of local and external data.

7. To implement the DBN it was necessary to investigate and format the feature in-

formation contained in the datasets into semantic form. Using similar literature as

the ground truth, it was found that the labels de�ned for cadence, stride length, and

various joint angles were suf�cient for use. Additionally, this information can be

used as further evidence in research regarding the semantic labeling of gait features.

8. A simple experiment was conducted to determine whether gait can be fused with

other biometrics to improve system performance. In this experiment, gait was suc-

cessfully fused with face biometrics to create a multimodal system that resulted in

an overall increase (12.2%) in performance when tested on a small subset.

5.2 Suggestions for Future Work

As shown through this investigation, gait features have potential for forensic and screening ap-

plications where additional evidence is often required. However, there are some drawbacks to

using gait. For example, many studies have found that gait analysis is often complicated when

in the presence of clothing and objects that assist with moving like walkers, or canes [112, 113].

This makes gait somewhat unreliable in real-life screening applications. Additionally, the limited

availability of Kinect-based datasets has made it dif�cult to develop a system that is capable of di-

agnosing many different types of gait conditions while simultaneously being resistant to spoo�ng

attempts. Lastly, since gait contains temporal information, using deep learning techniques such
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as recurrent convolutional neural networks (R-CNN) may potentially increase the accuracy of the

system.

Suggestions for future work that would be worth investigating include: increasing the size of

the Kinect dataset and running tests on different types of machine learning algorithms. In this

context, the proposed gait type recognition system can be further improved to include additional

gait types, become resilient to spoo�ng, and transferable between new types of hardware that is

introduced into the market.
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Appendix A

Copyright Permissions

In order to conduct the research proposed in this thesis, it was necessary to obtain external bio-

metric datasets. All utilized datasets were collected under explicit user agreement of academic

use on behalf of the Biometric Technologies Lab, Department of Electrical & Computer Engineer-

ing, University of Calgary. All databases are acknowledged, cited, and have been used only for

academic research purpose. The agreements are presented in the following sections:

A.1 UPCV Database

Portions of this research utilized the UPCV dataset [8, 9], collected by the by the University of

Patras Computer Vision Group. The UPCV dataset is a publicly available gait dataset and free

for research and scienti�c purposes. The dataset can be downloaded from http://www.upcv.

upatras.gr/personal/kastaniotis/datasets.html . The database has been downloaded on-

behalf of Biometric Technologies Lab. In this thesis, the database is cited and credit is given to the

owner of the dataset.

A.2 Caltech 1999 Database

The Caltech 1999 face database [107] is publicly available database and free for academic research,

which can be downloaded from http://www.vision.caltech.edu/html-files/archive.html .

In this thesis, the database is used for academic research only, properly cited, and credit is given to

the owner of the dataset.
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A.3 IEEE Copyright Permission

This thesis includes some portions of the IEEE copyrighted papers, in which I am the �rst au-

thor. No IEEE copyrighted paper has been included entirely. Only some portions of the IEEE

copyrighted papers have been used. The papers are cited and IEEE copyright is acknowledged
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Appendix B

Ethics Approval

This section will highlight the necessary ethics approvals necessary for gait data collection. In

order to record an individual’s gait images the following ethics approval was obtained: Collecting

gait images using Kinect camera (Study ID# REB18-0319). Additionally, ethics approval for �A

feasibility study of automated pain and fall detection systems� (Study ID# REB16-0856) was also

obtained that investigated fall detection and facial expressions of pain in elderly, using a Kinect

camera that collects video and depth data. Both studies were approved by the Conjoint Health

Research Ethics Board (CHREB).
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