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Abstract 

Automatically extracting high-quality building-footprint polygons from satellite and aerial images 

is crucial for supporting various land use and land cover mapping applications. The conventional 

building polygon extraction process requires hand-crafted features and high human intervention, 

which is time-consuming and often has limited generalization capability. In recent years, deep 

learning-based methods have shed light on the problem with higher levels of automation, 

segmentation quality, and generalization capability. These methods often involve two stages: first, 

building segmentations are predicted from remote sensing images using deep neural networks 

(DNNs); next, the irregular-shaped building segmentations are regularized into straight-edged and 

right-angle-cornered building polygons using conventional or deep learning-based methods. As a 

result, the extraction performance is often highly affected by the quality of the segmentation 

predictions. However, from experiments, the current widely used segmentation DNNs show 

significant defects in their building segmentation results, especially for the buildings with rotated 

angles (i.e., neither parallel nor vertical) between the building edges and the image edges. 

Moreover, although DNN-based regularization methods have shown greater generalization 

potentials at regularizing buildings in various shapes compared to the conventional regularization 

methods, the qualities of the regularization results are generally dissatisfactory. 

This thesis proposes an end-to-end deep learning-based building extraction method based on 

PolygonCNN. The proposed model consists of a segmentation module to predict building 

segmentations and a regularization module to regularize the building contours traced from the 

building segmentation results. First, an upgraded Mask R-CNN model, which is integrated with 

the rotatable bounding box technique, the Swin Transformer backbone network, and the FPN 
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module, is adopted as the segmentation module of the proposed model to segment buildings in 

vastly different scales and orientations. Moreover, the Feature Pooling module and the BRegNet 

of the original PolygonCNN are modified to exploit the multi-scale feature maps of the FPN 

module. As a result, the proposed model can effectively extract high-quality building polygons 

with various scales and orientations and has shown promising performance compared to several 

other popular end-to-end deep-learning-based building extraction models. In addition, the thesis 

provides supplemental architecture choices, which offer flexibility between the quality of the 

building extraction result and the memory consumption of the model. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The satellite sensor technologies in the recent decade have enabled massive amounts of data to be 

acquired daily and opened possibilities for many new land use and land cover (LULC) mapping 

applications. These applications often require digitization and interpretation of objects within the 

raw image data so that further analyses can be done with geographic information systems. 

Building, as one of the most frequently appearing objects in the urban scene, the extraction of its 

footprint from satellite images has played an essential role in supporting LULC applications such 

as urban planning, change detection, and disaster management. Traditionally, the building 

footprint extraction process requires human image interpreters, which is extremely labour-

intensive and time-consuming. Thus, researchers focused on developing automated extraction 

methods. In the early years, these methods often consist of handcrafted features (e.g., spectral, 

spatial, textural) followed by traditional machine learning classification methods. However, 

manual feature extractions usually require experienced experts and high human intervention, 

which may not always be feasible. Moreover, since the extracted features are often designed to 

model specific building types, the generalization capabilities of these methods are highly limited. 

As a result, much valuable information in this enormous amount of new data is unavailable.   

In recent years, deep learning techniques have shed light on this problem due to the fast-paced 

development of the hardware computational power and the availability of vast training data. Many 

image segmentation methods based on convolutional neural networks (CNN) and fully 

convolutional networks (FCN) have shown dominance over conventional methods in terms of 

automation, generalization capability, and segmentation quality. However, a problem with such 
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techniques is that the generated building segmentations tend to have irregular shapes that differ 

significantly from the straight-edged and right-angle-cornered real-world building footprints. As a 

result, the vector-format building contours directly traced from such irregular-shaped 

segmentations are undesired for most cartographic and engineering applications. Thus, a method 

is required to regularize the irregular-shaped building contours. The conventional building 

regularization methods often involve many manually defined rules and thresholds and much 

human post-editing, resulting in a lack of automation and generalization capability; on the other 

hand, the DNN-based regularization methods can potentially be used to automatically extract 

buildings in arbitrary shapes. Despite the advantage and popularity of deep learning technologies 

these days, most of the widely used building regularization methods continue to rely on 

conventional processes due to the difficulties in developing contour-regularization DNNs and the 

general superiority of the conventional methods over the DNN-based methods in terms of the 

simplicity and regularity of the resulted building vectors. Thus, there is still much work to be done 

on developing DNN-based regularization methods. Moreover, since the building extraction result 

is highly dependent on the qualities of the building segmentations, developing methods to obtain 

more accurate building segmentation is the key to extracting higher-quality building polygons.                                                                                                                                                                                                                   

1.2 Applications of Automated Building Footprint Extraction 

In the recent decade, the unprecedently fast-paced developments of satellite sensor technologies 

and urban constructions around the world have led to a massive demand for high-quality vector 

data on building footprints in various industrial applications. 

Building footprint data is largely used in risk assessment tasks. For example, natural hazards such 

as pluvial floods (Löwe and Arnbjerg-Nielsen, 2020), earthquakes (Sahar et al., 2010), and 

landslides (Hasan et al., 2018) in urban regions cause enormous damage to people’s assets and 
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lives every year. While many of these events are unavoidable, a comprehensive risk assessment is 

crucial for minimizing the risks and damages. In addition, urban planning is a significant sector 

involving building footprint data. Examples of its applications include: the development and 

planning of city infrastructures (Lee et al., 2008) such as public works infrastructures (e.g., water 

supply, sewage, electricity, and telecommunications), community infrastructures (e.g., schools, 

hospitals, and parks), and safety and transportation infrastructures (e.g., roads, police, and fire 

facilities); the planning of different types of land-use of the city (e.g., residential, commercial, 

industrial, municipal) (Dai et al., 2001); conducting real estate evaluations remotely with the help 

of building footprint data and other related situational datasets (Kodors et al., 2017); applications 

related to geo-marketing such as market planning and development, site selection and forecasting, 

supply channels analysis and modernization, etc. (Cliquet and Baray, 2020); telecommunications 

companies utilize building footprint data to select placements of signal towers to achieve optimal 

signal transmissions and maximum amount of coverage with a minimum number of towers. 

Moreover, building footprint data are used extensively to create navigation maps and produce 

highly accurate street annotations and road geometry (Royan et al., 2003). 

1.3 Major Challenges for Automated Building Footprint Extraction 

While significant efforts have been made in remote sensing literature to pursue a solution to 

automatically extracting building polygons from remote sensing images, some challenging 

problems remain in the subject. The major obstacles lie as follows. 

1.3.1 An Issue With The Leaning-Based Building Segmentation Methods 

Most current image segmentation DNNs tend to produce irregular-shaped building segmentations, 

especially for rotated buildings. Experiments (i.e., Section 5.2.1) show that the segmentation 

predictions of some widely used DNNs such as PSPNet, UPerNet, DeepLabV3+, FastFCN, HRNet, 
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and Mask R-CNN do not look like real-life building footprints with straight edges and right-angled 

corners; instead, mispredicted pixels are frequently presented along the building edges. 

Specifically, for the encoder-decoder networks, mispredicted pixels tend to occur on all building 

types. In contrast, for the two-stage detector Mask R-CNN where segmentations are made within 

the traditional bounding boxes, mispredicted pixels tend to occur on buildings with rotated 

orientations (i.e., building edges are neither vertical nor parallel to the image edges), whereas 

accurate segmentations tend to occur on non-rotated buildings (i.e., building edges are either 

vertical or parallel to the image edges). Such results show that the bounding-box-based method 

may provide regularization effects to those non-rotated buildings, resulting in higher-quality 

segmentation results. However, despite the help of the bounding boxes, a significant fraction of 

buildings in satellite images have randomly rotated orientations, which leaves sizeable empty 

background spaces between the buildings and their bounding boxes, causing mispredicted pixels 

to occur. 

1.3.2 Issues With The Conventional Building Regularization Methods 

To regularize the building segmentations into regular-shaped polygons, most of the currently 

popular methods (Shu, 2014; Zhao et al., 2018; Zhang et al., 2018; Wei et al., 2019) still involve 

a large number of manually specified parameters and rules, which rely heavily on high human 

interventions and are strictly designed for buildings with straight edges and 90-degree corners; 

therefore, they often fail to generalize to buildings with more complexed shapes such as triangles 

or polygons with more than four edges. For example, figure 1.1 shows a triangular-shaped and a 

pentagonal-shaped building polygon and their corresponding regularized polygons using a 

conventional regularization algorithm described in Shu (2014). In these cases, the regularized 

polygons fail to restore the original building shapes due to the non-right-angled corners.  
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1.3.3 Issues With Deep-Learning-Based Building Regularization Methods 

Due to the lack of generalization capability and automation of conventional methods, developing 

learning-based regularization methods have become a new trend in recent years. Learning-based 

methods are theoretically highly generalizable to various types of shapes (Li et al., 2019). However, 

designing learning-based regularization methods is challenging, and only a few methods have been 

proposed. The difficulty mainly lies in the random number of output vertices since most CNN 

architectures accept a fixed size of input and a fixed size of output.  

Although FCNs (Long et al., 2015) can accept inputs of arbitrary sizes, the output sizes are always 

proportional to the ones of the inputs. Nevertheless, for a building regularization task, the input 

and output are sets of building vertices consisting of the x and y coordinates. The input size largely 

varies depending on the number of vertices traced from the building segmentation prediction; the 

output size depends on the number of vertices in the regularized polygon, which is often 

disproportional to the input size. These random and disproportional sized inputs and outputs make 

the problem unsolvable by directly using the traditional CNN-based architectures. In addition, 

Figure 1.1. Regularizations of shapes with non-right-angled 

corners using a conventional method. (a) Regularization of a 

triangular polygon; (b) regularization of a pentagonal polygon. 
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despite the excellent generalization capabilities and high level of automation, the current learning-

based regularization methods tend to show significantly worse performances than the conventional 

methods in terms of the general building extraction qualities.  

1.4 Thesis Contributions 

An end-to-end deep-learning-based building extraction method based on PolygonCNN (Chen et 

al., 2020) is introduced in this thesis. The proposed model mainly comprises a segmentation 

module and a regularization module. The segmentation module consists of a Swin Transformer-

based rotatable Mask R-CNN that is integrated with the Feature Pyramid Network (FPN) (Lin et 

al., 2017), which is designed to alleviate the irregular-shaped building segmentation issue of the 

current segmentation DNNs; the regularization module consists of a modified BRegNet in 

combination with a modified feature pooling module, which is aimed to boost the regularization 

quality of the current deep-learning-based building regularization methods. The major 

contributions of the thesis lie as follows:   

(1) A rotatable bounding box technique is adopted on the Mask R-CNN model to specifically 

target the irregular-shaped building segmentation problem of the rotated buildings.  

(2) The FPN module and the recent popular Swin Transformer (Liu et al., 2021) backbone 

network are integrated with the rotatable Mask R-CNN to improve the model’s ability in 

segmenting buildings in vastly different sizes, especially the small ones. 

(3) The Feature Pooling module and the BRegNet of the original PolygonCNN are modified 

to exploit the multi-scale, pyramidal hierarchy feature maps generated from the FPN 

module of the improved Mask R-CNN.  
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(4) Additional architecture design choices are provided for the modified Feature Pooling 

module and BRegNet, which offer flexibilities between the quality of the building 

extraction result and the memory consumption. 
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CHAPTER 2: RELATED WORK  

Throughout the past decades, significant efforts have been made in remote sensing literature to 

pursue a solution to automatically extracting building polygons from remote sensing images. The 

existing methods can generally be categorized into two-stage and end-to-end methods. The two-

stage methods often consist of a building segmentation step and a boundary regularization step. 

On the other hand, the end-to-end methods aim to take aerial images as input and directly output 

the building vectors with one deep neural network. Therefore, this section will review the related 

works in the following three sections: building segmentation in Section 2.1, building boundary 

regularization in Section 2.2, and end-to-end building polygon prediction in Section 2.3. Moreover, 

some past attempts at utilizing rotatable bounding boxes in deep learning models are also reviewed 

in Section 2.4.   

2.1 Building Segmentation 

Most image segmentation algorithms proposed over the past decades can be roughly classified into 

four categories: threshold-based, edge-based, region-based, and classification-based methods. 

Segmenting objects from images using threshold values is a simple and commonly-used method 

where pixels with different ranges of values are classified into different classes according to 

manually or automatically selected thresholds (Glasbey, 1993). However, the most significant 

drawback of image thresholding is that it cannot differentiate among different regions with similar 

grayscale values. Edge-based methods adopt edge-detection filters such as Laplacian of Gaussian 

(Chen et al., 1987), Sobel (Kanopoulos et al., 1988) and Canny (Canny, 1988), to detect the sharp 

transitions among neighbouring pixels, thus, to generate boundaries for segmentation. Region-

based methods segment different parts of an image through clustering (Wu and Leahy, 1993; 

Chuang et al., 2006; Zhen et al., 1997; Pappas, 1992), region-growing (Tremeau and Borel, 1997), 
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shape analysis (Ok, 2013; Karantzalos and Paragios, 2008), or graph-based methods 

(Felzenszwalb and Huttenlocher, 2004). The drawback of the edge-based and region-based 

methods is that they often fail to provide stable and generalized results for images with highly 

varied illuminance and texture conditions. On the other hand, classification-based methods treat 

image segmentation as a process of classifying the category of every pixel (Li et al., 2014). 

