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Abstract

Quantitative magnetization transfer (QMT) is an advanced magnetic resonance imaging (MRI)
technique with enhanced specificity to myelin. The acquisition of many images with unique
magnetization transfer (MT) saturation results in a signal response curve known as the z-spectrum. The
two-pool tissue model, which describes properties of nuclei with free and restricted motion, can be fit to
the z-spectrum to provide details of macromolecular tissue content (including myelin) beyond what can
be seen from conventional single saturation approaches (e.g. MT ratio). Widespread use of qMT has been
hindered by long acquisition times inherent to z-spectrum based imaging techniques including gMT and
chemical exchange saturation transfer (CEST). This thesis uses sparseSENSE, a combined parallel
imaging and compressed sensing technique, to accelerate MT-weighted images. In this thesis, sparsifying
reconstruction algorithms are shown to enable high quality image reconstruction from 4D gMT datasets,
retrospectively undersampled by factors of up to 321. MT-weighted images demonstrate exceptional
image quality at high acceleration factors, which is shown to translate well to accelerated z-spectra.
However, gMT parametric maps produced from accelerated z-spectra are shown to be sensitive to
acceleration artefacts and can only be accelerated by a factor of 41 with minimal loss of image quality.
Nonetheless, this acceleration can yield a significant acquisition time savings when applied to
prospectively undersampled data. In addition, time savings created by acceleration can be used to increase
spatial resolution or collect more MT-weighted images, enabling even higher acceleration factors. Long
acquisition times have often been cited as a limitation of the gMT method. This work has addressed that
limitation, making gMT protocols more feasible for in vivo research studies, particularly in youth and

patient populations.
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1! Introduction

Quantitative magnetization transfer (qMT)™ is an advanced magnetic resonance imaging (MRI)
technique that enables the measurement of a quantitative index of myelin content in brain white matter.
Macromolecules, including those which make up myelin, have transverse relaxation (T,) times far too
short to be directly detected with typical MRI techniques. These exceptionally short relaxation times
(<100 ps) are caused by the restricted motion of protons (hydrogen nuclei) in macromolecules, which
create an environment far more magnetically heterogeneous (and having long correlation times) than that
of rapidly moving protons in liquids®. Although macromolecules cannot be imaged directly,
magnetization transfer (MT) techniques exploit the interaction between free (liquid) and restricted
(macromolecular) protons to create a new type of image contrast. When prepared with an off-resonance
pulse, restricted protons become selectively saturated while free protons remain unaffected™. As a result,
the transfer of magnetization between species induces an observable change in image signal. Typically,
this phenomenon is represented by the MT ratio (MTR), which has been very useful in the study of
human white matter (WM) disease®.. qMT aims to describe the MT effect in greater detail by modelling
several parameters of the two-pool tissue model™. Unlike MTR's, parametric maps from qMT modelling
describe the underlying tissue properties that govern MT exchange and are independent of acquisition
sequence parameterst®!. While MTR requires the acquisition of just two unique contrast images, qMT is a
z-spectrum based modelling technique which requires a minimum of eight images and, in some cases,
over thirty are desired. The large number of images required for gMT results in exceptionally long

acquisition times - approximately 50 minutes for whole-brain coverage.

Despite long acquisition times, z-spectrum based imaging techniques including gqMT and
chemical exchange saturation transfer (CEST)™" ! provide a detailed insight into molecules of interest.

Both techniques use off-resonance saturation pulses to induce an exchange of saturated protons; however,



each targets different molecules and has unique applications. CEST imaging is used to target exogenous
contrast agents or specific endogenous biomolecules!”. Whereas traditional paramagnetic contrast agents
can be toxic and are required in high concentrations, CEST agents can include diamagnetic compounds,
can be administered in much smaller doses, and can be selectively turned on or offl, Since its recent
inception, a wide range of clinical applications for CEST imaging have emerged; exogenous agents such
as glucose have been used to enhance gliomas™ while endogenous molecules such as glutamate and
lactate have been targeted to lateralize seizure foci™ and study muscle physiology™. Whereas CEST
utilizes the off-resonance frequency range much closer to water resonance, qMT modelling targets
macromolecular tissue content by applying saturation pulses in the 400 - 20,000 Hz offset frequency
range. Measures obtained from gMT modelling have been shown to strongly correlate with myelin in
human brain WME #2'making it a novel technique for the study of WM diseases and assessment of new
therapeutics. Myelin plays an important role in healthy brain function, and demyelination is considered to
be a major pathological feature of neurological diseases such as multiple sclerosis (MS), optic neuritis,
and Devic’s disease. Demyelination can result in axonal loss and lead to devastating symptoms such as
cognitive impairment and permanent loss of motor function!*?l. The ability to non-invasively measure
myelin content is essential in the development of drugs that attempt to slow or stop demyelination, as well
as those that may promote remyelination. The application of gMT to improve specificity to myelin
without hardware and sequence dependent results have made it a promising technique in the study of WM
diseases. Unfortunately, the clinical translation of z-spectrum based techniques, including gMT, has
remained hindered by inherently long acquisition times. The development of faster gMT protocols has
often been cited as an important area of future research!? 1l The aim of this thesis is to shorten qMT

imaging times using a combined compressed sensing (CS) and parallel imaging (PI) acceleration method.

In MRI, sampling requirements have traditionally been governed by the desired spatial and
temporal resolution. Techniques which aim to collect fewer samples and maintain resolution can yield an

immediate acquisition time savings and have become a desirable method of acceleration™. PI is used to



relax sampling requirements by collecting signal from multiple receive coils simultaneously™®. The
spatial information encoded by different coil locations supplements raw data to enable undersampling.
Now widely used in many types of MRI, Pl has enabled modest acceleration factors and is currently
implemented in most gMT acquisitions. CS also aims to undersample data, however there is no additional
information associated with the method. Based on image compression theory, CS enables highly
undersampled data to be directly reconstructed with little-to-no loss of image quality!*®. Natural images
(including MRI) are compressible, meaning they can be stored in a significantly smaller format such as
JPEG™. Through the use of mathematical transforms and storage of only the most important coefficients,
images can be successfully compressed, yet maintain diagnostic efficacy™. CS is based on the idea that
if a small subset of data can maintain the important features of the final image, it should be possible to
collect far less data during acquisition™. Using an iterative reconstruction method with sparsifying
transforms, such as total variation (TV) or wavelet, CS is able to achieve high quality images from data
up to 12.51 undersampled™. sparseSENSE is a method which combines both PI and CS to achieve even
greater acceleration factors. In this thesis, a sparseSENSE reconstruction algorithm is applied to
retrospectively undersampled gMT data to determine if it could be a feasible acceleration method for

gMT, and what the highest possible acceleration factor is likely to be.

This thesis presents the first known work applying combined compressed sensing and parallel
imaging (CS-PI) to gqMT imaging. Retrospective undersampling of fully-sampled data is performed as a
preliminary test of qMT parameter map acceleration. This retrospective study design enables accelerated
images to be generated for multiple undersampling factors and unique sampling patterns, and provides a
gold-standard point of comparison by which to assess accelerated image quality. The acquisition of fully-
sampled images has enabled this thesis to present the first detailed account of gMT parameter estimates
obtained at 3T, and an analysis of inter-subject variability observed in five healthy control subjects. In
addition, Section 3.2.4 outlines a novel strategy for the selection of undersampled data points. Overall, the

aim of this thesis is to outline the potential for CS-PI to accelerate gMT imaging, and whether or not scan



times could be shortened to a clinically feasible duration. This study outlines some of the challenges
associated with accelerated gMT and informs which acceleration factors may be possible in prospective

work.



2! Background

2.1 Myelin and Multiple Sclerosis

Myelin is a sheath-like material that envelops the axons of nerve cells in the central and peripheral
nervous system and is an integral part of proper signal conduction through nerve cells. Acting as an
electrical insulator, myelin can increase the speed of action potential transmission by up to 100 times
compared to an unmyelinated axon'®®!. Conduction speed is fundamental to complex motor and sensory
processing, as well as cognitive ability. In addition to conduction, myelin is thought to regulate axonal
transport®?, pH?®! and maintain axonal integrity!®®. Often described as an axon’s “protective coating”,

diseases which undermine the health and abundance of myelin can have devastating effects on cognitive

and motor function.

Multiple sclerosis (MS) is a disease which affects the central nervous system and is characterized
by loss of motor and sensory function. Although the cause is not fully understood, immune-mediated
inflammation, demyelination, and subsequent axonal damage are known contributors to disease
symptoms[27]. In WM, inflammation occurs in concentrated areas known as lesions. With time, this
inflammation leads to the formation of demyelinating plagques and localized areas of damaged and eroded
myelin®®!. Although visible on some types of MRI scans, it can be difficult to quantify myelin content
within a lesion, making it difficult to assess disease progression and therapeutic response. Robust in vivo
myelin measurement techniques are needed in order to improve diagnosis and treatment of MS and other

demyelinating diseases.

In the central nervous system, myelin is predominantly found in white matter (WM), although it is
also present in gray matter (GM) in smaller quantities!®®l. WM is therefore considered to be the tissue of

primary interest throughout this thesis and is discussed separately from GM and brain tissue in general.



2.2! Basic MRI

2.2.1! Generating Image Contrast

MRI is made possible because of the relationship between electricity and magnetism. As
described by Faraday’s law of induction, rotating magnetic charges induce an electromotive force in
nearby electric circuits®®.. In the case of MRI, the body (or imaging object) provides the magnetic charges
in the form of nuclei (hydrogen nuclei, most commonly), and the MRI hardware provides external
magnetic fields and electric circuits designed to non-invasively interact with those nuclei. There are three
main components present in MRI systems; the main magnetic field By, the radiofrequency field By, and

linear gradient fields G.

The main magnetic field, By, is produced by a high intensity magnet which is strong enough that
nuclei with a net magnetic moment, often referred to as spins, tend to align with the field®%. In the most
commonly used cylindrical Helmholtz design, this field is oriented through the bore of the scanner which
is conventionally defined as $. In the case of brain imaging, $ is oriented along the superior-inferior axes
of the body. When in close proximity to By, spins inside the body experience an alignment with the field
and precession about the $ axis. Spins rotate at a well-defined frequency, the Larmor frequency H , FP,
where B is the total magnetic field strength and F is the gyromagnetic ratio, a known constant unique to
each species of nuclei®. Conventional MRI imaging is focused on the *H species of hydrogen because it
is the most abundant in the body due to high water content™®. Though not all *H nuclei in the body

become aligned with By, enough do so that there is a net magnetization vector along $.

The radiofrequency field B, differs from By in that it is much weaker than By, it is created by
radiofrequency (RF) coil rather than by a static magnet, and that it is aligned orthogonally to B,. B; fields

are applied as an RF pulse tuned to the Larmor frequency of 'H in the transverse (?-#) plane. This has the



effect of rotating the magnetization vector of 'H spins towards the transverse plane by a prescribed angle.
Though the spins are “tipped” towards the transverse plane, they continue to rotate about $ at the Larmor
frequency. In the absence of By, the rate at which spins realign themselves with By is tissue dependent,
creating the image contrast essential for MRI. Characteristics which describe the relaxation back to
equilibrium are; the recovery time constant of longitudinal magnetization vector components (T;), and the
decay time constant of transverse magnetization vector components (T,). It is important to note that the
length of the magnetization vector is not constant as spins realign to By, therefore T; and T, are unique
values where T:QT, 2% Different tissues have different MR contrast because of their unique Ty, T, and
spin density (K) values. Adjusting MR pulse timing parameters enables images to take on different
contrast characteristics weighted by the intrinsic Ty, T, or K of each tissue. As spins realign with By, the
net transverse magnetization can be detected as current induced in electric circuits, known in MRI as
receive coils. Signal from the entire imaging object is detected simultaneously, making it necessary to

distinguish unique spatial components of the signal using gradient fields.

Figure 2.1 MRI pulse sequence diagram for a GRE sequence with slice-selective
localization and 2D Fourier image reconstruction. Pulses shown for a duration of
one TR.



The gradient fields G, and G, are magnetic fields oriented along $, but vary linearly in amplitude
along the ? and # directions respectively. The combined magnetic field (B, and G), varying along one
spatial dimension, say #, has the effect of changing the Larmor frequency of spins based on their y-
position. By applying a gradient for a small duration of time, the frequency differences in a given
direction will cause a change of phase based on location. This is referred to as phase-encoding, and is
conventionally performed in the # direction by G,. If another gradient is applied in the orthogonal
direction (?) during readout, the spins will have a unique frequency based on x-position. This is known as
frequency-encoding, and is conventionally performed by Gy. In order to spatially encode signal in the $
direction, one method is to apply a gradient field G, during the B; excitation pulse. In the presence of G,,
spins have a variable Larmor frequency based on z-location, however only spins with a Larmor frequency
matching the RF will be significantly “excited” by B;. By applying a sinc-like B; pulse with a desired
frequency bandwidth, only spins at a certain z-location with slice width 0$ (given by the RF pulse
bandwidth and gradient strength) will be tipped into the transverse plane®®. This is known as selective
excitation, where G; is the slice-select gradient. Alternately, signal in $ can be phase-encoded in the same
way as #. Using the methods described above, linear gradient fields enable 3D spatial localization of MR

signal, essential for producing MR images.

2.2.2! Image Reconstruction

Figure 2.1 illustrates how gradients are applied during one readout cycle or repetition time (TR).
Gradient and transmit RF coils are used to generate signal, followed by detection using receive RF coils
which may be application specific (such as a head coil for brain imaging) and may include multiple
channels (singular detection coils). During the readout of each TR, signal has already been localized to a
specific slice in $, and by a specific phase in #, and is undergoing frequency localization in ?. In this way,
we can think of one TR as filling one line (along x) of a raw data grid. In order to collect an entire image,

the TR sequence is repeated with unique G, and G, encoding until all lines are collected. At the end of the



scan, we are left with a full grid of data, known as k-space. k-space is not the final image, but rather a
representation of all the frequency and phase components of signal, more generally referred to as
frequency-space. In order to reach the final MR image, k-space needs to be transformed into image-space

via image reconstruction.