Compared with the other three categories of methods, it tends to produce more precise 

segmentations when proper feature extractors and classifiers are utilized.    

Since the studies on building segmentation have transitioned significantly from the early days’ 

conventional methods into the nowadays’ popular deep learning-based methods, they are reviewed 

chronologically in the following sections 2.1.1 and 2.1.2. 

2.1.1 Conventional Building Segmentation 

The conventional methods usually involve a two-step procedure of feature extraction and 

classification. First, features based on the spatial (i.e., key points, corner points, edges), textual, or 

spectral characteristics of the image are extracted through mathematical feature descriptors such 

as haar-like (Viola and Jones, 2001), scale-invariant feature transform (Lowe, 1999), local binary 

pattern (Ojala et al., 2002), and histogram of oriented gradients (HOG) (Dalal and Triggs, 2005). 

Next, the segmentation prediction of the building footprint is made based on the extracted features 

through methods such as template matching (Sirmacek and Unsalan, 2009), graph cut (Manno-

Kovacs and Ok, 2015), adaptive boosting (AdaBoost) (Aytekin et al., 2012), random forests 

(Pelizari et al., 2018), support vector machines (Turker and Koc-San, 2015) or conditional random 

fields (CRF) (Li et al., 2015).        
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For instance, Wei et al. (2004) proposed an unsupervised clustering by histogram peak selection 

to classify the image into some classes, extracting the building shadows which are used to verify 

the presence of buildings, then extracting the candidate building objects from the clustering classes; 

Belgiu and Drǎguţ (2014) proposed and compared supervised and unsupervised multi-resolution 

segmentation methods that are integrated with the random forest classifier for building 

segmentation from high-resolution satellite images; Huang and Zhang (2012) proposed the 

morphological shadow index (MSI) to detect shadows which are used as a spatial constraint of 

buildings. Moreover, they proposed a dual-threshold filtering method to integrate the information 

from the morphological building index with the one from MSI; Ok et al. (2013) proposed a fuzzy 

landscape generation method that models the directional spatial relationship of the building and its 

shadow for automatic building segmentation; Qin and Fang (2014) proposed a hierarchical 

building detection method for very high resolution remotely sensed images using graph cut 

optimization. Although many significant achievements have been made, these studies were based 

on traditional methods, which are often focused on relatively small study regions. As a result, they 

tend to lack performance when evaluated in complex regions with a high diversity of buildings. In 

addition, the hand-crafted features in many of them rely heavily on the intervention of experienced 

experts, which causes a lack of automation and may not always be practical or feasible.                                                           

2.1.2 Deep Learning-Based Building Segmentation 

In recent years, deep-learning-based building segmentation methods have become widely popular 

mainly due to the breakthrough of convolutional neural networks (CNN) in the ImageNet 

classification contest in 2012 (Krizhevsky et al., 2012). The CNN-based method can be considered 

a one-step method that combines feature extraction and classification within a single model. 

Moreover, they overcome the explicit feature design problem of the conventional methods by 
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allowing adaptive feature learning from labelled training data; therefore, they often show 

significantly improved generalization capabilities.   

Alshehhi et al. (2017) propose a single patch-based CNN architecture for the segmentation of roads 

and buildings from high-resolution remote sensing data, and the low-level features of roads and 

buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with CNN features 

during the post-processing stage to improve the performance. Guo et al. (2017) also proposed a 

patch-based CNN to identify village buildings based on multiscale feature learning by assembling 

the feature extractor parts of a few state-of-the-art CNN models into a robust model. Despite the 

promising results, these methods are limited to overly redundant computations due to the heavy 

overlaps between patches. For example, when a patch-based method processes an image in patches 

of 32 × 32 pixels, its memory cost is increased by 32 × 32 times compared to the conventional 

methods. For larger areas or patch sizes, such approaches encounter dramatically increased 

memory costs and significantly reduced processing efficiency.  

To overcome the problem, FCNs have been proposed to achieve efficient pixels-to-pixels 

classifications by replacing the fully connected layer with up-sampling operations. For instance, 

Long et al. (2015) first proposed an FCN, which was trained end-to-end, pixels-to-pixels, and had 

exceeded the state-of-the-art in semantic segmentation; other similar convolutional encoder-

decoder models include the SegNet (Badrinarayanan et al., 2015) and DeconvNet (Noh et al., 

2015); however, they tend to produce segmentations with low edge accuracies due to the loss of 

information in the lower layers. To overcome the limitation, Ronneberger et al. (2015) proposed 

the U-Net, which utilizes the skip connection technique to combine the lower and higher layer 

features to generate the final output.  
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A significant drawback of such semantic segmentation methods is that their prediction is instance-

indistinguishable (e.g., when several objects of the same class are clustered together, the number 

and the boundary of the objects cannot be retrieved). Therefore, models that can produce instance-

level segmentation have been proposed. For example, Deepmask (Pedro et al., 2015) learns first 

to propose segmentation candidates, which are later classified with an object detection algorithm. 

Iglovikov et al. (2018) proposed a method for instance segmentation with U-Net. An extra output 

channel is added to predict borders between closely positioned or touching objects. In these cases, 

segmentation is performed before detection. In addition, He et al. (2017) proposed an instance 

segmentation model named Mask R-CNN, which achieved state-of-the-art when published. The 

model extends the Faster R-CNN network (Ren et al., 2015) with an additional binary mask 

prediction branch, allowing segmentations to be performed within each bounding box       

2.2 Building Boundary Regularization 

Despite the great segmentation performances of the CCNs, slightly mispredicted pixels often exist 

along the predicted building boundaries, resulting in irregular shapes of the directly traced building 

polygons. Therefore, many studies focused on regularizing the building segmentations into 

accurate, simple, and regular polygons.  

2.2.1 Conventional Building Regularization 

Typically, building regularization requires additional data sources, such as airborne LiDAR 

scanning or public GIS data, to assist precise regularizations (Boehm, 2019; Li et al., 2019). When 

only image data is available, pre-specified constraints such as 90-degree corners and principal 

orientations are usually applied to regularize and simplify the building boundaries. For instance, 

Shu (2014) proposed a building regularization method involving cropping the original image using 

the segmentation prediction; detecting line segments in the cropped building image; computing 
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the two perpendicular principal directions and rotating the line segments to the principal directions; 

merging and simplifying the line segments such that the final polygon has 90-degree corners. 

Maggiori et al. (2017) proposed a method which formulates the polygonization problem into a 

mesh-based approximation of the input binary segmentation image. Zhao et al. (2018) proposed a 

hypothesis generation method to generate a set of points along the irregular polygon, then optimize 

the candidate points with the Minimum Description Length optimization to produce the right-

angle-cornered polygon.   

Despite the significant regularization effects, such conventional methods usually rely heavily on 

high human interventions and are strictly designed for buildings with right-angled cornered; 

therefore, they often fail to generalize to buildings with more complex shapes, such as triangles or 

polygons with more than four edges. 

2.2.2 Deep Learning-Based Building Regularization  

Due to the low generalization capabilities of the conventional methods, seeking deep-learning-

based building regularization methods has become a new trend.   

Zorzi and Fraundorfer (2019) proposed a method for building boundary regularization in satellite 

images using a fully convolutional neural network trained with a combination of adversarial and 

regularized losses. Zhao et al. (2020) proposed a building boundary extraction network using graph 

models to learn geometric information about polygon shapes. Zorzi et al. (2021) proposed a 

generative adversarial network to perform building boundary regularization. The network consists 

of a generator which tries to generate a regularized version of the segmentation mask, and a 

discriminator that examines the generated footprints. Besides regularizing the irregular polygons, 

Jung et al. (2021) proposed a method to predict regularized segmentations directly. A boundary 
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enhancement module was proposed, which adopts the Holistically-Nested Edge Detection to 

extract edge features at an encoder of a given architecture. The extracted edge is combined with 

the segmentation mask to share mutual information, allowing direct prediction of regularized 

building segmentations.           

Although the deep learning-based regularization methods have successfully improved the 

generalization capability and level of automation compared to the conventional building 

regularization methods, the regularized building vectors often show lacked simplicity and 

regularity compared to the conventional methods. 

2.3 end-to-end building polygon prediction 

Typically, the building segmentation results are vectorized by employing a conventional or deep 

learning-based regularization method as a post-processing step. However, some recent approaches 

attempted to integrate the polygon regularization procedure into an end-to-end deep learning-based 

model, which aims to take remotely sensed images as input and directly output the regularized 

building polygons.  

To the best of my knowledge, the earliest attempt at such an end-to-end deep learning-based model 

was made by Girard and Tarabalka (2018). The authors proposed a CNN to directly predict vertices 

of building polygons. However, the architecture suffers significantly from the fixed prediction size 

(i.e., the method can only predict 4-sided polygons). Cheng et al. (2019) proposed an end-to-end 

deep neural network named deep active ray network (DARNet) for building polygon extraction. 

They use a backbone CNN to predict energy maps, which are utilized to construct an energy 

function. Then, the building polygons are derived by minimizing the energy function. Despite the 

end-to-end structure, the network fails to take into consideration the simplicity and regularity of 
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building polygons. Castrejon et al. (2017) developed a deep neural network named PolygonRNN 

to predict the object contour points sequentially. The network consists of a CNN feature extractor 

and a recurrent neural network (RNN) which decodes one polygon vertex at a time. Despite the 

end-to-end structure, the network is limited by its high memory requirement. Motivated by 

PolygonRNN, Li et al. (2019) developed PolyMapper, which focuses on delineating the road and 

building vector boundaries from a given image. Manual bounding box labels are no longer required 

due to the integration of the Feature Pyramid Network (FPN) module on top of PolygonRNN. 

However, PolyMapper lacks the ability to predict objects with complex shapes; moreover, its 

convolutional Long Short-Term Memory module is computationally expensive. To overcome the 

expensive memory issue of these RNN-based networks, Chen et al. (2020) proposed an end-to-

end network based on a segmentation CNN and a boundary regularization CNN. The semantic 

segmentation network PSPNet (Zhao et al., 2017) is used to generate the initial building contour, 

while a modified PointNet predicts the coordinate offsets of the polygon vertices to generate the 

regularized buildings. 

2.4 Integrating Rotatable Bounding Boxes with Deep Learning Models 

The idea of utilizing rotatable bounding boxes in deep learning models to detect rotated remote 

sensing targets have emerged in recent years. Liu et al. (2017) proposed a DRBox algorithm which 

combines the rotatable bounding box with deep learning methods to detect airplane, vehicle, and 

ship targets in remote sensing images. Although the method could output the precise location and 

orientation information of the target, the approximate Intersection over Union (IoU) calculation in 

between the rotated bounding boxes makes the performance unstable. Xia et al. (2018) proposed 

an improved Faster R-CNN algorithm based on orientated bounding boxes. They represented the 

oriented bounding boxes using eight parameters (i.e., the coordinates of the four corner points: 
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𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4). The algorithm can effectively detect the oriented targets; however, the 

predicted bounding box sometimes becomes deformed since there is no constraint to maintain the 

rectangular shape of the box. Li et al. (2018) proposed a rotated bounding box-based deep learning 

method using five parameters (i.e., 𝑥, 𝑦, 𝑤, ℎ, 𝛳. 𝑥 𝑎𝑛𝑑 𝑦 are the center point coordinate; ℎ 𝑎𝑛𝑑 𝑤 

are the long side and short side of the box; 𝛳  is the angle between the long side and the horizontal 

right direction and is in the range of [0, 180) degrees) for detecting ship targets in remote sensing 

images and using a range control strategy to reduce the amount of calculation when calculating the 

matching between the prior rotated boxes and ground-truth boxes. However, the range control 

strategy by manually thresholding can cause missing/false matches, which results in target missing 

and false alarm problems.  
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CHAPTER 3: THE PROPOSED METHOD 

To automatically extract high-quality building polygons in various scales and orientations from 

satellite images, an end-to-end deep-learning-based building extraction method based on 

PolygonCNN is proposed and presented in this chapter. The proposed model consists of a 

segmentation module to predict building segmentations, and a regularization module to regularize 

the building contours traced from the building segmentation results. First, an upgraded Mask R-

CNN model, which is integrated with the rotatable bounding box technique, the Swin Transformer 

backbone network, and the FPN module, is adopted as the segmentation module of the proposed 

model. Next, for the regularization module, the Feature Pooling module and the BRegNet of the 

original PolygonCNN are modified to exploit the multi-scale, pyramidal hierarchy feature maps 

generated from the FPN module of the improved Mask R-CNN. 

This chapter first reviews the PolygonCNN model, the Mask R-CNN model, the FPN, and the 

Swin Transformer backbone in section 3.1. Next, the architecture of the proposed model is 

described in section 3.2. 