The Fourier transform is a mathematical transform which converts data between real-space

(image-space) and frequency-space. In one dimension, the Fourier transform is defined as:

z
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where F represents frequency-space and f represents real-spacel®. A spatial component x (in cm)
transforms to ky (in cycles/cm) in frequency-space. The inverse Fourier transform, which is used to

convert MRI k-space data (a.k.a. raw data) into the final image, is the inverse function of Equation 2.1:

p
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The equations above can also be used to represent time t (in s) in real-space and frequency f (in Hz) in
frequency-space. These transforms can be expanded to 2D or 3D, as in the acquisition example above,
depending on the type of imaging and reconstruction required.
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Once the k-space F(kyky,k;) is converted to real-space using the inverse Fourier transform, f(x,y,z) is the

final image resulting from an MR scan.



2.2.3! MRI Sequence Designs

In MRI, the signal measured by receive coils is the net transverse magnetization of all spins
within the sensitive volume of the receiver coil. The time constant of the exponential signal decay of the
transverse plane is defined as T, for ideal conditions; however, the net transverse magnetization decays
much faster due to other interactions such as gradient fields, field inhomogeneities, and molecular
shielding of electrons (chemical shift) B%. The slightly different frequencies of the spins cause them to de-
phase from one another, resulting in a smaller net transverse magnetization vector. The time constant of
the net transverse magnetization decay is defined as T,*. By altering the magnetic field such that spins
begin to re-phase with one another, an “echo” is created with the remaining transverse magnetization
components. MR sequences can be categorized by the method used to generate echoes. Gradient echo
(GRE) sequences use only gradient fields to re-phase spins, while spin echo (SE) sequences use a
secondary 180° RF pulse to invert the phase of spins, thus causing spins experiencing static field
inhomogeneities to re-phase and produce a spin-echo (Figure 2.2 (a)), which is free of static field

inhomogeneity effects.

GRE sequences apply a negative readout gradient before signal from an echo is collected. This
has the effect of speeding up de-phasing of the initial signal. Once the net transverse magnetization has
decayed, switching the direction of the readout gradient causes spins to re-phase and produce an echo.
The pulse timing diagram (Figure 2.2 (b)) illustrates how gradients are applied to produce and record a
gradient echo. GRE sequences are performed more commonly, as they can often be acquired in a faster

time.

For shorter TR times such as those used in this study, magnetization may not be fully recovered

(relaxed) along $ at the time of subsequent RF pulses. This is known as an uncontrolled partial steady-
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state free precession™. Spins can develop a position-dependent resonant offset angle which will affect
the signal in the following RF cyclePY. In order to prevent residual signal from affecting subsequent
readouts, transverse signal must be eliminated, or “spoiled”, before the next excitation pulse. GRE
sequences which include spoiling methods are referred to as spoiled GRE (SPGRE) sequences. There are
several methods by which transverse magnetization can be spoiled, the precise implementation of which
is often scanner manufacturer dependent. This thesis uses data collected on a General Electric (GE)
Discovery 750 scanner which uses a technique called RF-spoiling. RF-spoiling is performed by randomly
switching the phase of the RF pulse, or by incrementing the phase geometrically™?. The phase
accumulated between any two consecutive RF pulses is not constant, and may therefore cancel previous

phase changes resulting in spoiled transverse magnetization®?.

Figure 2.2 Pulse sequence diagram for 3D spin echo (a) and gradient echo (b)
acquisition techniques. In this illustration the spin echo is generated with a
nonselective 180" pulse and the gradient echo is generated with a negative Gy
lobe. Phase-encoding is performed in # and $ for 3D Fourier image
reconstruction. Sampling of the data occurs during the ‘echo’ portion of the Gy
gradient.
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2.2.41  Myelin Imaging

Conventional MRI techniques aim to image 'H atoms; however, not all *H atoms can be observed
directly. The interaction between these atoms and the applied magnetic fields depend on their molecular
environment. *H atoms which are bound to large molecules (macromolecules) have T, times that are far
too short to be observed using conventional MRI™®. Myelin, which is composed of lipids (80%) and
proteins (20%), is difficult to image directly because of the short T, associated with these
macromolecules®®!. Several methods have been developed which attempt to measure myelin content in

vivo both directly and indirectly.

Ultrashort TE imaging®® and *!P spectroscopy® have been proposed as direct measures of
myelin; however, ultrashort TE is contaminated by water signal and *'P spectroscopy suffers from a
difficulty to characterize signal from different phosphatidylcholine head groups!. Both of these
techniques require further research before they can be clinically useful in the measurement of myelin. Of
the MR methods developed to indirectly measure myelin, some have been shown to be more specific to
myelin content than others. Conventional T, and T,-weighted imaging, for example, is very sensitive to
WM pathologies. Unfortunately, these techniques suffer from low myelin specificity as many other
pathologic changes such as inflammation, gliosis, edema, and axonal loss can mimic the signal changes
induced by demyelination®®®. In the case of young children (under 2 years of age) confounding effects are
not as severe and T, and T,-weighting techniques can be a useful measure of myelination during
development®®”. Demyelination is associated with the presence of choline which can be detected using
proton MR spectroscopy!?!. While this technique is successful in detecting active demyelination, other
forms of myelin cannot be assessed. Another method for indirect measurement of myelin is diffusion
tensor imaging (DTI). The presence (or lack thereof) of myelin affects the mean diffusively and
anisotropy of water molecules. It has been shown that regions of decreased myelin result in an increase in

the radial water diffusion®® ], These measurable changes in the motion of water molecules can be an
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indication of changes in myelination; however, DTI does not provide a quantitative measure of myelin
and areas of crossing, branching, or splaying WM fibers can show paradoxical changes in radial

23] Quantitative multi-component T, relaxation measurements can also be used to distinguish

diffusivity
multiple water environments, long T, intracellular and extracellular water, and short T, from water
trapped in the myelin sheath*”. The signal from myelin water can be expressed as the myelin water

fraction (MWF), an indirect measure of myelination.

MT imaging is another method known to be sensitive to myelin content. The MT phenomenon,
based on the exchange of magnetization between pools of liquid *H nuclei and pools of macromolecular
'H nuclei, can be measured in several ways including the MT ratio (MTR)Y, inhomogeneous MT
(ihMT)¥, and quantitative MT (gMT)™. MTR is the ratio between an MT-weighted image and a
baseline image. Although widely available, semi-quantitative MTR techniques depend on acquisition
pulse details, making it difficult to compare between individuals and across sites. ihMT uses two sets of
images to improve myelin specificity compared to MTRE; however, it has been shown that ihMT is
dependent on fiber orientation in human brain WM. gMT represents the MT phenomenon more
robustly, returning multiple measures associated with MT rather than a single parameter. Parametric
images produced by gMT (discussed in the following section) reflect intrinsic MR properties of tissue and
have been shown to correlate with myelin content and demyelination in postmortem histology validation
studies. Most notably, the pool size ratio F has shown strong correlations between myelin in postmortem
tissue ! substantially reduced values in MS lesions?Il46-481 ang slightly reduced values in normal-
appearing WM (NAWM) of MS patients“®81“l Other gqMT parameters such as the exchange rate, ki,
and the relaxation time, Ty, have been shown to be sensitive to myelin related changes in MS lesions“®l,
As gMT has shown specificity to normal and pathologic measures of myelin, and can differentiate various
components that contribute to MT weighting in MR signal, the focus of this work is to improve the

viability of qMT as a myelin imaging tool by shortening scan times.
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2.3! Quantitative Magnetization Transfer (QMT)

MT refers to an exchange of magnetization that occurs between groups of hydrogen nuclei
characterized by their molecular environment; those in free water (free) and those bound to
macromolecules (restricted). The MT effect enables investigation of macromolecules which do not
directly contribute to conventional MR signal due to their very short transverse relaxation (T») timest®?. If
the MR pulse sequence is prepared with an additional RF pulse several hundred to thousand Hz away
from the Larmor frequency, restricted nuclei become saturated while free nuclei remain largely
unaffected. Section 2.2.1 states that nuclei (or spins) are affected only by RF pulses applied at the Larmor
frequency. Although it is true that free atoms are only excited by a very narrow range of frequencies near
the Larmor frequency, macromolecules experience a range of local magnetic fields, causing them to have
a broad range of resonant frequencies offset from the Larmor frequency of free *H nuclei — a phenomenon
termed homogeneous broadening™®. This phenomenon is important as it allows off-resonance pulses to
saturate only restricted atoms, which exist in tissues of interest, such as myelin. Magnetization is
exchanged between the groups of nuclei via cross-relaxation and/or chemical exchangel, resulting in
decreased MR signal attributed to restricted pool saturation. Although the MT effect is created by a
variety of molecules which make up the group of restricted nuclei, myelin is believed to dominate the

exchange process in WM,
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Figure 2.3 Two-Pool Tissue Model. Free and restricted pools of size My and Mo,
exchange magnetization at rates ks and k., respectively. White regions represent
longitudinally aligned magnetization and shaded regions represent other
magnetization. R; represents longitudinal relaxation rate in each pool. Adapted
from "Quantitative Interpretation of Magnetization Transfer" by R. M.
Henkelman et. al., 1993, Magn. Reson Med., vol 29, p.760 .

The application of a restricted pool saturation pulse to generate MT contrast was first
demonstrated by Wolf and Balaban®®®!. While there are many ways to model the underlying mechanisms
of MT, the two-pool MT model, introduced by Henkelman et. al.l*! (Figure 2.3), is the most common. The
four-pool tissue model®!®® has previously been proposed and includes multiple free and restricted pools;
however, the two-pool model has been shown to sufficiently describe the MT effect in WMP®. In the
two-pool method of quantifying MT, all restricted nuclei from a given voxel of tissue are represented by
the “restricted pool”, and all free nuclei by the “free pool”. Nuclei that are magnetized longitudinally are

represented by the unshaded region of each pool, while the shaded region represents other magnetization
(transverse or saturated). Ris and Ry, denote the longitudinal recovery rate of each pool (cgq , ei, Cop »
fy
ei). M parameters denote the pool sizes, where M, is the number of nuclei aligned longitudinally (along
i

$) and My is the total number of nuclei in each pool. To normalize the experiment, the constant My is set

to equal to one. One of the primary interests of this model, and of MT in general, is the number of nuclei

in the restricted pool. This value is often represented by the pool size ratio, j , % Between pools, MT
Iy

exchange rate constants are defied by k, where k; is the transfer rate from restricted to free pools, and kgis
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the transfer rate from free to restricted pools. Using this model, the magnetization at time, t, can be

expressed using the Bloch equations, with an additional coupling term!™:

Y*Sm O*Sm
Yn +-
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where Hg(n) , FxPg(n)x is a measure of the RF pulse intensity and G is the restricted pool absorption

lineshape at frequency offset from resonance (0) and transverse relaxation time of the restricted pool
(T2). Henkelman et al.l*! originally proposed a Gaussian lineshape y, , %'_ll(}z(; I—eq)f »(for their

experiment using agar gel. It has been shown that Gaussian lineshapes are suitable for agar gelst*! and that

tissues are best described using Super-Lorentzian line shapes® % v,

, _.r{ovarint
Cnv/- E fsg X<N?:9X(}"’(aé{af) aa. Therefore, this thesis uses a Super-Lorentzian lineshape to model MT

data. Substituting G for Gy (or Gg) in Equation 2.7 results in a set of differential equations which have no
closed form solution. Approximating the acquisition sequence by a series of instantaneous saturations and
free precessions allows one to derive an analytical solution by which to fit gMT data. One must therefore
take into account the qMT acquisition method. Common acquisition methods include MT-SPGRM, SIR-

FSEPMH and bSSFPEAE4 (summarized in Figure 2.4 below).
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Figure 2.4 RF pulse sequences for MT-SPGR (a), SIR-FSE (b), and bSSFP (c)
gMT acquisition techniques. Adapted from "Quantitative magnetization transfer
imaging made easy with gMTLab: Software for data simulation, analysis, and
visualization" by J. F. Cabana et. al., 2015, Concepts. Magn. Reson., vol. 44, p.
266 -268 *°1,

The first acquisition method, MT-SPGR, uses an SPGRE pulse sequence (see Section 2.2.3) with
an additional off-resonance RF pulse to selectively saturate the restricted pool, often referred to as an MT-
pulse. The basic pulse sequence (excluding the imaging gradients shown in Figure 2.2), illustrated in
Figure 2.4 (), is repeated with unique MT-pulse powers (controlled by pulse flip angle )) and offset
frequencies (0) for each imaging volume. The sequence can be approximated by instantaneous free pool
saturation followed by restricted pool irradiation, leading to an analytical solution for the steady-state
signal®!. Several approximation methods have been developed including Sled and Pike continuous wave
(SP-CW) and Sled and Pike rectangular pulse (SP-RP)™, Ramani’s continuous wave power equivalent
(CWPE)™I%! and the Yarnykh and Yuan model®. The second acquisition method, SIR-FSE, is a

selective inversion recovery (SIR) sequence with a fast spin echo (FSE) readout (Figure 2.4 (b)). Here, a
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short inversion pulse is applied to selectively invert the free pool after a fixed or varied delay time (tg).
After waiting a variable inversion recovery time (t;), the resulting signal can be fit to a function of t; and
tg. An analytical solution can be derived by assuming no transverse magnetization is present after the last
180° pulse. The third acquisition method, balanced steady state free precession (bSSFP), is a well-known
sequence that was found to induce a significant MT effect!®®, and has been optimized as a qMT method in
its own right®®. gMT maps can be acquired by varying the on-resonance pulse flip angles ()) or the RF
pulse duration (T, (Figure 2.4 (c)). By approximating RF pulses as hard pulses of equivalent average
power, and by fixing T, to a constant value, it is possible to derive a steady-state signal equation by
which to fit qMT parameterst®.. In this work, we have chosen to use the MT-SPGR acquisition with SP-
RP approximation method. Unlike SIR-FSE and bSSFP, the SPGR technique does not assume that T, is
constant, allowing the model to solve for T, as an additional free parameter. Additionally, SP-RP is a
common approximation method for SPGR acquisitions which accounts for duty cycle and pulsation

frequency, offering extra freedom in designing experiments™.

The SP-RP model describes the SPGR sequence in three steps. First, the MT-pulse
instantaneously saturates the free pool, which is described by a saturation fraction ¢, ( , (é&&_&b ",
Second, the excitation pulse has the effect of instantaneously saturating the free pool, again. Lastly, the
restricted pool saturation is approximated by a period of constant saturation of duration equal to the full-

width-half-maximum (Lswnm) Of the MT-pulse. This approximation preserves the equivalent power of the

MT pulse:
) 1 s [2.8]
Hee » —— (| Héoinb¥n
it Js
and the constant RF absorption rate of the restricted pool can be given by:
O 5 (PHEei(Ves(W\ +. 1) [2.9]

in tissues. The solution to the signal equation, while cumbersome, can be computed in matrix notation and

is provided in the appendix of Ref 1.
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The SPGRE method requires the acquisition of many volumes, each with a unique MT-pulse.
Varying the MT-pulse by frequency offset from resonance (1) and pulse power (duration or )), yields a
characteristic curve, the z-spectrum, to which the SPGR model is fit. The requirement to collect many
MT-weighted images is a major limitation of the gMT-SPGR technique, as these protocols can be very
time consuming. Other z-spectrum techniques such as CEST, suffer from the same limitation, as the z-
spectrum inherently requires many images with unique acquisition contrast parameters. In the case of
gMT-SPGR methods, it is possible to collect as few as seven MT-weighted images, plus a baseline image
with no MT-pulse™™: however, most protocols include at least ten MT-weighted images™ €18 while
some collect as many as sixty@181 1 addition, these techniques require supplementary images such as
high-resolution anatomic images, T, parameter maps, and B, and B; field maps. Data requirements for
whole-brain gMT mapping result in extremely long acquisition times and have hindered the clinical
translation of gMT. It is therefore necessary to consider methods of accelerated MR imaging to bring

gMT-SPGR techniques to clinically feasible acquisition times.

2.4! Compressed Sensing

Imaging speed plays a crucial role in the clinical applicability of any MRI technique. The speed at
which data can be collected is fundamentally limited by physical and physiological constraints such as the
intrinsic relaxation times of tissue, and the maximum rate at which gradient fields can be turned off or
ont™. Due to these limitations, techniques which aim to accelerate imaging speed by acquiring less data
have become increasingly favoured™*”. Traditionally, data size is determined by the desired spatial
resolution and the Nyquist sampling theorem!": undersampling results in diminished data quality caused
by lower resolution and/or aliasing artefacts!”!. Despite this restriction, many types of data remain

compressible, meaning that they can be stored in significantly smaller formats such as JPEG® for image
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compression, and MPEG™ for video compression. The implication of compression is that only a small
amount of the original data is retained, while the rest is essentially thrown away. Naturally, this leads to
the conclusion that if a small subset of data can maintain the important information, it should be possible
to obtain far less data during acquisition without diminishing image quality. This theorem, formally
introduced by Donoho™!, extends far beyond the scope of MR imaging and has applications with many
types of digital information. Lustig et.al.™™ first introduced a formal approach to compressed sensing in

MR imaging just over a decade ago.

CS reduces data acquisition speed by sampling a fraction of the data that would be required under
normal circumstances. In the case of MRI, only some frequency-encode lines are recorded, resulting in
incomplete k-space. With careful consideration of which samples to acquire, and by changing the method
of data reconstruction, aliasing artefacts that would ordinarily plague undersampled data can be avoided.
The two main requirements for CS are 1) sparsity and 2) random sampling!”. Sparsity, referring to a
given dataset having few significant non-zero values, is essential for both image compression and
compressed sensing techniques. An angiogram, for example, is sparse because a small number of pixels in
the image represent blood vessels while the other “background” pixels are negligible in the overall image.
Conversely, brain or heart images are not sparse as there are many pixels containing various grey values
that make up the overall image. In image compression, “compressible” signals are synonymous with
sparse signals because only the significant (non-zero) parts of the image need to be stored, of which there
are relatively few. Similarly, CS aims to detect only a few significant coefficients. Unfortunately, most
natural images and MR images are not sparse in their real-space representation. Furthermore, MR images
are not sparse in k-space, where data is acquired. To overcome this obstacle, image compression and CS
techniques utilize sparse representations of data such as spatial finite differences, wavelet coefficients,
discrete cosine transform (DCT), total variation (TV), or other sparsifying transforms!*”). Wavelet
transforms (e.g. Figure 2.5, bottom right panel) have been shown to perform best for sparsifying brain

MR images™" " and are therefore a common choice for CS in MR.
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The second requirement of CS, random sampling, is simple to implement yet plays a key role in
the success of image acceleration. Undersampling, or (uniform) sampling below the Nyquist rate, creates
aliasing artefacts which cannot be distinguished from actual signal. However, if the same number of
samples are acquired in a random fashion, the artefacts present are incoherent (noise-like) rather than
aliased. From a mathematical perspective, these incoherent artefacts are essential to signal recovery, as
they can be removed by iteratively thresholding and calculating the interference of previously recovered
signal. A simple and intuitive example of this procedure is explained in further detail in Ref ™! and Ref
[78] Undersampled data which exhibits transform sparsity and incoherent aliasing can then be

reconstructed using a non-linear iterative reconstruction method, as summarized in Figure 2.5.

Figure 2.5 Diagram of domains and transform operators used in typical image
reconstruction (left col.), undersampled reconstruction (middle col.), and CS
reconstruction (shaded arrow). m and y represent the reconstructed image and
measured k-space data (red dots), respectively. U is the undersampling
operator, %. is the undersampled Fourier transform, and ~ (is the wavelet
transform.
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While some of the best sampling patterns are a true random selection of k-spacel”®, many
variations of random sampling have been proposed which may be more practical in MRI applicationst™
1 As discussed in Section 2.2, the acquisition of a 3D MR image traditionally involves filling k-space
one readout (frequency encode, ki) line at a time. MR pulse sequences traverse through k-space assigning
unique phase-encode (ky) and slice-encode (k,) gradients with each TR. CS reduces acquisition time by
sampling fewer phase and slice-encode points of k-space, resulting in fewer TR’s. It is important to note
however, that frequency-encode lines remain fully-sampled, as there is no time reduction associated with
collecting less of the data in a given frequency-encode line. Undersampling patterns are therefore applied
in the ky-k; plane in Cartesian-sampled 3D MR data. One of the major limitations with random sampling
distributions is that they do not take into account the energy distribution of k-space. As seen in Figure 2.5
(bottom left panel), information is densely packed at the centre of k-space and rapidly decays towards the
periphery. A logical approach to random sampling in k-space is to vary the density of samples to match
the energy distribution of k-space™ ", Lustig et. al.*") originally proposed to decrease the probability as
a power of the distance from the origin, a strategy which has been frequently implemented since.
Although the optimal details of this implementation are application dependent and remain a matter of
further research, Zijlstra et. al.l’”®! found an inverse squared distribution to perform best in brain data from
a single subject. Other more sophisticated approaches to determining the optimal sampling distribution
involve the use of fully-sampled calibration data to produce data-specific sampling patterns®®! 3. These
“data-driven” methods have shown marginally improved reduction of CS artefacts!”®; however, they can
be computationally expensive to implement and remain less common than predetermined variable density

sampling trajectories.

In addition to a variable density sampling distribution, many researchers choose to fully-sample a
central region of k-space. The size of the central core is typically dependent on the rate of undersampling,
and may be implemented with a circular’® or a rectangularl” " geometry. In some cases, the fully

sampled part of k-space is used for autocalibrating Pl methods such as I;-SPIRiTY™). Armed with a
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random sampling strategy suitable for k-space data, it should be possible to collect an ideal set of
undersampled data. Unfortunately, purely random selections of k-space may result in large sampling gaps
which are intuitively undesirable for effective image reconstruction. In addition, undersampling k-space
decreases SNR, a problem that is then exaggerated by random sampling and the associated incoherent
artefacts. Lustig et. al./”® demonstrated that optimal sampling strikes a balance between random
distributions, which amplify noise, and uniform distributions, which have aliased artefacts unsuitable for
CS. Poisson-disk (PD) sampling™®! addresses these concerns by enforcing a minimum distance between
randomly selected data points. This technique applies a theoretical disc or ellipsoid around each chosen
point which prevents any other sample from existing in that region. In the case of combined CS-PI
techniques, PD sampling makes better use of coil geometries and sensitivity profilest’ . P| uses coil
sensitivity profiles to fill in information between samples of k-space, making clustered samples wasteful.
Conversely, large sampling gaps reduce the reconstruction conditioning of Pl, further adding to the desire
to implement spacing constraints on random sampling strategies. It is common, in these cases, to base PD
constraints on the receive coil arrayl’®¥: however, the detailed information about sample spacing is

rarely provided.

The sampling strategies discussed thus-far apply to 3D datasets; however, they can easily be
extended to 4D, as in the case of gMT. For 3D volumes collected at successive time points, the same
sapling rules can be applied to generate a unique set of data points for each volume. In addition, PD
constraints can be extended into the time dimension to prevent the same sample from being chosen in
successive volumes. By extending the multidimensionality of the problem, greater sparsity can be

exploited to achieve more ambitious acceleration factors.

The final requirement of CS is a non-linear reconstruction method which is used to enforce
sparsity and ensure consistency between the solution and acquired data. Lustig et. al.'" originally

proposed a constrained optimization problem using both I; and I, norms. The I, norm is defined as
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[161] (5 ((Zyx8x")@ where & is a vector of sparse coefficients of length N3 1f we consider the lonorm

(p=0), the equation above reduces to the number of nonzero elements of 8, and is therefore a measure of
sparsity. Unfortunately, solving a minimization problem with | is impractical as it is both numerically
unstable and requires an exhaustive search of all possible nonzero locations in 8. The I, norm, which is
the sum of non-zero elements, is also a measure of sparsity but requires far less computational
complexity. In the case of p = 2, the I,-norm equation requires no sparsity and is instead a measure of
signal intensity®®. The optimization problem for CS reconstruction is given as:

QuaiciisT(|| = u||9 &i¢neEn(||% (o (#||; (o (¥ [2.10]
where m is the image we aim to reconstruct, I (is the sparsifying transform, %. is the undersampled
Fourier transform, and y is the measured k-space data. ¥ controls the fidelity of reconstruction and is
usually set below the expected noise level™”. Here, we aim to find the sparsest representation of the
image (1 ), but ensure the undersampled solution (F,m) closely matches measured data (y). To solve

Equation 2.10, CS algorithms find the solution that solves the equation:
QUGICHST((O) , (|1% (o @#I|” r (G| 1l [2.11]

where G is a constant adjusted to balance data fidelity and artefact reduction®®”. Here, only one sparsifying
transform (1) is given, although others can be added as additional terms. Several minimization
algorithms for Equation 2.11 have been proposed including nonlinear conjugate gradientst*”), iterative soft
thresholding®® ! and iteratively reweighed least squares®®™!®. Recent research has focused on how CS
could be combined with other acceleration methods, such as PI, to achieve even higher acceleration

factors.
As mentioned briefly above, Pl uses multiple receive coils to acquire data in parallel

(simultaneously)*®. Signal intensity varies in each coil depending on position; therefore, allowing the

spatial dependence to be exploited to gain additional information about k-space while relaxing the
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sampling requirements. As Pl has become widely adopted and is used in many stock (i.e. commercial
product) sequences, it is logical to consider how CS can be adapted for multi-channel Pl data. In matrix
form, the final image (m) is calculated from multi-channel PI data (y) using:

(. (& [2.12]

where E is the encoding matrix which includes an undersampled Fourier operator (F,) and channel-
specific sensitivity profiles (S)™¥1°2. 1f we let §( , (%.©, the SENSE™® method for PI reconstruction finds

a solution to:
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Here, we can see that the solution to Pl alone is the first term in single-channel CS data (Equation 2.11)

with an additional coil sensitivity operator (S). The combined CS and Pl method therefore aims to solve:
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where 1 is a sparsifying transform such as wavelet or TV and G; is its weighting factor. This combined
method, known as sparseSENSE, can be solved using nonlinear conjugate gradients®®!®"!, or by using

Bergman iterative nonlinear reconstruction, as originally proposed by Liu et. al.??.

Recently, CS techniques have been used extensively in MRI. Achievable rates of acceleration
have been shown to be both application and technique dependent. Work using sparseSENSE and other
CS-PI combined techniques have demonstrated high quality images using acceleration rates ranging from
1.51 to 36 1 B4 denending on data size and number of channels. When sparseSENSE was proposed
by Liu et. al.’?, clinically feasible image quality in retrospectively undersampled 2D brain data collected
from a 4-channel head coil was demonstrated at an acceleration factor of 51. In this case, it was
successfully shown that combined CS-PI could achieve an acceleration factor higher than the number of
channels, something that is not possible with PI alone. King®®”! demonstrated a more modest acceleration

factor of 3.3 in 8-channel brain data, while Lustig et. al.® were able to achieve an acceleration of 51 in
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2D, 4-channel lower extremity tumor images (both retrospective). 3D imaging techniques have since been
able to match and improve upon these results. Sanders et. al.®® were able to achieve an acceleration
factor 51 in retrospectively undersampled 18-channel prostate data, while Hollingsworth et. al.?* and
Fushimi et. al.”"! demonstrated acceleration factors of 4.941 and 51 in cardiac CEST data (6-channel)
and brain angiography data (32-channel), respectively. Zhang et. al.®® demonstrated an acceleration
factor of 7.2 in 6-channel paediatric abdominal data, while Sharma et. al.®® have shown 8.6 1

accelerated 8-channel chemical shift knee images (both prospective).