3.1 Model Reviews 

3.1.1 Review of PolygonCNN 

Most of the current building regularization methods involve conventional processes which rely 

heavily on human interventions and are non-generalizable for buildings with non-right-angle-

cornered shapes such as triangles or polygons with more than four edges. In recent years, deep-

learning-based regularization methods have been proposed to improve the automation and 

generalization capability of the conventional regularization methods. Among the deep-learning-

based methods, PolygonCNN has shown state-of-the-art performance in extracting regularized 
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building polygons from aerial images. PolygonCNN is composed of a pyramid scene parsing 

network (PSPNet) (Zhao et al., 2017) for predicting building segmentations and a modified 

PointNet (BRegNet) to regularize the irregular-shaped segmentations. The two networks are 

combined into one to enable end-to-end training and inference. As shown in Figure 3.1, the major 

components of PolygonCNN are as follows: the PSPNet for predicting building segmentations; 

the vertices tracing and resampling components; the feature pooling module for extracting the 

feature vector (i.e., from the feature map of PSPNet) corresponding to every resampled vertex; the 

BRegNet for predicting the offsets of the regularized polygon vertices. The detailed components 

of PolygonCNN are reviewed as follows. 

3.1.1.1 PSPNet 

As shown in Figure 3.1, the input image of PolygonCNN is first passed through the PSPNet. 

PSPNet is a widely-used FCN-like model for semantic image segmentation, and has proven to be 

Figure 3.1. The architecture of the PolygonCNN model. 
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effective in building segmentation from aerial images (Chen et al., 2019). The architecture of 

PSPNet is illustrated in Figure 3.2. First, an input image is passed through a ResNet (He et al., 

2016) backbone to generate the feature map. Next, a pyramid pooling module is applied to the 

feature map to produce an improved feature map which contains multi-scale global information. 

Lastly, the improved feature map is fed to a convolution layer to obtain the final per-pixel 

prediction map.  

The key highlight of PSPNet is the pyramid pooling module, which provides an effective global 

contextual feature map for pixel-level scene parsing. It utilizes global pooling to generate four 

levels of feature maps with varied sizes, each containing the global information. Next, the 

dimension of each level of the feature map is reduced with a convolution layer. Then, all levels of 

feature maps are up-sampled to match the size of the original feature map. Finally, the up-sampled 

feature maps and the original feature map are concatenated to obtain the enhanced feature map.  

Figure 3.2. The architecture of PSPNet. 
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3.1.1.2 Vertices Tracing and Resampling 

The probability map generated by PSPNet is first binarized. Then, irregular-shaped building 

polygons can be extracted from the binary map by directly tracing the contours (Suzuki and Be, 

1985) with closed areas. The tranced contour is essentially a sequence of dense coordinates of the 

building outline pixels, as shown in Figure 3.3.(a), which contains a large number of redundant 

vertices and is inefficient for further processes.  

Therefore, the Douglas–Peucker (DP) algorithm (Douglas and Peucker, 1973) is adopted to 

remove the intermediate points on straight line segments and the points that lead to slight changes 

in directions, as shown in Figure 3.3.(b). However, despite the significant reduction of the 

redundant vertices and the well-preserved major geometric signals of the contour, the distances 

between every two consecutive vertices could broadly vary due to structural changes or slight 

segmentation errors. In this way, when a fixed-size convolution operation from the BRegNet in 

the later stage (i.e., Figure 3.1) is applied to such a polygon, the receptive fields of the convolutions 

at different locations may also broadly vary, which could lead to biases for those learned features. 

Figure 3.3. Vertices simplification and densification. (a) The directly traced contour; (b) the 

simplified contour using the DP algorithm; (c) the densified contour.  
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Considering the problem, a densify operation is applied to the simplified polygon, as shown in 

Figure 3.3.(c), where additional points are sampled evenly along the edges with lengths larger than 

a predefined threshold. This way, a sliding convolution kernel can have similar receptive fields at 

different polygon locations. 

3.1.1.3 Feature Pooling 

As illustrated in Figure 3.1, the output polygon from the Vertices Tracing and Resampling module 

is fed to the Feature Pooling module along with the feature map generated from the backbone of 

PSPNet to extract a feature vector for each polygon vertex. The extracted feature vectors are then 

concatenated with the coordinates of the vertices to form the final output. 

For example, as illustrated in Figure 3.4.(a), assuming a feature map with 768 channels and a 

vector map with 𝑛 vertices of  (𝑥, 𝑦) coordinates are fed to the Feature Pooling module. For each 

vertex, at its corresponding location on the feature map, a feature vector is extracted. Therefore, 

as shown in Figure 3.4.(b), for 𝑛 vertices, the pooled feature vectors have a size of 𝑛 × 768, and 

the vertices have a size of 𝑛 × 2. The pooled features are then concatenated with the coordinates 

Figure 3.4. The feature pooling operation. 
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of the vertices to obtain the final output, which has a size of 𝑛 × (768 + 2) = 𝑛 × 770, as shown 

in Figure 3.4.(c). 

3.1.1.4 BRegNet 

As illustrated in Figure 3.1, the output of the Feature Pooling module, which consists of the 

coordinates of the irregular polygon vertices and their corresponding feature vectors, is passed 

though the BRegNet to obtain a set of coordinate offsets for the regularized polygon vertices.  

As shown in Figure 3.5, the architecture of the BRegNet is similar to the one of PointNet (Qi et 

al., 2017) with two major differences. First, PointNet uses a 1 × 1 convolution layer to encode the 

coordinates of every point because the points in a point cloud are often unordered. However, since 

the vertices of an enclosed building polygon form an ordered sequence, the receptive fields of the 

convolutions can be expended by replacing the 1 × 1 convolution layers with 3 × 1 convolution 

layers, thus allowing local context between neighbouring vertices to be learned. Second, when 

applying a 3 × 1 convolution to a set of polygon vertices, the output data size is reduced. To avoid 

the loss of data size, recursive padding is adopted before every convolution operation, where the 

vertex at each end is padded to the other end such that the point sequence forms a closed loop. The 

recursive padding ensures that the features of every neighbouring point in the sequence contribute 

equally to the learning procedure, and the network is invariant of the starting point selection. The 

Figure 3.5. The architecture of the BRegNet. 
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output coordinate offsets of the BRegNet are concatenated with the vertices of the irregular shaped 

polygon, as shown in Figure 3.1, to obtain the final regularized polygon. 

3.1.2 Review of Mask R-CNN 

Mask R-CNN is a state-of-the-art image segmentation CNN, proposed by Kaiming He, Georgia 

Gkioxari, Piotr Dollár, and Ross Girshick in 2017. It is developed on top of Faster R-CNN (Ren 

et al., 2015) by adding an additional mask branch to generate a high-quality segmentation mask 

for each instance. As shown in Figure 3.6, the major components of the Mask R-CNN network are 

as follows: a feature extraction CNN, a region proposal network, an RoI Align module, a detection 

prediction head, and a mask prediction head. Each of these components is reviewed as follows.  

3.1.2.1 Feature Extraction CNN 

Feature extraction CNNs are commonly used as backbones in larger networks to solve various 

computer vision tasks such as pattern recognition, vocal recognition, natural language processing, 

and video analysis (Koushik, 2016); their role is often to extract features from raw data for further 

analyses. For building extractions, the input satellite images are first fed into the feature extractor 

Figure 3.6. The architecture of the Mask R-CNN model. 
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to obtain feature maps that are used to analyze building locations and building segmentations. 

Examples of some widely used backbone networks are ResNet (He et al., 2016), DenseNet (Huang 

et al., 2017), VGGNet (Simonyan et al., 2014), HRNet (Wang et al., 2020), MobileNet (Howard 

et al., 2017), Swin Transformer (Liu et al., 2021). A comparison of the performances of the Mask 

R-CNN models with several popular backbone networks is shown in section 5.1.  

3.1.2.2 Region Proposal Network 

 The feature map extracted by the backbone CNN is fed into a lightweight neural network named 

Region Proposal Network (RPN), which proposes regions on the feature map that may contain 

objects. To bind features to their raw image locations, a method named ‘anchor’ is used. Anchors 

are a set of boxes with predefined locations, ratios, and scales relative to the images. Both the 

anchors and the bounding box predictions are represented by the coordinates of their top left and 

bottom right corners (i.e., 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥). For example, a bounding box which has a top 

left corner coordinate of (2, 1) and a bottom right corner coordinate of (7, 6) is shown in Figure 

Figure 3.7. An example of the traditional 

bounding box. 
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3.7. It can be represented by (2, 1, 7, 6). In addition, Figure 3.8 illustrates a set of anchor boxes 

with three scales (i.e., 4×4, 8×8, 16×16) and three ratios (i.e., 1:1, 1:2 and 2:1). The three scales 

are shown in three colors; for each scale, anchors of three ratios are generated. Therefore, nine 

anchors are generated at one location on the image. For an image with 625 anchor locations, a total 

of 625×9 = 5625 anchors will be generated. The ground-truth bounding boxes are assigned to 

individual anchors according to a predefined intersection over union (IoU) threshold. The IoU 

between two bounding boxes is calculated by: 

Figure 3.8. An example of anchor boxes with three scales 

and three ratios. The three scales are 4×4, 8×8, 16×16, 

shown in red, yellow, and blue colors, respectively; the three 

ratios are 1:1, 1:2 and 2:1. 
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𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝐿𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

( 3.1 ) 

For example, as shown in Figure 3.9, the area of overlap between the two boxes is represented in 

blue, and the union area between the two boxes is represented in green and blue. Therefore, the 

IoU between the two boxes of is calculated by 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐵𝑙𝑢𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐺𝑟𝑒𝑒𝑛 + 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐵𝑙𝑢𝑒
. Anchors with high 

overlaps with the ground-truth boxes are considered foreground and have an objectness score of 

1; those with lower overlaps are considered background and have an objectness score of 0. For 

each anchor, the RPN predicts an objectness value (i.e., ranged from 0 to 1, where 0 represents 

non-object and 1 represents object) and four regression values (i.e., the offsets of the anchor box) 

to indicate the possibility of an anchor being background or foreground, and the refined location 

and shape of the anchor box. 

Figure 3.9. The IoU between two bounding 

boxes. The intersection between the two boxes 

is represented in blue color; and union between 

them is represented in both the green and blue 

colors. 



27 

 

3.1.2.3 RoI Align 

The final bounding boxes predicted by the RPN are used to crop their corresponding regions of 

feature maps on the feature maps extracted by the backbone CNN. Those cropped feature map 

Figure 3.10. The processes of RoI Align. 
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regions are named Region of Interests (RoIs). The RoIs are passed through the detection head, 

which consists of a sequence of fully connected layers to obtain their corresponding object classes 

(i.e., dog, bird, cat, etc.) and further refined bounding boxes. However, these RoIs cannot be fed 

into the detection head because they vary in size, while the fully connected layers only accept 

uniform-sized inputs. Thus, instead of directly cropping the feature maps with the bounding boxes, 

a method is required to produce uniform-sized RoIs before feeding them to the detection head. 

This is done by RoI Align.         

The RoI Align method is demonstrated in Figure 3.10. As shown in Figure 3.10.(a), assuming the 

gray-colour grid is a feature map extracted by the backbone CNN, and the feature map values are 

also labelled in gray; the red box is a bounding box predicted by the RPN, which is evenly divided 

into nine cells assuming all RoIs have a fixed shape of 3×3. The goal of RoI Align is to interpolate 

the nine cells of the RoI with the feature map values while minimizing data loss. For illustration 

purposes, only the computation of one cell is demonstrated below. First, as shown in Figure 

3.10.(b), four sampling points are evenly generated within a cell. Since the corner coordinates of 

the RoI are known, the coordinates of the four points could be easily obtained (i.e., shown in Figure 

3.10.(c) in red,  while the center coordinates of the feature map pixels are labelled in gray). To 

extract values for each of the four sampling points, RoI Align adopts bilinear interpolation (Wang 

and Yang, 2008), which has the following formula: 

𝑷 =
𝒚𝟐 − 𝒚

𝒚𝟐 − 𝒚𝟏
(

𝒙𝟐 − 𝒙

𝒙𝟐 − 𝒙𝟏
𝑸𝟏𝟏 −

𝒙 − 𝒙𝟏

𝒙𝟐 − 𝒙𝟏
𝑸𝟐𝟏) +

𝒚 − 𝒚𝟏

𝒚𝟐 − 𝒚𝟏
(

𝒙𝟐 − 𝒙

𝒙𝟐 − 𝒙𝟏
𝑸𝟏𝟐 −

𝒙 − 𝒙𝟏

𝒙𝟐 − 𝒙𝟏
𝑸𝟐𝟐) 

( 3.2 ) 

Where for a sampling point 𝑝, 𝑥 and 𝑦 are the coordinate of 𝑝, and 𝑃 is the interpolated value of 

𝑝. For example, as shown in Figure 3.10.(d), the four feature map pixels with the closest center 
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distances to 𝑝1 are used for data sampling. The top left pixel has a center coordinate of (𝑥1, 𝑦1) =

(0.5, 0.5) and a value of 𝑄11 = 0.6; the top right pixel has a center coordinate of (𝑥2, 𝑦1) =

(1.5, 0.5) and a value of 𝑄21 = 0.2; the bottom left pixel has a center coordinate of (𝑥1, 𝑦2) =

(0.5, 1.5) and a value of 𝑄12 = 0.3; the bottom right pixel has a center coordinate of (𝑥2, 𝑦2) =

(1.5, 1.5) and a value of 𝑄22 = 1.0. After substituting the variables for the formula 3.2, 𝑝1 = 0.54 

is obtained. The same calculation is repeated for each of the four sampling points, and the resulting 

values are shown in Figure 3.10.(e). Finally, a max pooling operation is applied to the four sampled 

values to obtain the final sampled value of the cell, as shown in Figure 3.10.(f). The exact process 

is repeated for all nine cells, and the final interpolated RoI is shown in Figure 3.10.(g). 

3.1.2.4 Detection Head and Mask Head 

With the adoption of RoI Align, all RoIs have uniform shapes and can be passed through the 

detection head, which consists of a sequence of fully connected layers following two sibling 

branches of fully connected layers. One branch is responsible for outputting object classes (e.g., 

dog, bird, cat), and the other is responsible for outputting further refined bounding boxes. Those 

further refined bounding boxes are used to generate higher quality RoIs, again, with the help of 

RoI Align. Those new RoIs are fed to the mask head, which is an FCN that is responsible for 

predicting a segmentation mask for each RoI in a pixel-to-pixel manner relative to the input image. 

3.1.3 Review of The FPN module 

To improve the Mask R-CNN’s ability to segment buildings in vastly different sizes, especially 

the small ones, the FPN module is adopted. This section presents a review of the FPN module. 

Detecting objects in vastly different scales has been challenging in computer vision. In the early 

years, the problem was tackled by utilizing engineered feature pyramids that were built upon image 
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pyramids (Adelson et al., 1984). The process is illustrated in Figure 3.11, where an image is 

enlarged/shrunk into multiple different scales. Then, multi-scale features that correspond to the 

multi-scale images are generated for multi-scale object detection. However, such methods require 

considerably increased processing time (i.e., by 𝑛 times corresponding to the 𝑛 scales of images); 

moreover, when replacing the hand-crafted features with CNN-generated features, the memory 

demand of training deep networks end-to-end on an image pyramid is too high (Ren et al., 2015). 

Figure 3.11. A feature pyramid that is built upon an image pyramid 

for multi-scale object detection. 

Figure 3.12. Multi-scale feature maps generated 

from the forward pass of a feature extractor for 

multi-scale predictions. 



31 

 

In the recent decade, feature extraction using CNNs has become mainstream. CNNs can represent 

high-level semantics and are robust to variance in scale, which facilitates recognition from features 

computed on a single input scale. As shown in Figure 3.12, for an input image, multi-scale feature 

maps are generated along the forward pass of the CNN; however, the feature layers closer to the 

image layer are composed of low-level structures, which are ineffective for accurate object 

detection. Despite the promising detection capability of the final semantically strong feature layer, 

more accurate results can be obtained using feature pyramids with strong semantics at all scales. 

To achieve this goal, FPN is proposed. As shown in Figure 3.13, the architecture of FPN mainly 

consists of a bottom-up pathway and a corresponding top-down pathway. The bottom-up pathway 

is constructed using the multi-scale feature maps generated along the forward pass of a backbone 

CNN. All feature maps in the bottom-up pathway have different scales. Starting from the 

shallowest feature layer (i.e., the one closest to the image layer), each deeper layer has a scaling 

Figure 3.13. The Architecture of the FPN module. 
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factor of 0.5 (i.e., 
1

4
 in size) compared to the preceding layer. To build a top-down pathway, the 

deepest feature layer in the bottom-up pathway with the coarsest resolution and strongest semantic 

features is up-sampled by a factor of 2. Then, the up-sampled map is merged with the feature layer 

in the bottom-up pathway at one lower level via a lateral connection. The dimension of the lower-

level feature layer is reduced through a    convolution before the merge, and two feature layers are 

merged using element-wise addition. Again, the merged feature map is up-sampled by a factor of 

2 and merged with the feature layer in the bottom-up pathway at one lower level via a lateral 

connection. The process is repeated until the number of feature layers in both bottom-up and top-

down pathways are equal. 

The FPN module naturally leverages the pyramidal feature hierarchy of a CNN while creating a 

feature pyramid with strong semantics at all scales. Moreover, compared to the methods that 

generate feature pyramids using multi-scale images (i.e., shown in Figure 4.6), FPN builds feature 

pyramids quickly from a single input image scale without sacrificing representational power, 

speed, or memory. Experiments show that integrating the FPN module does not significantly 

impact the model's training and inference speed (Lin et al., 2017).  

3.1.4 Review of Swin Transformer 

 In recent years, transformers (Vaswani et al., 2017) have shown dominancy in natural language 

processing (NLP) tasks, which has motivated many research efforts to adapt transformers for 

vision tasks. In 2020, the Vision Transformer (ViT) (Vaswani et al., 2020) attracted much attention 

from the computer vision community due to its pure transformer architecture with promising 

results in vision tasks. However, despite the achievement, ViT mainly suffers from overly 

expensive computations for high-resolution images; its fixed scale tokens do not allow inputs of 
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variable scales, which is unsuitable for many vision tasks. To overcome the problems, in 2021, 

Microsoft researchers published a breakthrough work following ViT, named Swin Transformer 

(Liu et al., 2021). Swin Transformer resolves the issues that plagued the original ViT with 

hierarchical feature maps and shifted window MSA, and has shown to be the state-of-the-art 

backbone in many vision tasks. As shown in Figure 3.14, the architecture of the Swin Transformer 

consists of two major components—the Patch Merging module and the Swin Transformer Block. 

These components are reviewed as follows. 

3.1.4.1 Patch Merging 

A major achievement of Swin Transformer is that it produces hierarchical feature maps just like a 

CNN. CNNs generate hierarchical feature maps by down-sampling feature maps with 

convolutional operations. However, down-sampling becomes a challenge in a pure transformer 

network without convolution operations. Swin Transformer achieves the goal using a patch 

merging technique, as illustrated in Figure 3.15. For example, assuming the patch merging 

technique is applied to a 4 × 4 feature map (i.e., Figure 3.15.(a)) to down-sample it by a factor of 

𝑛 = 2. First, the feature map is split into 
4

𝑛
×

4

𝑛
 patches, each consists of 𝑛 × 𝑛 = 2 × 2 pixels. 

Figure 3.14. The architecture of Swin Transformer. 
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Next, each patch is stacked depth-wise in the order shown in Figure 3.15.(b) to form a feature 

vector of depth 4 (i.e., the channel number of the down-sampled feature map). Finally, all the 

feature vectors are concatenated based on the positions of the patches on the feature map, forming 

a down-sampled feature map with size 
4

𝑛
×

4

𝑛
 × 4 = 2 × 2 × 4 as shown in Figure 3.15.(c). The 

patch merging technique effectively down-samples the input by a factor of n, transforming the 

input from a shape of 𝐻 × 𝑊 × 𝐶 𝑡𝑜 (
𝐻

𝑛
) × (

𝑊

𝑛
) × (𝑛 × 𝑛 × 𝐶), where H, W and C refers to the 

height, width, and channel depth of the input, respectively. 

3.1.4.2 Swin Transformer Block 

The merged patches are fed to the Swin Transformer block to generate feature representations. The 

architecture of the Swin Transformer block is illustrated in Figure 3.16, which mainly consists of 

two sub-units. Each sub-unit consists of a normalization layer, followed by a modified MSA 

module, followed by another normalization layer, and an MLP layer. The modified MSA in the 

Figure 3.15. An example of the patch merging process. (a) Splitting a feature map into patches. 

Each patch is represented using a unique color; (b) each patch is stacked depth-wise to form a 

feature vector; (c) concatenating the feature vectors following the positions of the patches on the 

feature map. 
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first sub-unit is named Window MSA (W-MSA), and the one in the second sub-unit is named 

Shifted Window MSA (SW-MSA). Each of the modified MSAs is explained as follows. 

3.1.4.2.1 Window MSA 

Besides producing hierarchical feature maps, another major achievement of the Swin Transformer 

is the significantly reduced computational complexity compared to the ViT. As shown in Figure 

3.17.(a), the standard MSA used in ViT performs global self-attention, which computes the 

relationships between each patch and all other patches. Such a computation results in quadratic 

complexity with respect to the number of patches, making it unsuitable for high-resolution images. 

To address the issue, the window-based MSA, as shown in Figure 3.17.(b), evenly divides the 

patches into fix-sized non-overlapping windows, and the same self-attentions are performed within 

Figure 3.16. The architecture of the Swin 

Transformer Block. 
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each window. This way, the computation complexity becomes linear, which is significantly more 

efficient than the one of the standard MSA.                        

3.1.4.2.2 Shifted Window MSA 

Despite the greatly improved computation efficiency, a significant drawback of the window-based 

MSA is the lack of connections across windows, which results in limited modelling power. To 

overcome the issue, a Shifted Window MSA module, which introduces cross-window connections, 

is added after the W-MSA module. As illustrated in Figure 3.18.(a) and (b), the SW-MSA shifts 

the windows used in W-MSA towards the bottom direction by 
ℎ

2
 patches and the right direction by 

𝑤

2
 patches, where h and w are the height and width of a window, respectively. However, such a 

Figure 3.17. A comparison between the standard MSA and the window-based MSA. (a) the 

standard MSA with a quadratic complexity (with respect to the number of patches). Each small 

square represents a patch.; (b) the window-based MSA with a linear complexity.  
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shift introduces extra patches outside the windows and empty spots within the windows. To 

perform self-attentions within each shifted window, a ‘cyclic shift’ technique is introduced, as 

shown in Figure 3.18.(c), which shifts the extra patches into the empty spots. This way, 

connections are introduced across windows while the computation efficiency is maintained at a 

linear rate. 

3.2 The Proposed Model 

The PolygonCNN model is modified to more precisely extract building footprint in vastly different 

sizes and orientations. The architecture of the improved model is shown in Figure 3.19. First, the 

PSPNet of PolygonCNN has been replaced by the Swin-Transformer-based Mask R-CNN, which 

is integrated with the rotatable bounding box technique and the FPN module to produce 

significantly enhanced building segmentations for buildings in vastly different sizes and 

orientations. Second, to adapt the multi-scale feature maps of the FPN module, the Feature Pooling 

module of PolygonCNN is modified such that it accepts a feature pyramid as an input instead of a 

single feature map, and outputs multi-scale feature representations; furthermore, the BRegNet is 

widened and deepened to exploit the pooled multi-scale features. 

Figure 3.18. The window shifting process of the SW-MSA. 
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This section is outlined as follows. First, the integration of Mask R-CNN with the rotatable 

bounding box is explained in Section 3.2.1. Then, the integration of the FPN module with the 

Swin-Transformer-based rotatable Mask R-CNN is described in Section 3.2.2. Next, the 

architecture of the modified Feature Pooling module is explained in section 3.2.3, while the 

modified BRegNet is presented in section 3.2.4. 

3.2.1 Integration of The Rotatable Bounding Box with Mask R-CNN 

As shown in section 4.2.1, the current Mask R-CNN model tends to produce significantly defected 

building segmentations, especially for the buildings with rotated orientations (i.e., building edges 

are neither vertical nor parallel to the image edges). This is largely due to the useless empty 

background between the rotated building and the traditional non-rotatable bounding box. To 

Figure 3.19. Architecture of the proposed model. 
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alleviate this issue, a rotatable bounding box technique is integrated with the Mask R-CNN model, 

which aims to improve the segmentation quality by minimizing the background spaces. The 

integration mainly consists of the following components: the representation of the rotatable 

bounding box, the generation of the rotatable anchor, the IoU calculation of the rotatable bounding 

box, the RoI Align of the rotatable bounding box, and finally, pasting the rotatable mask prediction 

to the empty image to obtain the final mask. Each of these components is revealed as follows. 

3.2.1.1 Rotatable Bounding Box Representation 

One major challenge of the rotatable bounding box scheme is the representation method. 

Traditionally, the non-rotatable boxes are represented by the coordinates of their top left and 

bottom right corners which consist of only four values (i.e., 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥). To represent 

rotatable bounding boxes, the eight-parameter (i.e., the coordinates of the four corner points: 

𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4) (Xia et al., 2018) and the five-parameter (i.e., the center coordinate, 

width, height, and rotation angle of the box: 𝑥, 𝑦, 𝑤, ℎ, 𝛳) (Li et al., 2018) methods have been 

proposed. This thesis adopts the five-parameter method similar to the one used in (Li et al., 2018) 

due to its advantages in simplicity and the stableness of rectangular shape. However, their ℎ and 

𝑤 parameters are restricted to be the longer and shorter sides of the box while 𝛳 is fixed in the 

range of [0°, 180°); this thesis uses a simplified representation where 𝛳 is represented in a smaller 

range of [0°, 90°) (i.e., [0, 
𝜋

2
) in radians) while the lengths of h and w are not restricted. More 

specifically, as shown in Figure 3.14, for any rotatable bounding box 𝑅 centered at (𝑐𝑥, 𝑐𝑦), let a 

Polar Coordinate System to be generated at (𝑐𝑥, 𝑐𝑦); for the two perpendicular principal directions 

associated with the sides of 𝑅 (i.e. denoted as two blue dotted lines passing though (𝑐𝑥, 𝑐𝑦)), the 

one that has a polar angle (i.e., the smallest positive angle between the polar axis and the principal 
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direction) within [0, 
𝜋

2
) is denoted as 𝛳. The length of the opposite sides of 𝑅 that have a direction 

associated with 𝛳 is denoted as 𝑤, while the length of the other opposite sides is denoted as ℎ. 