Although gMT data is not acquired temporally, the need to repeatedly acquire images with unique
MT saturation gives gMT data a 4-dimensional quality that can be exploited to achieve greater
acceleration. Other researchers have investigated the application of CS-PI acceleration on data with
multiple offset frequencies. Heo et. al.®¥ demonstrated 41 acceleration in 32-channel single-slice CEST
brain data acquired with 52 offset frequencies (3D). Zhang et. al.'*®! applied this method to variable flip
angle (VFA) T1 mapping brain data, which also requires multiple frequency offsets. Here, 4D 8-channel
data with 10 frequency offsets demonstrated high image quality at a prospective acceleration rate of 6 1.
Other 4D imaging techniques such as dynamic contrast enhanced (DCE) imaging have demonstrated the
ability of 4D data to achieve acceleration rates far beyond those reported in 3D imaging. For example,
Lebel et. al.®4 performed a retrospective study using 8-channel DCE brain tumor data with 35 time points
to achieve an acceleration factor of 18 1. Their prospective study included similar data with 82 time
points and an acceleration factor of 36 ¥. Although qMT data has not previously been accelerated using
any CS methods, the use of CS-PI in other methods can inform what acceleration factor may be possible
in this work. The data collected here is most similar to that of Zhang. et. al."® with 32-channel data
instead of 8-channel data. In light of this, we predict it is possible to obtain high-quality gMT parametric

maps with acceleration factors exceeding 6 1.
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3! Methods

3.1! Study Population

This study consists of data obtained from five healthy control subjects. In order to be considered
for this study, subjects had to be between the ages of 18 and 60 and have no preexisting neurological
conditions or contraindications for MRI. After providing written informed consent and undergoing
thorough safety screening, subjects were instructed to remain as still as possible for the duration of the
MRI exam (approximately 60 minutes). There were no additional tests, nor were there any tasks to
perform during the MRI exam. At the end of the exam, subjects completed a debriefing form where they
had the opportunity to express positive and negative feedback regarding their participation. Subjects
included in this study ranged in age from 20 to 35 with a mean age of 29, two of whom were male. This
study was approved by the Conjoint Health Research Ethics Board of the University of Calgary Cumming

School of Medicine (REB14-1788).

3.2! Experimental Design

3.2.11 MRI Protocol

Data was acquired using a 3.0 Tesla GE 750 Discovery scanner and 32-channel head coil
manufactured by Nova Medical. gMT data was collected using an SPGRE sequence with Gaussian
shaped MT saturation pulse to induce MT contrast. To be consistent with other gMT-SPGRE
protocols*IIeIsEI0LI02] o MT saturation images were collected using two MT pulse powers, each with
five unique offset frequencies. The pulse powers were varied by changing the flip angle of the MT pulse
t0)ga » 1-."0r)ga » —-/", and the logarithmically spaced offset frequencies were setto q , (443,
1088, 2732, 6862, and 17,235 Hz. These values were chosen as they are common among gMT-SPGRE

implementations and reflect typical protocols which can benefit from acceleration. In addition to the ten
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volumes with MT saturation, a baseline image was collected using the same SPGRE sequence with no
MT pulse. Acquisition parameters were: TR/TE = 25/4.06 ms, and excitation pulse flip angle ) =7". The
MT pulse was defined by a Gaussian pulse shape with 271 Hz bandwidth and 10 ms duration. The
acquisition matrix size was 128 196 160, with 75% phase FOV resulting in a reconstructed matrix size of
1281128160 and 2 mm? isotropic voxel size. The total acquisition time for gMT data was 28 minutes.

Raw k-space data was saved for all acquisitions.

In addition to the gMT-SPGRE scan, a T, map was collected to constrain the gMT model. Several
methods exist to determine T, including inversion recovery (IR)!%3112% | ook-Locker (LL)™®!, and
VFAR%! The primary method used to determine T; was DESPOT1, a VFA implementation which
acquires SPGR images at varying flip angles and constant TR Due to the fact that the SPGR signal
equation can be linearized, DESPOT1 enables T, calculation with only two flip angles, making it a fast
and efficient method for whole-brain T, mapping™®. Data was acquired with TR/TE = 6.9/1.244 ms and

flip angles ) , -"(and )( , 13"I(Full brain VFA T, maps were collected in 1:25 min:sec.

Correction of spatial variations in the main field (Bo) and the transmitted RF field (B,) are crucial
in quantitative MT imaging, as frequency and flip angle variations can significantly bias qMT parameter
estimationst®. A B, field map was collected using a multi-echo (ME) SPGRE sequence. This mapping
technique collects magnitude and phase images, where the difference in phase between two or more echo
times is related to the difference in echo times and B, field inhomogeneities. B, mapping data was
collected from eight echo times TE = 1.916, 3.78, 5.644, 7.508, 9.372, 11.236, 13.1, and 14.964 ms with
TR =17.4 ms and flip angle ) (= 20". B; field maps were acquired using the actual flip angle imaging
(AF1) technique™™.. This technique was chosen as it allows for rapid 3D B, mapping and is insensitive to
T, variations. AFI uses an SPGRE imaging technique with a dual-TR acquisition. AFI B; maps were

collected with TR,/TR, = 16/60 ms, and nominal flip angle )gcp (5 (/2"
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A T; weighted anatomical scan was collected to enable tissue segmentation. A single echo 3D
SPGRE sequence was used to acquire the image with acquisition parameters TR/TE/TI = 6.656/2.928/650
ms and flip angle ) , 12". The acquisition matrix was 256 1 256 1 192 with 1mm? isotropic voxel size and
scan duration of 4:31. Resolution, matrix size, and image location were matched to the gMT acquisition
for all scans, excluding the high-resolution T, weighted anatomic scan. The total time to acquire data in a
single subject was 43:31 min:sec, plus setup and scan prescription time, resulting in a total scan session

time of approximately 1 hour.

3.2.2! Field Map Calculations

The DESPOT1 T, mapping technique acquires two SPGR images at with unique flip angles and

constant TR. The measured signal intensity of one image can be expressed as:

a( g *s(10 °1hé2) [3.1]
e lo°1éeé)
where °1( , T=f, * is the equilibrium longitudinal magnetization and ) is the flip angle!®”). The
equation above represents a curve which is characterized by T1. This equation can be expressed in linear

form Y = mX + b, as described in™":

a — a —
o on e . [3.2]
—étz) . 1uﬂ2) r>s;l1o°1b

where E1 is the slope (m) and Mg (1 - E1) is the y-intercept (b). As mentioned previously, the

linearization allows T, to be determined with only two data points, a fact that makes this technique
efficient both in terms of acquisition and computation. For two images collected with flip angles **; and
"5, T1 was calculated in Matlab using the equation:

o+4 3.3
*o - (et o
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where °1 , o T (0 ((C V:fo o 1/1{0 (is the equation of the slope defined by points 1 and 2, and S,
3 i 3 { Wil Of »y {

denotes the signal of the image acquired using "'». The images at points 1 and 2 have a prescribed flip
angle of 4" and 18" respectively, however, B; field inhomogeneities may alter the actual flip angles of
individual voxels. To account for this, the B, field map is multiplied by the prescribed flip angle to so that

", and "', are the actual flip angles in radians:

%V p5Cib 9V L Cs 6 3.4
Do » s Pe and ), g P 34

As mentioned in the previous section, B, maps were calculated using multi-echo data from eight

echoes. The phase of each echo image is related to the main magnetic field by the equation Pg , %(%
where 0J is the series of phase images and 0+° are the corresponding echo times™™*. B, maps were
calculated in Matlab using complex image data and a complex unipolar fit function.

B, field maps collected using the AFI technique result it two images with signal from
corresponding TR times, TR;= 16 ms and TR, = 60 ms. The B; field is defined as the voxel-wise ratio
between the actual flip angle (") and the chosen (nominal) flip angle (*'nom):

) 35
Py« (|2 [35]
)BCcD
Using the Bloch equations for the AFI sequence, Yarnykh™®! outlines the derivation of the actual flip
angle:
_JAuo1 [3.6]
4 AA=9
» (E€EE —
) - UoA

where r is the ratio between signals from each TR (A , &. 3() and n is the ratio between TR’s (U ,
+4. +44 )" The calculation of By was performed in Matlab, with **,, = 60". As is typical with other
B; mapping protocolst M43 5 Gayssian filter was applied to B; field map to reduce noise and enforce

smooth variance in the field. The desired FWHM of the Gaussian smoothing kernel was 10110 mm?
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(515 voxels), which is equal to standard deviation # = 2.1233 of the Gaussian distribution 5_?b ,

axt
1 AV _p(¥(TTAT centered about zero™*. The Matlab function fspecial was used to define the filter using #

and a 717 voxel kernel matrix.

3.2.3! Image Registration

To correct for any subject motion between scans and to inform tissue ROI's, image co-registration
and tissue segmentation were performed using Matlab and the Statistical Parametric Mapping (SPM)
toolbox™®!. The T, weighted anatomic scan was first processed using the tissue segmentation function
preprocess_structural. This function is designed to classify tissues based on high-resolution T, weighted
anatomic images by separating tissues based on their distinctive signal intensities. Tissue probability
atlases are used to account for signal intensities not related to tissue type including noise, field
inhomogeneities, and partial voluming effects. SMP uses affine registration to modified ICBM tissue
probabilistic atlases followed by a local optimization procedure to produce probabilistic GM, WM,
cerebral spinal fluid, and soft tissue maps. Bg, By, and Ry maps were converted into NIfTI format™® and
co-registered to gMT images using the coreg_spm function. In this process, the first qMT offset image
was used as the reference image to which other images were registered. SPM uses a voxel-to-voxel 3D
rigid body transformation matrix to register images, with three translations and three rotations. This acts
to shift and rotate the images in 3D space while preserving the size and geometry of an individual image.
Segmented WM and GM masks were also co-registered to remain in alignment with other images. All
data was converted back to Matlab format for use in gMTLab. For each subject, image alignment was

manually checked for accuracy using itk-SNAPM,

3.2.4! Compressed Sensing

k-Space data was imported into Matlab using the CartesianRecon function of Orchestra SDK, a

Matlab toolbox created by GE. k-Space data was stored as a 5D matrix organized into x, y, and z spatial
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dimensions, a receive coil dimension, and an MT-offset dimension. As is typical in many image
reconstruction techniques, a Hamming filter with 15 voxel edge size was applied to fully-sampled k-space
data to minimize truncation artefact caused by the spatial response function**®l. Retrospective
undersampling using pre-determined sampling schemes was implemented before image-space
reconstruction and coil-combination. As sampling schemes are not coil specific, the same retrospective
undersampling mask was applied to the k-space collected from each coil to mimic prospectively
undersampled data. For each subject, one fully-sampled image was reconstructed using the same coil

combination and inverse Fourier transform technique.

Undersampling patterns were generated in Matlab. First, a fully-sampled circular core containing
10% of the total samples for the given acceleration rate was applied. For example, an acceleration rate of
81 would have a total of 768 fully sampled frequency encode lines of a possible 6144. Of those encode

lines, 10% (or Ugcec » (77) of them would be from the centre of k-space. Therefore, the diameter of the

fully sampled core can be calculated using Y , /Ugcec( p where all frequency encode lines within the

diameter are sampled and the remaining 691 are chosen from elsewhere in k-space.

Outside of the fully-sampled core, phase and slice-encode lines of k-space are sampled more
densely near the centre, and less densely near the edges of k-space. As recommended by Zijlstra et. al.[’!,
the probability density function (PDF) was defined as 5 _Ab( , (1 AE where r is the distance from the
centre of k-space and d = 2 is the optimal distribution for brain images. The cumulative distribution
function (CDF) was used to generate a random list of sample locations which follows the defined PDF.
Samples were then randomly chosen from the list and checked for exclusion criteria before being added to
the sampling scheme. Samples were individually added in this manner until the total number of samples

in the generated scheme matched the specified rate of sampling.
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Exclusion criteria for samples were that: 1) there could not already be a sample in the same
location, and 2) there could not already be a sample within the pre-defined Poisson disc radius of that
sample. In this work, we employed a variable Poisson disc size. Due to the fact that the overall resolution
is considerably lower than other Poisson disc applications, even small Poisson disc sizes can significantly
distort the distribution of samples. This is due to the fact that in areas of denser sampling (i.e. near the
centre), enforcing a minimum distance between samples prevents samples from meeting the desired
density in that area. Since we did not want to significantly alter the chosen sampling distribution, it was
not possible in some areas to have a Poisson disc size of even one voxel. In other less-dense areas (at the
edges of k-space), Poisson disc sampling was still very useful in preventing sample clustering. Therefore,
Poisson disc sampling was employed whereby the distance from the centre of k-space was used to define
Poisson disc size, referred to here as “variable Poisson disc sampling”. Within a radius of the 15"
percentile, Poisson discs were not used, from r = 15" to 35™ percentiles, disc size was one voxel in the
phase and slice-encode dimensions, and one voxel in the MT-offset dimension, for r = 35" to 65"
percentile, disc size was two voxels in the phase and slice dimensions, and one voxel in the MT-offset
dimension. This pattern was continued such that the maximum Poisson disc size was no larger than three
voxels in any dimension. Though many studies report the use of Poisson disc sampling[éI7oI1i220] feyy
report disc dimensions®®. In this study, disc size was chosen so that the resulting sampling schemes
display limited sample clustering and have a density distribution closely matching the prescribed
distribution. These constraints were verified manually by plotting sampling distributions (Figure 3.1) and
histograms of actual radii against theoretical radii distributions to confirm the distributions were not

significantly altered.
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Figure 3.1 Variable density Poisson disc sampling scheme shown for a 161
undersapling factor. Undersampling in k, and k; for one 3D image volume (a) and
for 4D data undersampling in ky, k,, and MT-offset dimensions (b).