Therefore, R can be represented as (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ, 𝛳). In addition, for a given R with a polar angle 𝑎 

outside of the [0, 
𝜋

2
) range, 𝛳 can be conducted by: 

𝛳 = 𝑝 mod 
𝜋

2
 

( 3.3 ) 

where mod represents the modulo operator which finds the remainder when 𝑝 is divided by 
𝜋

2
.  For 

example, as shown in Figure 3.20.(a), let 𝑅 be the red bounding box, and (𝑐𝑥, 𝑐𝑦) be the center 

point of 𝑅 . Since the principal directions of 𝑅 are aligned with the polar axis, 𝛳 = 0; as the 

opposite sides of 𝑅 that are associated with 𝛳 have a length of 3, 𝑤 = 3; the other opposite sides 

have a length of 1, thus ℎ = 1. In this case, 𝑅 can be represented as which is (𝑐𝑥, 𝑐𝑦, 3, 1, 0). If 𝑅 

is rotated counter-clockwise for 
𝜋

4
 around (𝑐𝑥, 𝑐𝑦)  as shown in Figure 3.20.(b), R can be 

represented as (𝑐𝑥, 𝑐𝑦, 3, 1,
𝜋

4
). However, as shown in Figure 3.20.(c), if 𝑅  is rotated counter-

clockwise for 
𝜋

2
 , 𝛳 can no longer be 

𝜋

2
 since 

𝜋

2
 is out of the [0, 

𝜋

2
) range. In this case, 𝛳 can be 

calculated using Equation (3.3), where 𝑝 =
𝜋

2
. Therefore, 𝛳 = 𝑝 mod 

𝜋

2
=

𝜋

2
 mod 

𝜋

2
= 0.  In 

addition, since the opposite sides of 𝑅 that have a polar angle of 0 have a length of 1, 𝑤 = 1 and 

ℎ = 3. Thus, R can be represented as (𝑐𝑥, 𝑐𝑦, 1, 3, 0). Similarly, as shown in as shown in Figure 

3.20.(d), if 𝑅  is rotated counter clockwise for 
3𝜋

4
, 𝛳  can be calculated as 𝛳 = 𝑝 mod 

𝜋

2
=
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3𝜋

4
 mod 

𝜋

2
=

𝜋

4
. Therefore, 𝑤 = 1, ℎ = 3, and 𝑅 = (𝑐𝑥, 𝑐𝑦, 1, 3,

𝜋

4
). The same representation can be 

applied to any R with an arbitrary 𝑐𝑥, 𝑐𝑦, 𝑤, ℎ, and rotation angle. 

Figure 3.20. Examples of the proposed representation for rotatable bounding box. 
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3.2.1.2 Rotatable Anchor Generation 

 The traditional non-rotatable anchors are generated at the RPN stage of Mask R-CNN, as 

described in section 3.1.2.2. To predict rotatable bounding boxes, rotatable anchors are integrated 

with the anchor generation. Similar to the traditional anchor generation described in section 

3.1.2.2, the rotatable anchors also have predefined scales and ratios. However, in addition, a set of 

rotation values is defined. For example, Figure 3.21 illustrates a set of rotatable anchor boxes with 

one scale (i.e., 16×16), three ratios (i.e., 1:1, 1:2 and 2:1), and two rotations (i.e., 0 and 
𝜋

4
, shown 

in red and blue colors, respectively). It is noted that in actual practice, multiple scales are often 

generated; however, only one scale is illustrated here for the simplicity of visualization; however, 

only one scale is illustrated here for the simplicity of visualization. In this case, for each scale, 

Figure 3.21. An example of rotatable anchor boxes 

with one scale, three ratios, and two rotations. The 

one scale is  𝟏𝟔 × 𝟏𝟔; the three ratios are 1:1, 1:2, 2:1; 

the two rotations are 0 and 
𝝅

𝟒
, shown in red and blue 

colors, respectively. 
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anchors with three different ratios are generated; for each ratio, anchors two different rotations are 

generated. Thus, each predefined location on the image generates a total of 1 × 3 × 2 = 6 anchor 

boxes. For each anchor, the RPN predicts an objectness value (i.e., ranged from 0 to 1, where 0 

represents non-object and 1 represents object) and five regression values (i.e., the offsets of the 

anchor box) to indicate the possibility of an anchor being background or foreground, and the 

refined location, shape, and rotation of the anchor box. 

3.2.1.3 IoU Calculation of The Rotatable Bounding Box 

The IoU calculation between the bounding boxes plays an essential role in Mask R-CNN. It is used 

in choosing positive samples during training and in the non-maximum suppression and evaluation 

processes during testing. The IoU calculation between two non-rotatable bounding boxes is 

described in Figure 3.9, where a positive intersection is always a rectangular region which is trivial 

to compute. However, the IoU calculation between two rotatable bounding boxes becomes 

sophisticated and computationally expensive.  

As shown in Figure 3.22, the possible shapes of the positive overlapping region between two 

rotatable bounding boxes consist of a triangle, quadrangle, pentagon, hexagon, heptagon, and 

octagon. To precisely calculate the IoU between two rotatable bounding boxes, the plane sweep 

(Berg et al., 1997) algorithm is used for finding the vertices of the intersection polygon. First, the 

coordinates of the four vertices of the two boxes are calculated and sorted in counter-clockwise 

order. Each box can be seen as an intersection of half-planes defined by the edges. Moreover, one 

box is defined as the candidate intersection polygon, and the other is defined as the cutting polygon. 

Next, iterate through every edge of the cutting polygon in order; for each edge, all regions from 

the candidate intersection polygon on the outer half plane of the edge are removed. When finished, 



44 

 

the candidate intersection polygon becomes the intersection polygon of the two rotatable boxes, 

and again, its vertices are sorted in counter-clockwise order. Finally, the area 𝐴𝑖𝑛𝑡𝑒𝑟  of the 

intersection polygon can be calculated with the formula: 

𝐴𝑖𝑛𝑡𝑒𝑟 = |
(𝑥1𝑦2 − 𝑦1𝑥2) + (𝑥2𝑦3 − 𝑦2𝑥3) ⋯ + (𝑥1𝑦2 − 𝑦1𝑥2)

2
| 

( 3.4 ) 

where (𝑥𝑛, 𝑦𝑛) is the coordinate of the 𝑛𝑡ℎ vertex of the polygon. When 𝐴𝑖𝑛𝑡𝑒𝑟 is obtained, the IoU 

can be calculated with Equation (3.1), where 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐴𝑖𝑛𝑡𝑒𝑟, and 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 =

𝐴𝑏1 +  𝐴𝑏2 − 𝐴𝑖𝑛𝑡𝑒𝑟 where 𝐴𝑏1 and 𝐴𝑏2 are the areas of the two bounding boxes. 

Figure 3.22. Examples of the possible shapes of the positive overlapping 

region between two rotatable bounding boxes. 
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3.2.1.4 RoI Align for The Rotatable Bounding Box 

The RPN's prediction of rotatable bounding box is fed to the RoI Align module along with the 

feature maps to generate uniform-shaped rotatable RoIs. The RoI Align for the rotatable bounding 

box involves similar processes as the original RoI Align as described in section 3.1.2.3, where the 

non-rotatable bounding box is replaced with the rotatable bounding box; however, a major 

difference is that the rotated boxes can have regions outside the feature maps, which needs to be 

handled seperately.  

The non-rotatable bounding box predictions of the RPN are post-processed by cropping with the 

feature map edges such that all their corners are located within (or on edge) of the feature maps. 

As a result, the cropped boxes maintain their rectangular shapes, as shown in Figure 3.23.(a). On 

the other hand, if a rotatable bounding box is partially located outside the feature map, directly 

cropping the box can result in a non-rectangular shape (e.g., Figure 3.23.(b)). A non-rectangular 

bounding box cannot be used to perform RoI Align since the algorithm requires the box to be 

Figure 3.23. Example of cropping the two types of bounding boxes with partially 

excluded regions. (a) cropping a non-rotatable bounding box with a feature map; (b) 

cropping a rotatable bounding box with a feature map. Green represents the cropped 

region; red represents the eliminated region. 
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divided even into 𝑛 × 𝑛 cells. Moreover, RoI Align cannot be performed on a box with excluded 

regions since the sampling points on the excluded regions are not overlaying on any feature map 

pixels (e.g., Figure 3.24.(a)). To maintain the rectangular shape of the rotatable box while allowing 

all sampling points to bilinear interpolate the feature map, a symmetric padding strategy is used to 

symmetrically copy the feature map values to the excluded regions, as shown in Figure 3.24.(b).     

3.2.1.5 Pasting The Rotatable Mask Prediction to The Empty Image 

In general, for both the rotatable and non-rotatable bounding box cases, the detection head of Mask 

R-CNN predicts a refined bounding box for each RoI generated from RoI Align; within each 

refined bounding box, the mask head predicts a binary mask (i.e., a pixel of 0 represents 

background and 1 represents object) for an object. An example of a predicted bounding box for a 

building object in a satellite image is shown in Figure 3.25.(a), while the mask prediction for the 

building object within the bounding box is shown in Figure 3.25.(b). Such mask predictions are 

Figure 3.24. Symmetric padding of the RoI Align for the rotatable bounding box. (a) a rotated 

bounding box with regions excluded from the feature map. To perform RoI Align, the box is evenly 

divided into 9 cells and sampling points are generated within each cell; (b) Symmetrically copying 

the feature map pixels to cover the excluded regions such that bilinear interpolation can be 

performed for every sampling points. 
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non-uniform sized (i.e., based on the sizes of the object) and unacceptable since the standard mask 

outputs are required to be at image size while each mask reveals the object’s location on the image. 

To produce such image-sized outputs, a method is required to paste the tightly bounded mask onto 

an empty image (i.e., pixels of 0’s) using the location information of the bounding box, as shown 

in Figure 3.25.(c). 

Pasting non-rotatable mask predictions onto an empty image is a simple task because the pixels of 

the mask predictions are axis-aligned with the ones of the image such that they can be directly 

pasted onto the image without using any interpolations. However, it is much more sophisticated to 

paste a rotated mask onto an empty image. As described in section 3.2.1.4, the rotated RoI 

generated from the modified RoI Align may contain useless features that are excluded from the 

feature map. Therefore, the final mask predictions of Mask R-CNN may also contain pixels 

excluded from the input image, which cannot be concatenated with the empty image, as all final 

masks must have the same size as the input image. Moreover, since the pixels of the rotated mask 

Figure 3.25. An example of pasting the mask prediction to an empty image. (a) the input 

image; (b) the bounding box and mask predictions of a building in the image; (c) pasting the tight-

bounded mask to an empty image using the location information of the bounding box. In (b) and 

(c), purple-colored pixels represent background and yellow-colored pixels represent foreground. 
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prediction are not axis-aligned with the pixels of the input image, interpolation is required when 

pasting the mask to the empty image. To overcome these issues, Figure 3.26 illustrates the 

proposed method. First, for a rotated mask with regions excluded from the empty image (e.g., 

Figure 3.26.(a)), a pixel-aligned non-rotatable bounding box is generated within the empty image, 

which completely covers all the mask pixels that lie within the empty image (e.g., Figure 3.26.(b), 

Figure 3.26. The proposed solution for pasting a rotated mask onto an 

empty image. (a) a rotated mask with regions excluded from the empty 

image; (b) generating a pixel-aligned non-rotatable bounding box that 

completely covers all the mask pixels that lie within the empty image, shown 

in black; (c) replacing the 0 value of each pixel in the black box with the value 

of its nearest mask pixel if their distance is less than ξ𝟎. 𝟓 ; (d) the 

interpolated final mask. Green-colored pixels represents foreground. 
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shown in black). Next, the background value (i.e., 0) of each black box pixel is replaced with the 

value of its nearest mask pixel if their distance is less than ξ0.5, as illustrated in Figure 3.26.(c). 

Finally, as shown in Figure 3.26.(d), the interpolated black box pixels can be directly pasted onto 

the empty image to obtain the final mask. 

3.2.2 Integration of The FPN Module With The Swin-Transformer-Based Rotatable Mask R-CNN 

Besides integrating the rotatable bounding box with Mask R-CNN, the FPN module is also 

integrated into the Mask R-CNN model to improve its ability to segment building footprints in 

various sizes. Figure 3.27 shows the detailed integration of FPN with the Swin-Transformer-based 

rotatable Mask R-CNN. 

As described in Section 3.2.1, the RPN in the rotatable Mask R-CNN is applied to the last feature 

layer of a backbone network to generate rotatable bounding box proposals; then, this single-scale 

Figure 3.27. Integration of FPN with Swin-Transformer-based Rotatable Mask R-CNN. 
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feature map is cropped by the rotatable bounding boxes. Using the Rotated RoI Align module, 

uniformly sized RoIs are produced for the detection head. In addition, the feature map is later 

cropped again by the refined rotated bounding boxes (i.e., produced by the detection head), and 

RoIs are produced using the Rotated RoI Align module for the mask head to predict building masks. 

However, with the integration of FPN, the rotatable Mask R-CNN is modified in the following 

ways. First, an RPN with shared weights is applied to each scale of the feature maps in the FPN to 

predict bounding box proposals. Based on the width and height of the rotatable bounding box, a 

corresponding-scale feature map is used for generating the RoI, which is fed to the detection head. 

The following equation is used to select the appropriate level of feature map in the feature pyramid: 

𝑘 = ⌊𝑘0 + log2(
ξ𝑤ℎ

650
)⌋ 

( 3.5 ) 

Where 𝑤 and ℎ are the width and height of the rotatable bounding box; 𝑘0 is the level of the last 

layer of the feature map. In this case, 𝑘0 = 4. For Equation (3.5), a larger-scale bounding box 

corresponds to a coarser-resolution feature map (i.e., larger 𝑘); a smaller-scale bounding box 

corresponds to a finer-resolution feature map (i.e., smaller 𝑘). Next, again, based on the width and 

height of the refined rotatable bounding box produced by the detection head, a corresponding-scale 

feature map is used for generating the RoI, which is fed to the mask head for the building mask 

prediction. In addition, for the rotatable anchor box generation, instead of generating multiple 

scales of anchor boxes at a single feature map (i.e., described in section 3.2.1.2), each scale of 

anchor boxes (i.e., with multiple aspect ratios and rotations) is generated on the corresponding 

scale of the feature map in the FPN. With the FPN module integrated in such a way, it is hoped 
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that the performance of the rotated Mask R-CNN in segmentation building footprints in broadly 

varied sizes will be significantly enhanced. 

3.2.3 Modified Feature Pooling 

To exploit the FPN module of the improved Mask R-CNN, the feature pooling module of 

PolygonCNN is modified to accept the multi-scale feature maps of the FPN.  

 As described in section 3.1.1.3, the Feature Pooling module of the original PolygonCNN pools 

features vectors from a single-scale feature map, and outputs a concatenation of the feature vectors 

and their corresponding polygon vertices. However, with the availability of multi-scale feature 

maps from the FPN, the Feature Pooling module is modified to pool multiple scales of feature 

vectors from the feature pyramid, and outputs multi-scale feature representations, which are 

concatenations of the multi-scale feature vectors and their corresponding polygon vertices. For 

example, Figure 3.28 illustrates the architecture of the modified Feature Pooling module. 

Figure 3.28. Architecture of the modified Feature Pooling module. 
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Assuming there are N predicted polygon vertices (i.e., a tensor of size 𝑁 × 2), and four levels of 

feature maps in the FPN with dimensions of 768. At each level of the feature maps, the modified 

Feature Pooling module extracts a set of feature vectors at the positions of the set of polygon 

vertices. Then, the polygon vertices (i.e., size 𝑁 × 2) are concatenated with their corresponding 

feature vectors at each level (i.e., size 𝑁 × 768), resulting in four feature representations of size 

𝑁 × (768 + 2) = 𝑁 × 770 . The four feature representations consist of semantically strong 

features at four different scales, which are fed concurrently into the modified BRegNet (i.e., section 

3.2.4), resulting in an improved building polygon optimization. 

3.2.4 Modified BRegNet 

The BRegNet is widened and deepened to effectively utilize the multi-scale feature representations 

outputted from the modified Feature Pooling module. The BRegNet, as described in section 4.1.1.4, 

takes a single input which is a concatenation of the predicted polygon vertices with their 

corresponding feature vectors extracted from a single-scaled feature map. However, the improved 

BRegNet takes four inputs consisting of concatenations of predicted polygon vertices with their 

corresponding feature vectors extracted from the four levels of the FPN.  

As shown in Figure 3.29, to enable multi-scale inputs, the BRegNet is first widened by adding 

three more duplicated paths of feature transformation and global pooling layers (i.e., as shown in 

the blue-dotted box). The outputs of the four duplicated paths (i.e., size 𝑁 × 1088) consist of both 

local and global information of the multi-scale feature representation inputs. These outputs are 

concatenated into one tensor of size n x 4352. Next, to reduce the large dimension size of the 

aggregated feature, the BRegNet is deepened by adding two more feature transformation layers 

with output sizes of n x 2048 and n x 1024. In this way, the dimension of the feature is reduced 

more gradually with less information losses. The modified BRegNet utilizes the semantically 
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strong multi-scale feature representations to generate offsets of more precisely regularized building 

polygon vertices. 

 

 

 

 

 

Figure 3.29. The architecture of the modified BRegNet. 
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CHAPTER 4: IMPLEMENTATION OF THE PROPOSED METHOD 

AND EXPERIMENTAL STUDIES 

To determine the effectiveness of the proposed building segmentation and extraction methods, as 

well as the reasons behind the model selections, in this chapter, a series of comparison studies are 

conducted, and complete test results are presented and discussed. First, section 4.1 presents the 

general settings for the experiments conducted in the rest of the chapter. Next, section 4.2 presents 

comparison experiments, which explain the selection reasons behind the baseline segmentation 

and backbone models, and ablation experiments, which show the advantage of the upgraded Mask 

R-CNN model. Then, in Section 4.3, the proposed model is compared with other popular end-to-

end deep-learning-based building extraction models; ablation studies are done to demonstrate the 

effectiveness of the modified model components; in addition, other design choices of the proposed 

model are presented to offer flexibility between the quality of the building extraction result and 

the memory consumption of the model. Last, Section 4.4 visualizes and discusses the test results 

of the improved Mask R-CNN and PolygonCNN models. 

4.1 Experimental Settings 

The various settings of the experiments are revealed in this section, including the dataset used, the 

model, hardware and software settings, and the methods used to evaluate the performances of the 

models. 
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4.1.1 Dataset 

This thesis uses the Round 2 dataset of the SpaceNet Building Detection Challenge to evaluate the 

performances of both the building segmentation and extraction methods. The dataset provides 

satellite images of four urban cities, including Las Vegas, Paris, Shanghai, and Khartoum, 

containing over 302,701 building footprints. Table 4.1 shows a list of the dataset properties. All 

images are pan-sharpened with a spatial resolution of 0.3𝑚 × 0.3𝑚  per pixel; the spectral 

resolution consists of the RGB (i.e., red, green, blue) true-color channels, and the image size is 

650 × 650 pixels. In addition, a large portion of the images of each city provide manually labeled 

building footprint outlines in vector formats contained in GeoJSON files. To train the networks 

with a reasonable sized dataset, 4000 labelled images are chosen among all the images provided 

in the SpaceNet2 Building Detection dataset. They are split into 3500 training images for training 

the deep-learning models and 500 validation images for validating the models during training. In 

addition, 2500 non-labelled images are chosen for testing the trained models. To ensure the 

robustness of the trained model at segmenting buildings in various challenging conditions, the 

chosen training and validation images contain the following characteristics:  

Table 4.1. Properties of the SpaceNet 2 Building Detection Dataset. 
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• Buildings are in vastly different scales and orientations. 

• Buildings are highly diversified in shapes. 

• Containing building with similar hues to the background. 

• Containing building-like objects such as trucks and large containers. 

Figure 4.1.(a) shows examples of the dataset images. First, the vector building labels used to train 

and validate the building extraction models are visualized in Figure 4.1.(b). Moreover, the vector-

format building labels are transformed into raster-format building masks to train and validate the 

building segmentation models, as illustrated in Figure 4.1.(c). It is noted that for the training of 

Mask R-CNN model, each mask corresponds to only one building, containing 0’s and 1’s 

representing the background and foreground. Thus, for an image containing multiple buildings, 

multiple masks are created. However, for visualization purposes, the masks that belong to one 

image are stacked into one segmentation image and shown in different colours. 
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(a). (c). (b). 

Figure 4.1. Examples of the images and the corresponding building polygon and 

mask labels of the SpaceNet 2 Building Detection Dataset. (a) The dataset images; 

(b) the vector-format building outlines, overlayed on the images; (c) the pixel-format 

building masks, consisting of 0’s and 1’s, converted from the vector labels. 
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4.1.2 Implementation Details 

To ensure experimental fairness, the consistency of the hardware, software, and model parameter 

settings are maintained throughout all experiments, and are described as follows.  

First, all building segmentation and extraction models in the experiments are implemented and 

tested in Pytorch (Steiner et al., 2019) using the Python language on a 64-bit Ubuntu system 

equipped with three NVIDIA TITAN X GPUs. Moreover, the following network settings are 

shared among all models in the experiments: 

• Learning rate: the learning rate scheduler named ‘ReduceLROnpltatea’ in the Pytorch 

library is adopted with a starting learning rate of 0.1, reduce factor of 0.2, and patience of 

10. This scheduler reads the validation accuracy of the model after each epoch of training, 

and if no improvement is seen for 10 epochs, the learning rate is reduced by a factor of 0.2. 

• Optimizer: the stochastic gradient descent (i.e., SGD) (Paszke et al., 1991) optimizer is 

used with a weight decay of 0.05 and momentum of 0.9 for the optimization of the models 

during training. 

• Batch size: set to 4 for the segmentation networks; set to 1 for the extraction networks. 

• Backbone: unless otherwise stated, the backbone network of all building segmentation and 

extraction models, if replaceable, are replaced by ResNet-50 to most fairly comparing the 

model performances considering the amount of training data. 

• Data Augmentation: all images are resized from 650 × 650 pixels to 800 × 800 pixels 

to fit the special input requirement of Swin Transformer, which only takes input image 

with width and height that are divisible by 32. Moreover, all images and the building vector 

labels are normalized to have a mean of 0 and a standard deviation of 1 to facilitate the 
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training of models. In addition, all training images and labels are augmented to have a 

random horizontal and vertical flip chance of 0.5, and a random rotation chance of 0.25 

among the rotation angles of 0°, 90°, 180°, and 270°. Such a data augmentation strategy 

enhances the robustness of the trained models by greatly expending the diversity of the 

training dataset. 

Besides the shareable settings, all the building polygons generated by the building extraction 

networks are processed by the Doglus-Peuker (DP) algorithm with a 𝜀 of 1 pixel for fair 

comparisons of the building extraction models. In addition, the scales and ratios of the anchor 

boxes in all Mask R-CNN models (i.e., including the rotatable Mask R-CNN) are respectively set 

to {16, 32, 64, 128, 256} and {0.5, 1, 2} instead of the default values considering the general sizes 

and shapes of the building footprints in the dataset; the rotation angles of the rotatable anchor 

boxes in the rotatable Mask R-CNN is set to {0, 
𝜋

4
}. Other non-specified parameters of all models 

are left with the default values as that are described in the corresponding referenced papers. 

4.1.3 Evaluation Methods 

4.1.3.1 Evaluation of Building Segmentation Network 

To evaluate the performances of the instance segmentation networks (i.e., the Mask R-CNN 

models), the mean Average Precision (AP) and mean Average Recall (AR) are calculated based 

on the IoU (Jaccard, 1912) metric The IoU is calculated between the building segmentations, 

similar to the one calculated between the bounding boxes described in Section 3.1.2. Specifically, 

AP and AR are averaged over ten IoU values with thresholds from .50 to 0.95 with steps of 0.05, 

as shown in Equations (4.1) and (4.2), respectively. 
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𝐴𝑃 =
𝐴𝑃0.50 + 𝐴𝑃0.55 + ⋯ + 𝐴𝑃0.95

10
 

( 4.1 ) 

where 𝐴𝑃𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 for an IoU threshold of 𝑛 . It measures the fraction 

between the number of the correctly detected objects (i.e., predictions with IoU > 𝑛) and the 

number of all the detected objects. 

 

𝐴𝑅 =
𝐴𝑅0.50 + 𝐴𝑅0.55 + ⋯ + 𝐴𝑅0.95

10
 

( 4.2 ) 

where 𝐴𝑅𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 for an IoU threshold of 𝑛 . It measures the fraction 

between the number of the correctly detected objects and the total number of the ground truth 

objects. 

In addition, to measure the performance of the Mask R-CNN models in segmenting buildings in 

vastly different sizes, the AP and AR of building masks in small, medium, and large sizes are 

calculated (i.e.,  𝐴𝑃(𝑠𝑚𝑎𝑙𝑙,   𝑚𝑒𝑑𝑖𝑢𝑚,   𝑙𝑎𝑟𝑔𝑒),  𝐴𝑅(𝑠𝑚𝑎𝑙𝑙,   𝑚𝑒𝑑𝑖𝑢𝑚,   𝑙𝑎𝑟𝑔𝑒) ). Small represents a mask 

smaller than 322  pixels, medium represents a mask between 322  and 962  pixels, and large 

represents a mask larger than 962 pixels. 

However, an issue with the above-mentioned object-based APs and ARs is that they cannot apply 

to the semantic building segmentation networks such as U-Net and PSPNet. This is because the 

segmentation results of such networks are single binary maps, which only show each pixel's class 
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information (i.e., building or background) while the object information is missing. On the other 

hand, the region-based CNNs (e.g., Mask R-CNN) directly predict a mask for each building object 

in the image. Although some boundary tracing algorithms can be applied to the binary map to trace 

the building outlines, individual building instances in those tightly clustered buildings cannot be 

determined. Therefore, a pixel-based IoU (i.e., IoU between the predicted binary maps and the 

ground truth binary maps) is often used as the metric for those semantic segmentation models. To 

fairly compare the performances of the semantic segmentation networks and the Mask R-CNN, 

the instance mask predictions of Mask R-CNN are stacked into binary maps (i.e., as shown in 

Figure 5.1.(c)) in order to apply the pixel-based IoU metric. 