Sampling schemes were generated for eight acceleration factors evenly spaced between 41 and
321, For each acceleration factor, four unique sampling schemes were generated. Here, we refer to each
unique pattern as a “version” of the given acceleration rate. The same 32 sampling schemes were used for

each of the five subjects, producing a total of 160 accelerated datasets to reconstruct and analyze.

After retrospectively undersampled data was generated by applying sampling masks to fully-
sampled k-space data, image reconstruction was performed on each 4D dataset using sparseSENSE
(Equation 2.14) implemented in Matlab. For this reconstruction problem, local low rank, Daubechies-3

wavelet (1), and total variation (TV) were used as sparsifying transforms. The equation:

5_0b(, ([1%20 o #I: r Gollti 0 U¢llg r Gl FTlg r GI+El [3.7]

was solved using the nonlinear conjugate gradient method, where the gradient was computed as described
by Lustig. et.al™™. Here, m, is the local low-rank reference image which promotes simple behaviour in the
offset-frequency dimension. Regularization parameters were set to $; = 0.005, $, = 0.0005, and $; =

0.0001. Reconstruction time ranged from 8 minutes (44 iterations) in 41 accelerated data and 19 minutes

34



(135 iterations) in 321 accelerated data. After the sparseSENSE algorithm converges to a solution, each

3D MT-offset volume is saved for gMT modelling.

3.25! gMT Modelling

gMT modelling was performed using gMRLab software® downloaded on Oct 26, 2016. gqMT
parametric maps were generated for one slice prescribed 60 mm below the most superior point of the
brain, in the middle of the imaging volume. gMRLab software provides a user interface with which to
choose various model and fit options. This software uses all MT normalized images to create a voxel-by-
voxel z-spectrum of the MT response. The MT pulse power (adjusted using flip angle ) ga) and frequency
offset (0) are manually specified for each MT image. In addition, gMRLab can fit data to multiple MT
models (those mentioned in Section 2.3), and provides an option to input B, By, and Ry maps. Without
correction, the model assumes uniform field and excitation pulse powers. In practice however, magnetic
fields and RF pulses have some degree of variation across the entire imaging volume. These variations
can be accounted for in each voxel using the acquired B; and By field maps, where B; is used to adjust
MT-pulse and excitation pulse powers, and By is used to adjust offset frequencies. The measured R; map,
[65].

R,%® is used to constrain the value of Ry using the relationship

Ry 4gr O 4<% [3.8]
49m i 49C¢00 m_79t 9

49t 0 49 r gp

For each parameter in the two-pool tissue model, it is possible to fix its value or leave it as a free
parameter. In this work, all parameters freely fit except for Ry, and Ry, constrained by equation 3.8 above.
The Ry, parameter is difficult to estimate in imaging experiments and is therefore customarily set to 1s™ in
two-pool MT experimentst®*. Another modeling consideration are the pulse timing parameters and MT
pulse shape and bandwidth. gMRLab performs a voxel-wise optimization function (Isgcurvefit) to fit the

chosen gMT model to z-spectrum data ®®. The exact signal equation depends on the model and the

restricted pool absorption lineshape, here the Sled-Pike RP' and Super-Lorentzian lineshape
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respectively™DF™ (see Section 2.3). Fitting time for a single slice of qMT data is approximately 8h for high
resolution (256 1256) and 3h for low resolution (128 ¥128) data. The output of the fitting procedure
results in six parameter maps; F, ks, ki, Ris, T2, and Ty High resolution parametric mapping was
performed in one subject for the purpose of generating figures in this thesis. High resolution data was
generated using nearest-neighbour interpolation of gMT data, and high resolution field maps. Low
resolution (native qMT space) parametric mapping was performed in all subjects for the purposes of all
quantitative analysis performed in this thesis. In the case of low resolution data, tissue masks and field
maps were down-sampled from high resolution using nearest-neighbour interpolation. All sparseSENSE
reconstructions and gMT parametric mapping was performed on a 16-core Linux workstation with 32GB

of RAM.

3.3! Statistical Analysis

In this work, accelerated gMT data is analyzed using both qualitative and quantitative techniques.
While the focus of this thesis is on accelerated gMT parametric maps, intermediate data such as raw MT-
weighted images, normalized MT images, and accelerated z-spectra all provide interesting information
about acceleration in gMT imaging; therefore, they have been analyzed individually. The first method of
image analysis was to display fully-sampled images alongside accelerated images. This qualitative
method is applied to raw MT-weighted images, MT-normalized images, and F-maps. To aid in this visual
comparison, difference images are calculated and shown in the same figure. For each set of accelerated
and difference images, the image generated with the first sampling version is used as the representative
image for that acceleration rate. z-Spectra can also be assessed qualitatively by superimposing fully-
sampled and accelerated spectra, providing a visual indication of the variation caused by acceleration. z-
Spectra were analyzed by selecting two different ROls; voxels of WM and voxels of GM. Each ROl mask
was created using the probabilistic tissue segmentation maps generated in SPM, then selecting voxels

with values Q0.95 in the tissue of interest. These are the same WM and GM tissue masks used in all data
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analysis. All four sampling versions were averaged together to show the mean z-spectra value at the given

acceleration rate.

To complement the qualitative comparison of images, it can be helpful to provide a quantitative
measurement summarizing the error present in accelerated images. In this study, normalized mean
squared errors (NMSE) are used as a quantitative estimate of deviations between fully-sampled and
undersampled values. NMSE’s are calculated using:

Exac [|_1-¢ © Tygcgh’ || [3.9]
\E s

Myecaell:

for each pair of fully-sampled (?ygc3g) and undersampled (?—) images or z-spectra at a given rate (R)
and version (v). Here, the I, norm is the summation over the number of pixels in the ROI, or the number
of points on the z-spectrum. In some instances, NMSE’s have been provided for the entire brain, or for
specific ROI’s of WM or GM. These are included as it is useful to point out tissues that are more or less
affected by acceleration. In the case of z-spectra analysis, the values of Tygcyg and I are the mean z-
spectra values in the ROI corresponding to each tissue of interest for fully-sampled data and accelerated
data. NMSE’s are provided in terms of the mean and standard deviation (reported as error bars) across all

sampling versions at the given acceleration rate (ie. E*a°— , Yo E*a°—:( (-).

Several other quantitative analysis approaches are applied to F-maps in this thesis. Although all
six qMT parametric maps provide valuable information about the MT effect, F-maps are the most
clinically useful as they represent the pool size ratio, directly related to myelin content in brain
WMEBIEE | inear regression can be used as a means to compare fully-sampled and accelerated images.
With this method, each reconstructed voxel is plotted with the reference data (fully-sampled) on the x-
axis and the accelerated data on the y-axis. If accelerated data exactly matches fully-sampled data, the

resulting line of best fit will have a slope equal to one and y-intercept equal to zero, with all points lying
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exactly on the line. The advantage of this method is that it gives the reader a quick gauge of the
agreement between two images and can provide statistical measures such as the coefficient of
determination (R?) with which to classify agreement. Although convenient and often used in
investigations of two different MRI techniques®°lt2122 Jinear regression is inappropriate for an
assessment of agreement. Correlation coefficients only measure the strength of relation between two
methods and can be affected by measurement range, while unaffected by scale differences, both of which
are contradictory to the notion of agreement™*?3l. It should also be noted that one would expect two
reconstruction methods for the same image to almost always be highly correlated, therefore a high

correlation coefficient may not be meaningful.

Bland-Altman analysis provides a more appropriate measure of agreement by plotting the
difference of each sample pair as a function of their mean™®!. Two important quantities to note are the
mean and standard deviation of differences (Y, s). The mean difference is used as an estimate of bias and
the standard deviation informs the limits of agreement (Y- 1.96s and Y+ 1.96s) between the two methods.
The interpretation of these results is application dependent. In this work, we aim to have limits of
agreement less than or equal to the variance (one SD) typically seen in fully-sampled data (for a given
ROI). As gMT modelling is highly dependent on the baseline scan, to which all other MT-weighted
images are normalized, any scan-rescan variations in the baseline may have a significant effect on gMT
results. In one subject, the baseline image was re-scanned to compare differences induced by baseline-
rescan to differences induced by acceleration. As baseline-rescan differences may be an underestimation
of typical variations seen in gMT imaging, mean differences were compared to scan-rescan variations
reported in literature. Paired t-tests were performed to compare the means of WM or GM ROIs in
accelerated F-maps to those of fully-sampled F-maps, across all five subjects. The null hypothesis is that
the pairwise difference between fully-sampled and accelerated F parameters has a mean equal to zero.
This analysis was repeated for each of the sampling versions at each acceleration factor. In addition to the

mean difference measure from Bland-Altman analysis, paired t-tests provide a quantitative indication of
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any bias between fully-sampled and accelerated images. t-Tests were performed in Matlab using a 5%
significance level. Test results with an h-value equal to zero indicate the null hypothesis in not rejected,
while h-values equal to one indicate the null hypothesis is rejected and the pairwise differences between

fully-sampled and accelerated F-maps is significant.

In all quantitative statistical analysis, included voxels were limited to brain matter (and/or tissue
of interest), and outlying voxels were excluded. Outliers typically occur at edges of the brain and in
ventricles (in gMT maps) where field map fluctuations and partial-voluming effects can lead to unstable
qMT fit results. In this work, outliers are defined using Tukey’s fences™* where any value larger than the
75" percentile plus 1.5 inter-quartile ranges (IQR), or any value less than the 25™ percentile minus 1.5
IQRs is considered an outlier and is removed from the dataset. ROI's labeled as "Brain" or "all brain
voxels" represent all voxels that are fit in the gMT modelling process (including cerebrospinal fluid in
ventricles) as a measure of overall agreement between fully-sampled and accelerated images. Note that
the "Brain" ROI is more than the summation of GM and WM ROI's, which were restricted to voxels with
Q0.95 probability of being the tissue of interest, whereas "brain" includes all WM-GM partial volume
voxels and cerebrospinal fluid voxels. In the gMT modelling process, background and skull voxels are set
equal to zero using a binary mask of all brain voxels, including ventricles. The same mask is used to
exclude background voxels from statistical analysis because they are fixed to zero in both fully-sampled

and accelerated cases and could bias the results.
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4! Results

4.1' gMT Modelling Results: Fully Sampled Data

Figure 4.1 gMT parameter maps based on two-pool tissue model produced from
one fully-sampled healthy control subject. Each image indicates the pool-size
ratio (F), magnetization exchange rate from free to restricted pool (ks),
longitudinal relaxation rate (Ry), and transverse relaxation times of free (T») and
restricted pools (T). The contrast of each of these parameter maps is consistent
with literature.

An example of qMT parametric mapping is provided in Figure 4.1. This figure shows parameter
maps derived from the fully sampled data of one healthy subject. Of the parameters in the two-pool tissue
model, those with a potentially meaningful physiologic interpretation include the pool size ratio F, the
magnetization exchange rate k¢, and relaxation parameters of the free-pool (Rys and Tof) and restricted
pool relaxation T, ®®. The gqMT images used in this figure were collected at low-resolution (128 1 128)
and have been nearest-neighbour interpolated to match the high-resolution (256 ¥ 256) matrix size of field
maps. For the purposes of Figure 4.1 and Figure 4.7 only, high-resolution parametric mapping was
performed in one subject. qMT parameter maps for all subjects appear consistent with previously reported
results?™ primarily that F values are greater in WM than in GM, indicating higher macromolecular
content in WM, and that T,s and T, have tissue contrast comparable to traditional T,-weighted and T;-

weighted images respectively.
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Figure 4.2 gMT pool size ratio (F) maps produced in five healthy control
subjects.

Table 4.1 Mean gMT parameter values and SD (brackets) in WM and GM
regions from fully-sampled gMT parameter maps. Key parameters reported
include the pool-size ratio (F), magnetization exchange rate from free to
restricted pool (kf), longitudinal relaxation rate (Ryf), and transverse relaxation
times of free (T») and restricted pools (T»). Rows in bold represent mean and
pooled SD across all five subjects. Coefficient of variation (CoV) reports the
variance between means of different subjects.

Figure 4.2 shows the F-maps obtained from all subjects. This data was created with MT-weighted
images in their native resolution (128 1 128), with field (B, B1) and MR parameter (R;) maps nearest-
neighbour down-sampled to match MT image resolution. To quantify the results of gMT analysis, key
parameter values were calculated for ROI's of WM and GM. Table 4.1 provides a detailed report of this
analysis in each subject, as well as mean results from all subjects. This table is used to compare our

results to those previously reported in literature, as well as provide a point of comparison for future
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studies. Voxels determined to be outliers for each parameter were excluded from the ROI. Outliers were
determined using Tukey's fences®?*, where T, was typically the parameter with the most outliers. The
number of voxels removed for any subject or parameter did not exceed 5.8% in WM or 9.3% in GM,
where the average number of included voxels were 1431 in WM, and 1227 in GM. The bolded rows in
Table 4.1 indicate the mean value of each parameter across all subjects and the pooled standard deviation.
In this thesis, values obtained for F were on the low end of values reported in literature ?1®8; however,
they were consistent with those reported by Sled et. al.”! and Cercignani et. al.'®.. T, values were
consistent with previously reported values™ Bl however, k, Rys, and T values are lower than those
reported from the same sources. Inter-subject variation from this study is reported in the last row of Table
4.1. In comparison to a study by Sled et. al.”! which analyzed data from seven healthy controls, the inter-
subject coefficient of variation (CoV) values listed here are slightly lower in F and ks, and slightly higher

in Rysand Ty (Tof is not reported).

4.2! Image Acceleration
4.2.1! MT Weighted Image

Using Equation 3.7, sparseSENSE reconstruction was performed on retrospectively
undersampled images. Figure 4.3 demonstrates the MT-weighted images that result from CS-PI
reconstruction, simulated in one healthy subject at eight acceleration factors, as labeled. The purpose of
this figure is to investigate acceleration artefacts in the raw images, prior to any gMT modelling
procedure. Absolute difference images are shown below, scaled by a factor of five for visibility. Of the
eleven MT-weighted images collected (including baseline), Figure 4.3 shows the image with the most
WM/GM contrast, collected with )ga » —./"and O(, 1233 Hz. Some ringing artefacts are visible
around the perimeter of the brain at acceleration factors of 8 and higher, and increased noise is observed
with increasing acceleration factors, as indicated by arrows on Figure 4.3 Absolute difference images

report minimal artefacts in WM regions, and maximum differences occurring at structural boundaries
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Figure 4.3 Accelerated MT-weighted images (a) and difference images (b) for one subject. Figure depicts how raw
MT-weighted images respond to acceleration before any qMT mapping procedures are applied. Images were
collected with 1.., $ %&"(and )*$ +, -- Hz. Difference images (b) show the absolute difference scaled by a
factor of 5. Key artefacts include ringing around the perimeter of the brain (indicated by arrow A), and blurring of
structural boundaries (difference images and arrow B), which are not present in fully-sampled data (acceleration
factor = 1). NMSE plot (c) shows the mean NMSE for the whole brain and ROI's of WM and GM in the same MT-
offset volume as shown above, averaged over all subjects and versions (n=20). Error bars indicate one SD.
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Table 4.2 NMSE values from all accelerated MT-weighted images and baseline image. NMSE's were
calculated in all brain voxels, averaged across all subjects and versions (n=20). Uncertainty values
indicate one SD. This table presents errors present in raw MT-weighted images before any gMT modelling
procedure is applied. Note that images collected at the lower end of the z-spectrum (. = 433, 1088 Hz)
have more error than those at the upper end.
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such as the outside edges of the brain and around the ventricles. These artefacts are consistent with those
reported in previous studies,™™® and are logical given limited data acquired from the periphery of k-space,
where high spatial frequency components are stored. Errors between fully-sampled and accelerated
images are quantified by the NMSE plot in Figure 4.3(c). The plot, which includes data from all versions
and subjects, demonstrates increasing error with acceleration factor, with most error coming from voxels
of brain matter of GM, and the least error from WM voxels. Errors from all eleven MT-weighted images
are quantified in Table 4.2. The purpose of this table is to compare acceleration in each MT-weighted
image and provide detailed information about the non-uniform effects of acceleration in MT-weighted
images. NMSE's are much greater at the lower end of the z-spectrum (lower 1's) for "¢ % &7 (). It
should be noted that the MT-weighted image used in Figure 4.3 (second row of Table 4.2) has more error
than most other MT-weighted images. Overall, these results demonstrate exceptional agreement between

fully-sampled and accelerated MT-weighted images at undersampling factors exceeding 8*+

4.2.2! MT Normalized Images

The first step in modelling the MT response is to normalize MT-weighted images by the baseline
image. Figure 4.4 (a) shows the accelerated MT-normalized images for the same subject and volume
shown in Figure 4.3. This analysis was done to show what, if any, affect normalization has on accelerated
MT-weighted images. Similar to the pre-normalized MT-weighted images, ringing artefacts are present in
images accelerated by a factor of 8* and higher (see arrow A), with blurring of structural boundaries and
increased noise visible at acceleration factors of 8 and above (see arrow B). Difference images (Figure
4.4 (b)) are unscaled and demonstrate negative errors inside the ventricles, positive and negative errors
around the perimeter of the brain, and ringing artefacts within the brain. Average NMSE's across all
subjects and versions are reported in Figure 4.4 (c). In MT-normalized images, the lowest errors are
reported in the WM ROI, consistent with pre-normalized results. NMSE's in Figure 4.4 (c) are depicted

on the same scale as those in Figure 4.3 (c) and report very similar values. NMSE's from all MT-
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Figure 4.4 Accelerated MT-normalized images (a) and difference images (b) for one subject. Normalization,
the first step in qMT modelling, is performed to isolate the MT effect. This figure shows the effect of
acceleration on gMT data after normalization is performed. Arrow A indicates ringing artefact seen at higher
acceleration factors, and arrow B indicates blurring of structural boundaries. Difference images (b) show
positive and negative errors in accelerated images. Images were collected with V.., $ %&"(and )*$ +,-- Hz.
NMSE plot (c) shows the mean NMSE for the whole brain and ROl's of WM and GM in the same MT-offset
volume shown above, averaged over all subjects and versions (n=20). Error bars show one SD.
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Table 4.3 NMSE values from all accelerated MT-normalized images. NMSE's were calculated in voxels of
brain matter, averaged across all subjects and versions (n=20). Uncertainty values indicate one SD. This
table demonstrates errors present in gMT data on different points of the z-spectrum. Note that images
collected at the lower end of the z-spectrum (. = 433, 1088 Hz) demonstrate more errors than those at the

upper end. MT-normalized images in this table had less error as compared to pre-normalized MT-weighted
images (Table 4.2).
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normalized images are provided in Table 4.3. Overall, NMSE values are lower in MT-normalized images
than they were for MT-weighted images. Following the trend of Table 4.2, Table 4.3 shows increased
error at the lower end of the z-spectrum for .., $ %&" (; however, the trend is also present for 1.., $
)%&(. Results from MT-normalized images are consistent with those of MT-weighted images, reporting
exceptional agreement between fully-sampled and accelerated images for acceleration factors exceeding

8%*.

4.2.3! z-Spectra

The z-spectrum is used to summarize the signal response across all MT-saturation points. It is an
important part of gqMT-SPGRE imaging as this is the signal response to which the gMT model is fit.
CEST imaging also relies on the signal response curve, however utilizes different ranges of the z-
spectrum. Figure 4.5 shows the z-spectra for ROls of WM (top row) and GM (bottom row) in each
subject (columns), superimposed with accelerated z-spectra. The shaded region indicates one SD within
the ROI for fully-sampled data. Figure 4.5 demonstrates exceptionally close agreement between fully-
sampled and accelerated z-spectra at all acceleration factors. For all acceleration factors, z-spectra data
points fall within one SD (shaded region) of fully-sampled z-spectra. In GM, the data points with most
error are typically at the lower end of the z-spectrum, corresponding to the results in Table 4.2 and Table
4.3. Within WM ROl's, there is less signal variance as compared to GM, as depicted by the differing
widths of the shaded region. In GM ROI's, Figure 4.5 demonstrates a trend of consistently overestimated
signal at the lower end of the z-spectrum (blue arrows) and underestimated signal at the upper end (red
arrow, for 1..,, $ 1%&" (). In WM ROI's, all z-spectra points are consistently overestimated (black arrow),
except for 1..p $ %&"(,-$ ) -+/01, which is consistently underestimated. Figure 4.5 suggests that
accelerated z-spectra are in closer agreement with fully-sampled spectra in GM as compared to WM. This
result is quantified in Figure 4.6, which shows the NMSE's of z-spectra points in WM and GM, averaged

across all subjects and versions. Figure 4.6 demonstrates higher errors in WM, and that WM errors
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Figure 4.5 Accelerated z-spectra for ROI's in WM (a-e) and GM (f-j) in five healthy subjects (one per column), averaged across all
versions (n=4). In all images, the upper z-spectra was collected with a 142! flip angle and the lower z-spectra was collected with a
426!"flip angle. Shaded grey regions indicate one SD of signal values for fully-sampled data. Coloured lines indicate accelerated z-
spectra at rates indicated in legend (j). In all cases, accelerated z-spectra are in close agreement with fully sampled z-spectra and may
not be fully visible. Key differences between accelerated and fully-sampled z-spectra include a systematic overestimation in the WM z-
spectra (black arrow). In the GM z-spectra, an overestimation on the lower end of the z-spectrum is visible (blue arrows), in addition to

an underestimation on the upper end of the 426! flip angle spectrum (red arrow).
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increase more rapidly as acceleration increases, as compared to GM. This is an interesting result
considering the tendency of WM voxels to have less error in accelerated MT-weighted and MT-
normalized images. Nonetheless, the scale of NMSE values in Figure 4.6 is 20 ! "smaller than Figure 4.3
(c) or Figure 4.4 (c), suggesting exceptional agreement between fully-sampled and accelerated z-spectra

at all acceleration factors.

Figure 4.6 z-Spectrum NMSE plots in ROI's of WM and GM. Each point is
averaged over all subjects and versions (n=20) and error bars represent one SD.
The z-spectra of WM contain greater error as a result of acceleration as
compared to GM.

4.2.4! gMT Parametric Maps

Accelerated F-maps from a single subject are shown in Figure 4.7 (a). Of the fitted gMT
parameters, the pool size ratio, F, is most strongly correlated to myelin content in brain WM and is
therefore the focus of gMT acceleration analysis. Some of the differences observed in all accelerated
images include decreased F values in WM and an increased number of miss-fit voxels in ventricles, as
indicated by the red arrow in Figure 4.7. Ringing artefacts are visible at acceleration factors of 121 and
above. Difference images, shown with a diverging colour-scale in Figure 4.7 (b), demonstrate increased F

values in ventricles, and decreased F values in WM, particularly at acceleration factors of 16 I and higher.
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Areas of largest differences include voxels with unusually high F values in fully-sampled data (see arrow
A in Figure 4.7). Although these voxels may not represent physically reasonable values in fully-sampled

data, z-spectrum changes induced by acceleration result in significant changes in the fitted F value.

Figure 4.8 illustrates the errors in key qMT parameter maps, averaged across all versions and
subjects. The purpose of this figure is to compare agreement between fully-sampled and accelerated
parameter maps in each of the key parameters, as well as to determine which tissue types have a greater
contribution to accelerated image errors. For parameters F, ki, T2, and To,, NMSE values are significantly
higher than those reported in MT-weighted and MT-normalized images (Figure 4.3(c) and Figure 4.4(c)),
or those reported in accelerated z-spectra to which the gMT model is fit (Figure 4.6). The Ry parameter
demonstrates much lower NMSE values than other gMT parameters, and even has lower errors than MT-
weighted and MT-normalized images (Figure 4.3(c) and Figure 4.4(c), respectively). This is likely due to
the fact that the Rys parameter is constrained by Riqns, an unaccelerated MR parameter map. The
parameter with the most error is k¢, which is known to be difficult to constrain®® followed by F. Across
all subjects, errors in GM tend to be greater than those from WM or all brain voxels. These results
indicate that gMT parameter maps are more susceptible to errors than the MT-weighted and MT-

normalized images from which they are estimated.
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Figure 4.7 Accelerated F-maps (a) and difference images (fully-sampled F-maps subtracted from accelerated F-maps) (b) from
one healthy subject. Acceleration factors are indicated on the x-axis where fully-sampled data has an acceleration factor of 1.
Negative errors indicate underestimated voxels in accelerated F-maps. Difference images depict a clear underestimation of F
values in WM at all acceleration factors. Arrow A indicates areas of overestimated F in fully-sampled data, correlated with
areas of large differences in accelerated data. Key acceleration artefacts include voxels in ventricles with a high F value (arrow
B) and ringing artefact at higher acceleration factors (arrow C).
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Figure 4.8 NMSE values from qMT parameter maps for ROI's of all brain voxels (Brain),
WM voxels, and GM voxels. All NMSE's are shown on the same scale, except for 1.,

which is shown on a scale 100% smaller. NMSE's were averaged across all subjects and
versions (n=20), with error bars representing one SD. Pool-size ratio(F) and free to
restricted pool exchange rate (kf) maps are shown to result in the most error, with GM
contributing more error than other tissue types.

Bland-Altman analysis results are shown in Figure 4.9 for ROI's containing WM, GM, and all
brain voxels. Each point represents the mean (x-axis) and difference (y-axis) between a pair of
corresponding voxels of fully-sampled and accelerated images. Plots include voxel pairs from all versions
and subjects at the labeled acceleration rate. Voxels considered to be outliers from the fully-sampled
image ROI were excluded from the analysis. For clarity, Figure 4.9 summarizes data from four of the
eight acceleration factors; excluded factors follow the same trend. Bland-Altman analysis represents the
agreement between two data sets using limits of agreement (1.96 SD, dashed lines) and mean differences
(solid blck line). As expected, limits of agreement increase with acceleration factor and are generally

largest in the ROI containing all brain voxels and smallest in the GM ROI. In all cases, the mean
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Figure 4.9 Bland-Altman plots for accelerated F-maps in all brain voxels (top row), ROIs in WM (middle row), and ROls in
GM (bottom row). Plots summarize data from all subjects and sampling versions (n=20). Of the eight acceleration factors
produced in this work, four are shown here, as indicated on upper x-axis. Factors not shown follow the same trend. Solid
black lines indicate mean differences between pairs of voxels in fully-sampled and accelerated images, as compared to zero
(red line). These indicate any bias present between measurement methods. Dashed lines indicate limits of agreement (!
1.96 SD), which represent overall agreement between methods. Limits of agreement are compared to gold-standard values
(shaded regions) in WM and GM ROls, based on pooled SDs in fully-sampled data. This plot indicates acceptable mean
differences and limits of agreement occur at an acceleration factor of 4*"#
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difference line is verglose tozero(red ine), indicating very little bias in accelerateehfaps as

compared to fullysampled Fmaps The largest bias occurs in WM, and the smallest in Sh&ded

regions indicate acceptable limits of agreement in WM and GM ROIs. An acceleration factor of 4 has

limits of agreement (dashed lines) within the acceptable range for WM and GM; however, acceptable
limits of agreement have been exceeded for all other acceleration factors. The acceptable limits have been
defined using the pooled SD within fulbampled ROIsand are discussed further in the following

section and in Table 5.1.