4.1.3.2 Evaluation of Building Extraction Network 

To evaluate the performances of the building extraction networks, the same 𝐴𝑃,

𝐴𝑅,  𝐴𝑃(𝑠𝑚𝑎𝑙𝑙,   𝑚𝑒𝑑𝑖𝑢𝑚,   𝑙𝑎𝑟𝑔𝑒),  𝐴𝑅(𝑠𝑚𝑎𝑙𝑙,   𝑚𝑒𝑑𝑖𝑢𝑚,   𝑙𝑎𝑟𝑔𝑒) in the previous section are applied to 

measure the quality of the building polygons. In addition, the F1-score metric used by the SpaceNet 

2 Building Detection Challenge is also adopted. F1-score is a harmonic average of the polygon-

based AP and AR, which gives equal weights to both, and is defined as: 

𝐹1 =
2 × 𝐴𝑃 × 𝐴𝑅

𝐴𝑃 + 𝐴𝑅
 

( 4.3 ) 

where the F1 is between 0 and 1; larger numbers correspond to better scores. 

4.2 Experiments and Discussions of The Upgraded Mask R-CNN model 

This section presents various experiments to demonstrate the selection reasons behind the baseline 

segmentation and backbone models and the advantage of the upgraded Mask R-CNN model. 
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First, the Mask R-CNN model is compared with several famous image segmentation networks 

from different application domains to demonstrate its superiority in segmenting building footprints 

from satellite images. Moreover, to find the suitable backbone network for the building 

segmentation task, the performances of some popular backbone models have been compared on 

the baseline Mask R-CNN model. Finally, ablation studies are performed on the Mask R-CNN 

model by integrating the Swin Transformer backbone, the rotatable bounding box scheme, and the 

FPN module.  

4.2.1 Selection of The Baseline Building Segmentation Model 

Since the quality of the extracted building footprint polygon is largely dependent on the quality of 

the building segmentation, seeking an optimal building segmentation method is the key to 

developing a state-of-the-art building extraction method. Therefore, several famous baseline image 

segmentation deep neural networks from different application domains are selected, shown as 

follows:  

• PSPNet (Zhao et al., 2017) 

• DeepLabV3+ (Chen et al., 2018) 

• UPerNet (Xiao et al., 2018) 

• FastFCN (Wu et al., 2019) 

• HRNet (Wang et al., 2020) 

• Mask R-CNN (He et al., 2017) 

The ResNet-50 backbone is equipped on all the models for a fair comparison. The models are 

trained on the SpaceNet 2 Building Detection dataset and evaluated using the pixel-based IoU 

metric. As shown in the evaluation results in table 4.2, the bounding-box-based detector Mask R-
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CNN significantly outperforms all encoder-decoder segmentation networks with an IoU of 0.873; 

DeepLabV3+ and HRNet have lower IoUs of 0.858 and 0.859, respectively; both Fast FCN and 

PSPNet have the second lowest IoU of 0.844, while UPerNet has the lowest IoU of 0.842.  

 

  

Table 4.2. Performances of the 

chosen baseline image 

segmentation models. 



64 

 

 

  

Figure 4.2. Building segmentation results of the chosen baseline image segmentation models. 
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Figure 4.2 shows examples of the building segmentation results of the models. A significant 

finding from the results is that for the encoder-decoder networks, mispredicted pixels tend to occur 

on buildings with all orientations; in contrast, for the two-stage detector Mask R-CNN, the 

segmentations on the non-rotated buildings (i.e., building edges are either vertical or parallel to 

the image edges) tend to have significantly more regularized shapes, whereas the ones on those 

rotated buildings (i.e., building edges are neither vertical nor parallel to the image edges) are 

similar to the results of the encoder-decoder networks.  

The result indicates that the non-rotatable bounding boxes of Mask R-CNN likely provide 

regularization effects to the segmentations of non-rotated buildings, as such buildings usually have 

a large fraction of edges that lean tightly against the bounding boxes. Such a regularization effect 

contributes significantly to the overall high segmentation accuracy of Mask R-CNN, making the 

model specifically suitable for segmenting building footprints from satellite images. However, 

despite the bounding boxes' help, many buildings in satellite images have randomly rotated 

orientations, which leaves sizeable empty background spaces between the buildings and their 

bounding boxes, causing mispredicted pixels.  

4.2.2 Selection of The Backbone Network  

The ResNet-50 backbone in the baseline Mask R-CNN model can potentially be replaced for 

improved performance. To determine the optimal backbone network for building segmentation, 

the following popular backbone networks are selected and evaluated on the Mask R-CNN model: 

• ResNet-50 and ResNet-101 (He et al., 2016) 

• DenseNet-121 and DenseNet-161 (Huang et al., 2017) 

• VGG-16 (Simonyan et al., 2014) 
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• HRNet (Wang et al., 2020) 

• MobileNetV3 (Koonce, 2021) 

• Swin Transformer (Liu et al., 2021) 

Since all the backbones are mounted and evaluated on the Mask R-CNN model, the AP and AR 

metrics as described in Section 4.1.3.1 are adopted. A comparison of the evaluation results is 

shown in table 4.3.  

As shown in Table 4.3, unsurprisingly, the baseline Mask R-CNN model with the MobileNetV3 

backbone has the lowest AP and AR (i.e., 0.437 and 0.459, respectively) among all models since 

MobileNetV3 is a lightweight model designed explicitly for fast inference speed, which trades off 

for lower and accuracies and recalls. In addition, the VGG-16 backbone model shows an improved 

 Table 4.3. Performances of the chosen backbone networks on Mask R-CNN. 
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performance compared to the MobileNetV3 backbone model with an AP and AR of 0.461 and 

0.498, respectively. Furthermore, the DenseNet121 backbone model has an AP and AR of 0.519 

and 0.565, respectively, while its heavier version model (i.e., DenseNet121) shows slightly 

improved AP and AR of 0.532 and 0.578, respectively. The improvements are likely due to the 

model’s more considerable depth and the sacrifice to more expensive computation. Compared to 

the DenseNet models, the two ResNet models have shown considerably better performances. 

Nevertheless, the heavier version model (i.e., ResNet101) does not show a significantly improved 

performance compared to the lighter version model (i.e., ResNet50)—the ResNet50 backbone 

model has an AP and AR of 0.554 and 0.602, respectively, while the ResNet101 backbone model 

has an AP and AR of 0.555 and 0.602, respectively.  Such a result is likely due to the small size of 

the training dataset, which fails to leverage the full power of the large backbone model. 

Surprisingly, the HRNet backbone model outperforms all the ResNet and DenseNet models with 

an AP and AR of 0.506 and 0.551, respectively; also, it has the highest APs  and ARs among all 

models, which indicates that the rich, high-resolution features and the multi-scale fusion of HRNet 

are specifically effective for the feature extraction of small-sized building objects from satellite 

images. Lastly, the Swin Transformer model obtains the highest AP, AR, APM, ARM, APL, ARL 

among all models while maintaining promising APs and ARs that are very close to the ones of the 

HRNet model. Such results indicate that the novel patch-merging and shifted-window-based self-

attention operations of Swin Transformer are specifically suitable for multi-scale building footprint 

segmentation. Due to its impressive overall performance, the Swin Transformer-based Mask R-

CNN is chosen as the baseline segmentation network to replace the PSPNet in the original 

PolygonCNN. 
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4.2.3 Ablation Studies of The Upgraded Mask R-CNN Model 

As discussed in Section 4.2.1, the non-rotatable bounding box of Mask R-CNN provides 

regularization effects to the segmentations of the non-rotated buildings; however, it misses the 

opportunity to exploit the rotated buildings. Thus, this thesis enhances the Mask R-CNN by 

integrating the rotatable bounding box scheme. In addition, to further improve the model’s ability 

to segment building footprints in vastly different scales, the FPN module is integrated. Table 4.4 

compares the performances of different Mask R-CNN models with incrementally added 

components.  

As shown in Table 4.4, the baseline Mask R-CNN model with the ResNet-50 backbone has an AP 

and AR of 0.554 and 0.602, respectively. When replacing the ResNet-50 backbone with the Swin 

Transformer backbone, the AP and AR improve slightly to 0.569 and 0.614, respectively. 

Furthermore, when integrating the rotatable bounding box with the Swin-Transformer-based Mask 

R-CNN, the AP and AR increase significantly to 0.619 and 0.664, respectively. It is noted that 

most of the increases are contributed by APs  and ARs , meaning that integrating the rotatable 

bounding box drastically improves the segmentation of small-sized buildings. Lastly, further 

Table 4.4. Performances of Mask R-CNN models with different components. 
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integrating the FPN module largely improves the model's ability to segment buildings in vastly 

different sizes, while the AP and AR further improve to 0.670 and 0.699, respectively. 

Figure 4.3. Comparison of the building segmentation results of the Mask R-CNN models with 

incrementally added components. 
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Figure 4.3 illustrates examples of the buildings segmentation results of the three models (i.e., 

Swin-Transformer-based Mask R-CNN, rotatable Swin-Transformer-based Mask R-CNN, and 

rotatable Swin-Transformer-based Mask R-CNN with FPN). As shown in Figure 5.3.(a), large 

areas of empty background exist between those rotated buildings and their bounding boxes, which 

result in some significantly irregular-shaped segmentations. With the adoption of rotatable 

bounding boxes, as shown in Figure 5.3.(b), the building edges that lean tightly against the 

rotatable bounding boxes are effectively being regularized. However, empty background spaces 

within the rotatable bounding boxes still exist for those complex-shaped buildings, which results 

in mispredicted pixels. To improve such cases, as shown in Figure 5.3.(c), the FPN module is 

adopted, reducing mispredicted pixels along the building edges. 

4.3 Experiments and Discussions of The Proposed Building Extraction Model 

First, an ablation experiment is performed on the proposed building extraction model by gradually 

integrating the improved Mask R-CNN model and the modified Feature Pooling module and 

BregNet to show the effectiveness of these modules. Second, to demonstrate the advantage of the 

proposed building extraction model, it is compared with several state-of-the-art end-to-end deep-

learning-based methods. Third, other design choices of the proposed building extraction model are 

presented, and the performances of the different designs are compared and discussed. Last, the test 

results of the proposed building extraction model are visualized and discussed. 

4.3.1 Ablation Studies of The Proposed Building Extraction Model 

To enable the precise extraction of building polygons in vastly different scales and orientations 

from satellite images, this thesis replaces the segmentation module in the PolygonCNN with the 

proposed improved Mask R-CNN model. In addition, to adapt the multi-scale feature maps 

outputted from the FPN module of the improved Mask R-CNN, the Feature Pooling module and 
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the BRegNet in the original PolygonCNN are modified such that they accept multi-scale feature 

maps instead a single-scale feature map. To assess the effectiveness of each upgraded component, 

an ablation study is done by incrementally integrating the improved Mask R-CNN and the 

modified feature pooling and BRegNet with the original PolygonCNN. Besides the polygon-based 

APs and ARs metrics, the F1-score (i.e., as described in Section 4.1.3.2) is adopted to measure the 

overall quality of the polygon predictions. Table 4.5 shows a comparison of the evaluation results.  

As shown in Table 4.5, the baseline PolygonCNN model with the PSPNet segmentation network 

has a 0.474 F1-score, 0.455 AP, and 0.495 AR. When replacing the PSPNet with the improved 

Mask R-CNN (i.e., Swin-Transformer-based rotatable Mask R-CNN integrated with the FPN 

module), the F1-score, AP and AR improve significantly to 0.511, 0.501, and 0.521, respectively. 

It is noted that the adoption of the improved Mask R-CNN has dramatically improved APs and 

ARs (i.e., the extraction quality of small-sized buildings). Furthermore, after adopting the modified 

Feature Pooling module and BRegNet, the F1-score, AP and AR are further improved to 0.545, 

0.529, and 0.563, respectively. 

The evaluation results show that both the adoption of the improved Mask R-CNN and the modified 

Feature Pooling module and BRegNet have made drastic improvements on the baseline 

Table 4.5. Performances of PolygonCNN models with different components. 
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PolygonCNN’s ability to extract building polygons in vastly different sizes, especially for the 

small-sized ones. 

4.3.2 Comparison Study of The Proposed Building Extraction Model 

Next, to demonstrate the advantage of the proposed building extraction model, it is compared with 

three other popular end-to-end deep-learning-based methods, listed as follows: 

• Polygon-RNN (Castrejon et al., 2017) 

• DARNet (Cheng et al., 2019) 

• PolyMapper (Li et al., 2019) 

Table 4.6 shows a comparison of the evaluation results. The results show that PolyMapper has the 

highest F1-score of 0.559, while the proposed model has a similar F1-score of 0.545; DARNet has 

the third lowest F1-score of 0.512; the original PolygonCNN has a significantly lower F1-score of 

0.474, while Polygon-RNN has the worst F1-score of 0.465.  