Table4.4 summarizes the results Bfand-Altman analysis and linear regression analysis at all
rates. Thaable supports the observation that the largest diaurs in WMwith a-1.14% bias in Wivat
an acceleration factaf 36! . Referring toTable4.1, this bias isconsiderablysmaller than the SD of F
within WM for fully-sampled daté2.8%). For BlandAltman analysismean differaces andimits of
agreemenheed to bénterpretedn the context of the measurements in question. To provide a point of
comparison, the last row dfable4.4 shows statistical data analysis betwadully -sampled scanescan
baseline imagesollected in one subject. Due to time constraints, it is not possibleaimgrére the entire
set of MT-weighted images in a single sessfonthe protocol used in this thesis. Therefore, only the
baseline volume was+acquired describechereasbaselinerescan (BR) results. Although this may be
an underestimation of changes seen between a truges@an comparison, discrepancies between
baseline scans propagate to all volumasnd) the MTFnormalization step, therefore making it a ladic
point of comparisonThese results, presented in the bottom rowaifle4.4, show asmallpositive bias
and limits of agreement smaller than those of any acceleration factorm ikecthesis. For example, in
an ROI ofall brain voxels, the limits ofgreement are 1.4 times larger for acceleration factor of 4as

compared to ER data.

Linear regression results presentedable4.4 were performed on scatter plots in which voxel

pairs were pltied with the accelerated F value on thaxys and the comparison (fulsampled) F values
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on the xaxis. For all acceleration rates and RGilepesindicatevoxel pair deviation greater thd®%

(slope < 0.9)and underestimation of accelerated F vainereasas acceleratiofactorincreases. This
corresponds to the increasing negabiasobserved in Bland\tman plots. ylntercepts are consistently
above zerand increase with acceleration factor. Finallfl,vRIues decrease as acceleration irszga

and are belov@.9 for d acceleration fact@mpresented in this thesi®verall, linear regression analysis

does not report a high degree of correlation at any acceleration factor studied in this work. As explained
in Section 3.3, linear regressiogsults may not be indicative of true agreembatvever theyare

included in this work as they may provide useful comparisons against other resdacbhreports these

values.

Paired ttests were performed to determine if there was a statisticaflifisant difference
between the pairwise meaoffully -sampled and acceleratBemaps inWM or GM ROIs The results of
this analysis detected significant differences (i.e. h=1, null hypothesis rejbetaden fullysampled
and acceleratedheans of F i'WM, for all acceleration factors and sampling versidrss result is
consistent with findings from the Blam&ltman analysis which demonstratedgativebias in all
acceleration factors of a WM ROI; therefore, the pairwise differenweckea means in eadVM ROI
doesnot have a mean of zeamd the null hypothesis is rejectéd GM, significant differences were not
detected for any sampling version at acceleration factors o84, and 12 . For 1632! accelerated
data, some (but not all) of the versiaesulted in statistally significant differenceBland-Altman,
linear regression, anetést statisticare summarized in Table 5.%€ction 5.2 Overall,Bland-Altman
analysis supports the use of modest acceleration fabtmnever F-maps aresshownto bemuch more

susceptible to acceleration artefacts than raw images-spelctra.
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Table4.4 Bland-Altman and linear regression analysis of acceleratetdps for all brain voxels, and ROl's in Wahd
GM. Analysis of baselinreescan (BR) versus initial scan is provided in the bottom r@land-Altman results may provide
a helpful point of comparison for future studies, and linear regression, summarized By#ieeR can also be used for
comparison agaist other studies. No’Ralue was greater than 0.9 for any acceleration factor, however basektan
data was highly correlated ¢R0.9).
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5! Discussion

5.1 gMT Modelling

Detailed gMT modelling resulfsom fully-sampled datare provided in Section 4t validate
the gMT protocol used in this work. Although this information is independent of image acceleration, it
was reported to compare the qMT results of this work against existing literature and to contribute new
knowledge to the expected gMT parameterhealthy subjects at a field strength of Bilfully-sampled
data, he results of gMparametric Fmaps(Table4.1) are consistent withiterature valuesSledet. al’’!
reportedr values of approximatel@.124in frontal and occipital WM an@.067in frontd and occipital
GM in their study of regional variations in gMT paramet&snaps acquired in this study are in
agreement witlvaluesreported abovevhich were acquired usirey606point protocol Admittedly, F
parameter values found WM in this workare on the low end di/pical literaturevalues.ln a study
regarding the reproducibility of qMT parameters, Levesefual! found F to be around 061in WM
ROI's and 0.07 in the cauganucleus (GM), averaged ovecanrescan values in sixealthy subjects.
The assessment of timing and transfer rate parameters is more challenging due to the limited number of
studies which repotheseqMT parameteresults at a field strength of 3T. In their investigation of MR
and gMT parameters measured in various tissues at 3T, Seanad 72! reported F, k and T,
parametric valuesollected in tissue samples adyine WM and GMReported findings were F = 0.14,
=3.2s', and B,= 10" s in WM, and F = 0.05,;k 2s*, and B,= 9" s in GM.Their study varied
significantly form work presented here in tlgd T valueswere measureéx vivoin bovine tissue
samplesand thathe study was performed with a significantly different prota@onsisting of a CW
pulse nodeland 182 MTweighted images. Nonetheless, F andv@ilues were consistenttiv those
reported inTable4.1. k; values reported in this woik:= 1.99 in WM and 0.78 in GMare significantly

lower than those reported abov@ther studiesvhich implement gMT imaging at 3T provide some
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insight into expected parameter values, although detailed results are not reported. Betuat€&d
presented qMT parameter maps colledétedivoat 3T using the samscquisition sequence #ss work
however theydid not reporimeasured values directly. These maps appear to correlate with the results of
this work in k and in GM regions of F.JJresults are considerably higher than those of this work, and R
is not presentedn a similar paper, the authors used gMRLab to EitelgMT responses for the same
signal model used hét&!. Although real measurements are petformed simultion parameters were
setto; F = 0.15,¢k 4 s, Ry = 1.118", Tx= 30ms, and = 12" s in WM, and F = 0.075k 2.5s", Ry

= 0.778, T,s=55ms, and Z = 11" s in GM.By comparison, the results of this thesis are smaller in k
and Ty, while other parameters are in close agreenidvd.results of this work are believed to be
consbtent with literature valuder all gMT parameters except, kvhich is likely to be an

underestimation of theue free pookxchange rate, and;Twhich is below the expected fielaxation

rate of the free pool.

MT parameter and field maps used toreot field inhomogeneities and constrain parameters in
the gMT model may be responsible for belawerage valueeported in this workFor examplethe
VFA T, mappingtechniqugused herejs known to overestimate; Values in brain tissue compared to
the conventionally accepdegold-standard IR techniquey up to 30922 Although there are a wide
range of T values reported in the literatuireboth WM and GM tissu&§81128H131 it has been
recommended that,Tnapping techniges be validated against IR measurers&tit Time constraits
precludethe use of IR atheprimary T, mapping techniqui this study however it may be helpful to
implement IR T mapping in accelerated protocols, or to perform shstjite IR T; mapping to vhadate
VFA maps. In additioperrors in the estimatn of B, field maps are known to affect gMT parameters. In
astudy regarding the sensitivity of qMT parameters todiations, Boudreaat. al'**? found that a
10% underestimation of;Bnaps(in combination withB; correctedvFA T, maps)at 3T resulted in 25%
error in k and 6.7% error in & The likely overestimation of1 and potential variations in B1 may

account for the underestimation gfand T seen in this workTable4.1 reports the intesubject
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variation of mean gMT parameters found in this thesis. These variations (reported ag€sijilar to
Sledet. al*®!, who found COV's ofipproximately 9% ifF, 12% in #g, 5% in %sg, and 4% in' (y (T
not reportedfompared t@pproximately 6% i, 11% in #g, 8% in %g, and 6% in' () in this work,
averaged across ROI's. Overd#ile inter-subjectvariability found here is considered be reasonable

based on findings reported in literature.

5.2 Acceleratedimage Quality

Section 4.2 reports accelerated image quality as images are collected and passed through the gMT
parametric mapping protocol. Data was analyzed across each of thede gieesmine how each step
affects the final parametric gMT map qualifigure4.3 andFigure4.4 demonstrate a high degree of
accuracy in the initial Mfweighted images. This finding is particularlytable considering the
substantial acceleration factors attempted in this work, and that figures depict data from volumes with
relatively high errors compared with the overall dataset (Table 4.2 and TablRegR)ns most severely
affected ly image accelation occur at structural boundaries such ap#reneterof brain tssueand
edges of ventricledAccelerated imagedemonstrate blurring of WM/GM boundarigeatis more
prominent ascceleration factoncreasesHigh spatialfrequency information (sth as sharp edges) are
most susceptible terrorscaused by acceleration, #és informationis encodedn the periphery of k
space where sampling is the least delike.errors present in absolute difference imaggare4.3 (b)
appear to be more prominent in outer regions of the brain. This observation corresponds to the
guantitative analysis, where NMSE values are higher in GM than in WM, as depi€tigdiia4.3 (c).

Another notable artefact preséntaccelerated images is the ringing present irptisteriorouter portions
of the brain, which increases as acceleration increases. In their review papereflaaipdhcite blurring
of fine detail and global ringing as the two primary artefacts observed in CS studies, prominent in brain

images above acceleration factors dvf Although present at higher acceleration factors, these artefacts
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are not directlyisible at an acceleratiora€tor of 4 in this work. The improved performance of raw
images in this work is likely due to larger matrix sizes which exploit sparsity in four dimersSigase
4.4 demonstrates the same trend indddrmalized images as wasepent in raw MTweighted images.
One notable difference is the clear underestimation of voxels in ventricles, which appear darker as
acceleration increaséBigure4.4 (a)) and are the most prominent feature present in differenages

(Figure4.4 (b)).

An interesting result afmagereconstructionn multiple sampling versions is that the variability
between sampling versions can match or exceed differences between different acceleration rates. For
example,Figure4.3 (c) demonstrates very little change in NMSE betweenh d2d 16 acceleration
factors In this casgthe error bar of each measurement surpasses the difference between them. This
indicates that sampling patternncpotentially have a large effect on achievable acceleration factors, and
that care should be taken to dse an optimal sampling versiamenapplying these results

prospectively acquired data.

The results of spectra analysishow exceptional agreeent between fulhsampled and
accelerated-spectra, even at the highest acceleration factors attempted in thisSeork.important
differences to note are the slight oxemtimation of zspectra response in WM, and the overestimation at
lower +,- and underestimation at higher in GM. Although barely visible in the-gpectra themselves,
these systematic differences can have a significant impact on the fit results of the gM THigode#.6
demonstrates that aceehted differences are much greateWWM as compared to GM, aridat WM
errorsincrease at a much faster rate than GM emsracceleration increases. This is a surprising result
given thaterrors in MTFweighted and MTnormalized images were substangiamaller in WM as
compared to GM. One possible explanation is thatehalarization paramete(s,-) used in this work
have a disproportionate eftezn different MTFoffset images. This could impattte zspectra by biasing

one end more than the other (ass sedtigare4.5), in effectaltering their shapdue to differeces in
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WM and GM responsdsiniquely shaped-gpectra)it is possible that the effect is mgeonouncedor

WM z-spectra than for GM-gpectra. One possible culprit could be the locattank constraint.(g),

designed to enforce smooth variatiortivibeen adjacent time points. For data acquired in theoffiget
dimension it may be necessary to sdivide the reconstruction problem into two 4D reconstruction
problems, one for eadhy; . Alternately, it may be necessary tedefinethe regularizon parameter
affecting the MToffset dimension to be more appropriate for MT data as opposed to temporally acquired
data. The increased error in Wi¥spectra not accounted for in normalized images highlights the need to
select and optimize regularizatiparameters based orspectra angMT mapperformancerather than

on MT-weighted image performanedone Nonetheless, NMSE values presenteHigure4.6 are
substantially smaller than those presented forWwEighted and MThomalized images, providing

promising results fofuture work accelerating gMT and CEST imaging

Accelerated Fmapsdemonstrate ringing artefacts facceleration factors6* and above,
however blurring of tissue boundariesst noticeableat any accelation factor. The most obvious
difference present iRigure4.7 is the underestimation of WM values in accelerataddps. It is
important to note that the colobar used irFigure4.7(a) can make smathanges vergvidentat the
higher end of the scale, and thatlgp biases are best summarized usiland-Altman analysisKigure
4.9). Nonetheless, these discernable underestimations present at all acceleration carexseaneg,
especially given that the primary application efrfaps is to determine the relative restricted pool size in
healthy and diseased WM. Other observable changes induced by accelerationimochaded values in
ventricles andlecreased values areaf above average WM parametedd five subjects have areas
within fully-sampled WM where F values are above normal (F>0.18), typically near the outer perimeter
of the brain (se€igure4.2). Of all subjectsthe subject showmiFigure4.7 demonstrates the largest area
of above normal F values. These discrepancies are believed to be due to the coil sensitivity profile of the
head coil used in this imaging stu®uboptimal field mapping techniques maiso play a role in

inconsistent gMT results throughout the entire brain voluksale from thesdlifferences which are
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presentt all acceleration factoraccelerated fnapsappear very similar téully -sampled maps,

particularly at acceleration factoo§4* and & .