To better understand this ranking, Figure 4.4 visually compares the building polygons extracted 

by the selected building extraction models and the proposed model. As shown in the figure, 

Table 4.6. Performances of the chosen building extraction models. 
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PolyMapper tends to make accurate predictions on the building parts with simple structures; 

however, it fails to model buildings with more complex shapes, which may be caused by the 

insufficient capability of its segmentation module. In addition, DARNet is capable of capturing 

the main structure of various types of buildings; nevertheless, the predicted polygons show a lack 

of regularization and simplification (i.e., they fail to capture sharp corners and always contain 

redundant vertices). Furthermore, Polygon-RNN can model the rough structure of simple building 

shapes but fails to capture details of more complicated parts. This is likely also caused by the lack 

of segmentation capability of its segmentation module. Lastly, the proposed model, benefited from 

its Swin Transformer-based rotatable Mask R-CNN, the multiscale feature maps of the FPN, and 

the enhanced Feature Pooling module and BRegNet, is capable of generating well-regularized and 

simplified polygons for various types of buildings in different orientations and sizes. 
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Figure 4.4. Building extraction results of the chosen building extraction models. 
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4.3.3 Other Design Choices for The Proposed Building Extraction Model 

Along the way of developing the final version of the proposed building extraction model, other 

architectural designs have been experimented, while two of them have shown promising 

performances. This sub-section presents the architectures of the two other models, then compares 

and discusses the performances of all three versions of models. 

4.3.3.1 Architecture #1 

The Mask R-CNN model exploits the multi-scale feature maps of the FPN module by selecting a 

feature map of appropriate scale from the feature pyramid based on the width and height of the 

bounding box proposals predicted by the RPN. Similarly, in order to take advantage of the FPN 

module of the improved Mask R-CNN to optimize the performance of the PolygonCNN model, 

my first attempt was also to select a feature map of appropriate scale from the feature pyramid 

Figure 4.5. Architecture #1. Adaptive feature map 

selection for the Feature Pooling. 
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based on the width and height of the building segmentations outputted from the improved Mask 

R-CNN, then use this single-scale feature map for the feature pooling. 

Figure 4.5 illustrates the main components of the first architecture. The “predicted vertices” 

represent the vertices that are traced and resampled from the building mask predicted by the Mask 

R-CNN model (i.e., as described in the architecture of the proposed model, Figure 3.19). Based on 

the scale of the bound box of the building mask, a corresponding scale (i.e., calculated using 

Equation (3.5)) of the feature map is selected from the feature pyramid. Then, the original feature 

pooling module and BRegNet used in the original PolygonCNN are applied to the selected single-

scale feature map.  

4.3.3.2 Architecture #2 

Instead of selecting a single feature map of appropriate scale from the feature pyramid for the 

feature pooling, the second architecture involves pooling all scales of feature maps from the feature 

pyramid. As shown in Figure 4.6, first, using the coordinates of the traced and resampled vertices, 

feature vectors are pooled from each level of the feature maps. Next, instead of feeding the multi-

scale feature vectors directly into the modified version of BRegNet (i.e., see Section 3.2.4), all 

feature vectors are concatenated into one large feature vector, which is then fed into the original 

BRegNet for the prediction of regularized building vertices.  
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4.3.3.3 Comparison Study of The Different Design Choices 

The above-mentioned two experimental model architectures (i.e., the adaptive feature map 

selection, and multi-scale feature pooling with concatenated feature vectors), as well as the final 

version of the proposed model (i.e., multi-scale feature pooling with modified BRegNet), are 

examined, and the evaluation results are compared in Table 4.7. 

As shown in Table 4.7, the first model architecture with the improved Mask R-CNN and the 

adaptive feature map selection technique achieves an F1-score of 0.522; when replacing the 

adaptive feature map selection with multi-scale feature pooling and feature vector concatenation, 

the F1 score of the model increases slightly to 0.530. Such a modification has shown considerable 

Figure 4.6. Architecture #2. Multi-scale feature pooling and feature 

vector concatenation. 
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improvements in the extraction quality of small-sized buildings (i.e., APs  and ARs ), while 

maintaining performance in extracting medium and large-sized buildings. Lastly, based on 

architecture #2, when adopting the modified BRegNet, which directly accepts multi-scale feature 

vectors, the F1-score is increased significantly to 0.545. The modified BRegNet, compared to the 

original BRegNet, has effectively improved the extraction qualities of buildings in various sizes. 

Despite the higher building extraction quality of the final model architecture, there are significant 

trade-offs between the extraction quality and memory consumption of the three versions of the 

models. As shown in Table 4.8, architecture #1 yields a memory consumption of 3.65GB during 

inference and an inference time of 262.73ms/image; the multi-scale feature pooling and feature 

vector concatenation of architecture #2 result in slight increases in memory consumption (i.e., 

4.22GB) and inference time (i.e., 294.86ms/image), which are generally insignificant during actual 

Table 4.7. Performances of the two experimental model architectures and the final 

proposed model. 
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practices; moreover, compared to architecture #2, the modified BRegNet of the final architecture 

has a dramatic increase in the memory consumption (i.e., 11.31GB) and a considerable increase in 

the inference time (i.e., 369.44ms/image) mainly due to the widened and deepened layers of the 

modified BRegNet. As illustrated in Figure 4.12, the Modified BRegNet consists of three 

additional feature extraction paths that are distributed parallelly with the original path (i.e., marked 

in blue dotted lines), an extra step to concatenate the extracted features, and two feature down-

sampling layers compared to the original BRegNet (i.e., see Figure 3.1.1.4). The additional feature 

extraction paths have significantly contributed to the overall increase in memory consumption; 

however, they theoretically do not contribute to the increase in the inference time as they are 

parallelly distributed. The feature concatenation and the two feature down-sampling layers have 

Table 4.8. Memory consumption and 

inference time of the two experimental 

model architectures and the final proposed 

model. 
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made a minor contribution to memory consumption and a major contribution to inference time as 

they add depths to the original network. 

Since the building extraction quality is the focus of this thesis while the memory consumption and 

inference time are less considered, the final architecture adopts the model with the multi-scale 

feature pooling and the modified BRegNet. For practical cases where memory consumption or 

inference time needs to be considered, architectures #1 and #2 offer flexibility. 

4.4 Results and Discussions  

Figure 4.7 shows two exemplar building segmentation and extraction results on full-sized images 

obtained by the proposed improved Mask R-CNN and PolygonCNN. As shown in Figure 4.7.(a), 

the chosen images are overlayed with ground truth building polygons in various complexity levels 

and vastly different scales and orientations. Figure 4.7.(b) shows the rotatable bounding boxes and 

building segmentations obtained by the improved Mask R-CNN. With the rotatable bounding box 

technique and the FPN module, the improved Mask R-CNN model has been shown to not only 

grasp the general structure of most building footprints, but also present the small concaves and 

convexes on most complex-shaped footprints. In addition, as shown in the final vector map 

obtained by the proposed model in Figure 4.7.(c), the proposed model can effectively re-organize 

the building vertices that are traced from the irregular-shaped building segmentations into 

regularized polygons. Surprisingly, such regularization effects are prominent on buildings with 

detailed concaves and convexes, which is likely due to the use of the multi-scale feature vectors 

and the modified BRegNet.  
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(a). 

(b). 

(c). 

Figure 4.7. Building detection and extraction results from the proposed methods. (a) Input images 

overlayed with ground truth building polygons; (b) the segmentation results obtained from the improved 

Mask R-CNN model; (c) the vector building polygons extracted using the proposed model. 
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Despite the promising extraction quality, issues still exist in the proposed model. A major factor 

that negatively impacts the extraction quality is the very-complexed building shapes. Examples of 

mis-extracted buildings are presented in Figure 4.8. As shown in the figure, both buildings (a) and 

(b) have complex shapes with large numbers of concaves and convexes, varied in size and angle, 

while building (c) contains a hole at its central location. The extracted polygons for buildings (a) 

and (b) show that many concaves and convexes are mis-extracted, likely due to the inaccurate 

segmentations obtained by the improved Mask R-CNN. Although the rotatable bounding box 

technique of the improved Mask R-CNN can effectively minimize background areas within 

bounding boxes to regularize the building edges that lean tightly against the bounding boxes, large 

empty spaces are created by the large concaves and convexes of buildings (a) and (b), causing 

mispredictions. In addition, as shown in the extracted polygon of building (c), the hole in the 

building center is missing, which is also caused by the misprediction of the segmentation. 

Nevertheless, in this case, the false segmentation is likely caused by the small-sized training 

samples of buildings with holes contained in the training dataset. 
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(a). 

(b). 

(c). 

Figure 4.8. Examples of mispredicted buildings. The first column shows ground truth building 

polygons; the second column shows the corresponding segmentation results obtained from the 

improved Mask R-CNN model; the third column shows the corresponding vector building 

polygons extracted using the proposed model. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

Automatically extracting high-quality building polygons from satellite and aerial images is crucial 

for supporting various land use and land cover mapping applications. This thesis introduces an 

improved end-to-end deep-learning-based building extraction method based on PolygonCNN to 

accurately extract building footprints in vastly different scales and orientations.  

Chapter 1 reviews the background and applications related to the development of automated 

methods for extracting building footprints from satellite images. In addition, three major issues 

regarding the subject have been identified: first, current DNNs tend to produce irregular-shaped 

building segmentations, especially for those rotated buildings; second, the conventional building 

regularization methods often fail to correctly regularize buildings with non-right-angle-cornered 

shapes such as triangles or polygons with more than four edges; third, despite that learning-based 

building regularization methods are highly generalizable for buildings in complexed shapes, they 

generally show dissatisfactory quality in the regularized building polygons.  

Chapter 2 reviews the various conventional and deep-learning-based building segmentation and 

extraction methods developed over the past decades and the past attempts at utilizing rotatable 

bounding boxes in DNNs. 

Chapter 3 presents the proposed building extraction method. First, encouraged by the irregular 

building segmentation issue of the popular segmentation DNNs, an upgraded Mask R-CNN model, 

which is integrated with the rotatable bounding box technique, the Swin Transformer backbone 

network, and the FPN module, is adopted as the segmentation module of the proposed model. 

Next, to improve the dissatisfactory building regularization quality of the current DNNs, a 
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modified Feature Pooling module and the BRegNet are adopted as the regularization module of 

the proposed model to exploit the multi-scale, pyramidal hierarchy feature maps generated from 

the FPN module of the improved Mask R-CNN.     

Chapter 4 presents various experimental studies to show the effectiveness of the improved Mask 

R-CNN and PolygonCNN models. Experimental results show that each of the rotatable bounding 

box, FPN module, and Swin Transformer backbone of the improved Mask R-CNN have 

significantly contributed to its dramatic increase in the building segmentation quality compared to 

the baseline Mask R-CNN model. The improved Mask R-CNN model has achieved an AP and AR 

of 0.670 and 0.699, respectively, on the SpaceNet 2 Building Detection Dataset. The results 

significantly surpass the building segmentation performances of several other famous image 

segmentation networks. In addition, experimental results show that the improved Mask R-CNN 

and the modified Feature Pooling module and BRegNet have significantly increased the building 

extraction performance of the original PolygonCNN from an F1-score of 0.474 to 0.545. The 

results are on par with the state-of-the-art end-to-end deep-learning-based building extraction 

methods. Furthermore, additional architecture design choices for the modified Feature Pooling 

module and BRegNet are provided, which offer flexibility between the quality of the building 

extraction result and the memory consumption of the model. Lastly, visualized results show that 

the improved Mask R-CNN and PolygonCNN models can effectively segment and extract building 

footprints in vastly different scales and orientations. However, defects are seen in the extraction of 

very complex buildings, such as the ones with large numbers of concaves and convexes varied in 

sizes and angle, and the ones that contain holes. 
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5.2 Limitations and Future Work 

Based on the study of this thesis, three areas have been identified as recommendations for future 

research. 

First, despite the promising extraction quality, the memory consumption of the proposed final 

version of the extraction model is considerably high. Inferencing a single 650 × 650 image takes 

about 11.31GB RAM, almost occupying a 12 RAM GPU; during training, the model is distributed 

onto two GPUs due to the higher memory requirement for the backpropagation process. Such an 

overly expensive requirement of memory can rise significantly with an increase in the spatial 

resolution or training/inferencing batch size of the input image, which limits the usages of the 

model in practices that require very high spatial resolution images, efficient large-scale 

training/testing, or that have limited computational powers in the hardware. Although lighter 

version models are presented in Section 4.3.3.3, the reduced memory consumptions are traded off 

for significantly decreased extraction qualities. Therefore, a major future research direction is to 

develop lighter-weighted building extraction networks that can be efficiently trained and tested on 

large-scale, very high spatial resolution images without sacrificing the extraction qualities. 

Second, as shown in the visualized results in Section 4.2, a significant factor that negatively 

impacts the extraction quality of the proposed method is the very complex building type. The 

rotatable bounding box technique of the improved Mask R-CNN can effectively regularize the 

building edges that tightly lean against the bounding boxes by minimizing the background areas 

within the bounding boxes; however, for complex building shapes, many edges are diverged from 

their bounding boxes, resulting in worse segmentation and extraction qualities. Therefore, another 

future research direction is to develop methods to precisely extract very complex-shaped building 

footprints from satellite images. 
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Lastly, the proposed method in this thesis explicitly targets the extraction of building objects from 

satellite images; extending the method into other fields would be desired. For example, due to the 

excellent generalization capability of the deep-learning-based regularization network, the 

proposed method can potentially be extended to extract many objects with similar geometries to 

buildings, such as automobiles, traffic signs, or machine parts, from aerial, street-view, or close-

range images, respectively. Moreover, the precise extractions of irregular-shaped objects such as 

water bodies, roads, and vegetation from satellite images are valuable future research directions. 
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