Figure4.8 presents quantitatidMSE analysis for differences observed in all giddarameter
maps. When averaged across all subjects and versions, errors in GM remain much higher than those
present in WM. This cdd be due to ringing artefacts which primarily affect outer regions of the brain
thatare dominated by GM. Of the gMT parameter maps assessed in this thesis; Feant i the
largest NMSE values. Unfortunately, these parameters are the most clingefilll, therefore errors
present in these parameters need to be addressed and characterized before routine use of CS in gMT may
be possibleAs noted in the results section, tRg parameter has significantly less error than any other
parameterhowever the model constrains;Roy R.°*® an unaccelerated MR parameter malpe Variable
performance amongthergMT parameters camt least partiallybe attributed tmornruniform errors
observed iraccelerated-spectraasspecific parameters are more clyselated todifferent regionsof
the zspectrunft®. For example, 7 estimation is most dependant on parts of tspectrum collected far
off-resonace, while & depends on points aeresonance, as well as far-oésonance point®otably,
errors aretypically largestand demonstrate the most variabilitythe k parameterwhich has been cited

as being the most difficult parameter to consffdimTherefore, mall variations induced by

undersampling are likely to affect the ditk; more severely than other parameters

Perhaps the most portantassessmenf image quality comes from Blasltman analysisAs
opposed to methods such as linear regressibith are designed to assess correlation, Bhsltmhan
plots are designed to assess agreement between two different measurement teélgugeé.9
demonstrates the agreement betweenfdiynpled and accelerateehtaps produced in this thesis. When
calculated ér all brain voxelgFigure4.9, top row), there appears to be two disticlasters of sample
pairs, each centered unique positionsn thex-axis. These clusters correspond to voxels of GM (lower

mean F) and voxels of WM (higher mean\hich are thereforanalyzed separatefnd are provideth
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thebottom two rows ofigure4.9. The yaxis of BlandAltman plots presents the difference in pairs of F
measurerants, in the same ratio units tiamaps are presented in. The key measurements by which to
evaluate agreement are the mean difference betweah pairs Figure4.9, solid lines) which indicates
any bias present between measurement methods, and the limits of agréegueet©, dashed lines)
which indicate overall agreement between the nuthbable4.4 presents thesealues for all

acceleration factorstudied in this thesis. In the overall image (top row), a syea#tatistically
significantnegative bias can be observed in the Blaftchan plots.Mean differene (bias) values were
tested to determine if they were significantly different from zero using @amgle itest at the 5%
significance levelln WM voxels (middle row), atatisticallysignificantnegative bias ipresentt all
acceleration factorsThis is consistent with trends observed in accelerated s, which had a noticeable
decrease in WM Walues at all acceleration factdfEgure4.7). In GM, no bias is observable in Bland
Altman plots however Table4.4 reveals a small negative bias at lower accelerdtiotorsand a small
positive bias at highdactors(mean differenceot significantly different from zero at an acceleration
factor of 20 ). It should also be noted that the bias prebetiveen two fullysampled datasets collected
with a rescanned baseline image were statistically signifiéanéxpected, bias and limits of agreement
tend to increase as acceleration factor increases (except for GM bias, as noted above). While bias and
limits of agreement support previous observatitme; are most informative when used to quantify

acceptable agreement between accele@tedully-sampled measurements.

Acceptable bias and limits of agreement are those which do not exceed valueb/tgpasived
between two gokétandard measurements (i.e. fedlgmpled scan repeated twice). Basetiescan (BR)
results were performed in one subject to compare agreement in accelerated Trablgds4
demonstrates that-R hias and limits of agreement asmallerthan any acceleration factor studied in this
work. For all brain voxels, an acceleration factor ofifas a bias approximately ¥.7arger and limits of
agreement approximately *.3arger than BR differencesAlthough BR is a useful comparison, other

measures may better characterize typical agreement betweesdnipled gqMT dataBy rescanning only
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the baselinémagein one subjectit is likely that the BR differencediaveunderestimated typical scan

rescan vaability in gMT imaging.In a study regarding the reproducibility of gMT parameters at 3T,
Levesqueet. al'®® reportedmean intrasubject variatiorirom longitudinal data collected over a period of

3 yearsAlthough this information cannot help determine acceptable limits of agreement, an acceptable
amount of bias in an accelerated image can be defined as less than or equal to the CoV reported across
longitudinal measurementsrom a sample of five healthy controls, mean CoV's were approximately 5%
in F, averaged over data collected in multiple ROI's. This longitudinatsuatsgect variation corresponds

to F differences of 0.64% in WM and 0.34% in GMa8values reported ifiable4.4 are less thaor

equal tothe longitudinal intresubject CoV for all acceleration factors in GM, and for acceleration factors
of 4* ,8* , and 12 in WM. This thesis presents typical F parameterararé within fullysampled ROI's

in Table4.1 (within ROI SD, pooled across subject§hese values can be used to inform acceptable

limits of agreement in accelerated datad are depicted as shaded regions in FigureTh®poded SD

within an ROI of WM for fullysampled data was found to be 0.028, or 2.8%. For an acceleration factor
of 4* | limits of agreement in WM are less than the SD of fully sampled data. For an ROl of GM, limits of
agreement in# accelerated data (2.2%)edess than the fully sampled SD (2.4%)verall, Bland

Altman findings support the use of image acceleration, for the gMT protocol used in this work, up to an
acceleration factor of*4. If bias alone is considered, acceleration factors ofd , or 12 can produce

F-maps of acceptable image quality.

Paired ttests were used in addition to bias assessment from Bllameén analysis. The purpose
of this test was to determilifethere was a significant difference between WM and GM means in fully
sampledand accelerated-faps. As discussed in Section 4.2.4, there were significant differences for all
acceleration factors and sampling versions in WM, and there were no significant differences in GM for
acceleration factors of4 8, and 12 , in any of the dur sampling versions. These results were
consistent with Bland\ltman analysis in that WM tissues, which were shown to have a negative bias at

all acceleration factors, also resulted in significant pairwise differences betweesduipled and
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acceleraté Fmaps across the five subjects. Although this result indicates that acceleratgas [Eannot
be considered an equivalent measure of F in \Wilasurement bias's may not be the most important
measure of image quality. For example, a measurement whichainai good limits of agreement but has
a known bias can be could be scaled by a correction factor, resulting in an image which is in close
agreement with thgold-standard methodtach of the comparison methods stated here have been
summarized in Table b.below.The true test of image acceleration will come from future stubags
implement thisaccelerated acquisition technigospectively however these findings suggest

acceleration factors of*4are likely possible, and that acceleration factorsouti?* should be explored.

Table5.1 Summary of statistical tests. Each method of comparison used gttitlis

is presented alongsidesitutoff value and the acceleration factors which fell within

the aceptable rangeMean difference<g), and limits of agreement (LOW4) refer

to the measures obtained from BlaAliman analysis. BR indicates the baseline
rescantestperformed in one subject. These statistical measures can be used together
to inform future directions and which factors to explore further.

* Longitudinal coefficients of variation within healthy subjects reported i*Re
**Pooled standard deviation across the ROI in fedlgmpled Fmaps presented in this
thesis.

5.3 Limitations

In this thesis, several important limitations may have hindered the performance of image
acceleration and the interpretation of those results. Nqtaprsity constraints and their associated

regularization parameters's) were selected empirically based on a singlew#ighted image. Each
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sparsifying term was removed and replaced from the reconstructidnyesree to confirm that it

improved reconstruction performance. Regularization parametsjsyere chosen bincreasing and
decreasig the default values by factooé5 and 10 to determine which had the least observable artefact.
Once the ideal range of eachvas identified, parameters were further refined using 10% intes¥/ st
range The. resulting inthe least observable artefacts in the reconstructedwigihted image was
selected as the weighting factor for that parameter, using a median value when differences were not
discernible This pseudesystematic approach can be improved in future resegrpetiorming an
exhaustive search of all possible regularization pararsetabinationsand quantitative analysis of

lowest resulting NMSE. In additiothe performanceof gMT parameter maps differs from that\df -
weighted imagesas seen by the changerh GM to WM dominangerrors in parameter maps would be
preferable to select regularization parameters based on overall gMT performance rather than a single
representative M-weighted image. Selection of appropriate regularization parameters areitgteas a
challenge in CS studiB¥. It has been suggested that a standardized method for selecting regularization
parameters may be necessary before widespread clinical adoption of @@ pssiblé®. Optimization

of sampling patterns are also considered to be a challenge of the CS method, especially as they are
application dependenilthough sampling patternsexe selected based on literature recommendations,
the results of this study may be improved through the implementation of gMT spgeaifiding pattern

optimization or through the use of dathiven sampling strategies

Although theacquisitionprotocolused in this work is common among gMT studies, it is possible
to optimizeqMT protocob to capture MToffsets which result in a more stable fit of the gMT mbdel
Improving the fit results ofMT could lead to more accurate parameter estimatiobsth fuly-sampled
andundersampled MT datés seen irFigure4.7, areas of inconsistent paramegstimationin fully-
sampled Fmaps correspond to areas of increased error in undersampiagd: These differences make
it difficult to assess meaningful variation between ftdbmpled and accelerated imageptimized gMT

protocols have beeshown toresult indecrease F-mapvariability (within an ROI of WM) as compared
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to the uniform protocol used in this wéfk Implementation of an optiired qMT protocomaytherefore
improve the reliability of fullysampled=-maps, thushe ability to assess image quality in acceler&ted

maps.

This work has assessed a wide range of acceleration factots 82 ) with relativelylarge
increments beteen them. Although appropriate for Mieighted, MFnormalized, and-spectra
analysisJarge gaps betwedaower acceleration factors have hindered the interpretation of resgl4Tin
parametric mapawhich are more sensitite acceleratiorartefactsOverall, these results support the use
of an acceleration factor of4 and in terms of bias alone support the afsen acceleration factor ofp
to 12* . Had acceleration faéars of 5, 6* , and 7 also been explored, it is likely that the resultauigo
havesupported the use of Sor 6 undersampled data. Due to long reconstruction and gMT modelling
times, analysis of more rates were oohsideredn the present work, although these sampling rates can
be retrospectively applied to the current dataséiture work. It is important thahe prospective
translation of this worknclude more acceleratidactors in the 2 to 12 undersampled range, if the
current acquisition protocol is to be used. More generally, gqMT acceleration is only possible in
acceleratin factors much lower than what can be achieved in 4DaMdifhted data, therefore it is
important tostudy a smaller range of acceleration factors beltnat is predicted byaw image

acceleration studies.

Although scarrescan variation was approximatesing the rescan of a baseline volume in a
single subject, this comparison method does not represent trueescan variabilityof a full gMT
protocol and has not been performed in all subjects. One limitation of this work is the lack of a robust set
of criteria to determine which accelerated images are clinically acceptable. Although a fulStam
protocol was not possible in this work duditoe limitations éubjecttolerancg, allowing time for such
an investigation or designing a separate itigaton to explore this would be highly beneficial when

assessing accelerated images. Part of the difficulty in defining acceptable limits of agreement for
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accelerated images is the lack of literature regarding expected gMT parameter values at 3hafldditio
although some researckérave investigated the variability betweeran qMT parametéfsand the
reproducibility of mean valu&8, detailed information about withiROI variablity is limited. As image
acceleration in@ases the with#ROI variability, it wouldbe helpful to knovtypical variabilityand uset

to inform acceptable limits ofggmeement for accelerated images. A limitation of prospective studies is the
lack of a @ld-standard case by which to com@accelerated images. Thimitation can be avoided in

the prospective translation of this work by designing a-casérol study that acquires fulgampled and
prospectively undersampled gMT data in each subject.CEm®nable a robust characterization of
accuracy in prospectively undersampled ghtaveverinformation about tolerable limits of agreement

are still required.

5.4 Future Work

As this work presents only retrospectively undersampled data, it is impartzonigider how
these results will translate for prospectively undersampled data with real acquisition time savings.
Achievable acceleration rates may differ between rpécts/e and prospective studi@sth prospective
studies being unable to matabceération rates predicted retrospectively. Although the cause of this
discrepancy isot definitivelyknown it has been proposed that edmnyrents induced by the acquisition
of data in a random trajectory may be a fdttdrit should also be noted that in their clinical review
paper, Jaspaet. al* observed no discernable difference in achievable acceleration factors reported
between retrospective and prospective CS studies. The prospective translation of preliminary
retrospective studies may also be affected by the desire to us@ttimaadditional acquisition time
allowance to collect higher resolution images; either spatially, tempd@kéllyoffset), or both. This has
the effect of increasing the maximum achievable acceleration factor, as sparsity is increased with

dimensionality Although larger matrix sizes facilitate higher acceleration factors;teighiution
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prospective studies are not directly comparable terleswlution retrospective studies. The prospective
translation of this work should proceed with the knowledge teatrtaximum acceleration factor reported
here may not provide acceptable images acquired prospectively, or that results may not be directly

comparable between the two methods tduan increase in matrix size.

MR parameter mappingdRPM) and DCEechnigueshave many similarities with gMT imaging
and have beesuccessfully acceleratedingemergingacceleratioriechniquesin the case of MRPM, the
acquisition of multiple datasets with modulated pulse sequence parameters enables quéissitetive
dependenparameter estimation, while DCE requires multiple datasets to be acquired during the
administration of a contrast ageRarameter estimation is achieved by fitting a parardgpendent
model such as T1, T2, or vascular permeabilit§f?{Kin DCE tracerkinetic TK modelling) on a voxel
wise basisin much the same way as qMSignal evolution as a function of modulated acquisition
parameter (or contrast agent) usually yields a smooth curveawsjithrse first or seconarder derivative.
This provides anadditional opportunity to exploit sparsity during reconstruétf8nUnlike typical
acceleratiomprotocols(such as the one used hendjich reconstruct intermediate images before
modelling occursGuoet. al**¥ have demonstrated a frameworkTa¢ parameteestimation that directly
incorporates undersampleespace data. Here, multiple TK parameter maps were reconstwithetigh
fidelity at undersampling raseup to 108 . This sacalled "direct" reconstruction method was able to
significantly out-perform the combined GBI indirect reconstruction method, similarthe methodised
in this thesisModelbased direct reconstruction helsobeendemonstrated if; and T, parameter
mapping.Sunpf et. al***! were able to achieve acceptablenfaps from 5 undersampled miti-channel
data, an@haoet. al™®*! demonstrated 5.33undersampled Tmaps from simulated datBirect
reconstructtn methods can be implemented with or without additional sparsity constvatits
incorporate CS theory into parameter estimatiodight of the success of other direct modelling
strategiesit may be of future interest tovestigate the feasibilitgf incorporatingundersampled-kpace

data into the gMT model to achieve dirgdlT modelling potentially at muctiigher acceleration
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factors This would involve reframing the gMT signal equation in terms-sp&ceand formulating the

parameter mdelling problem as a statistical parameter estimation problem.

One of the primary ggications of gMT imaging is & usen the investigation omyelin content
in WM diseases such as MS. Previous work has focused on the characterization of qMT parameters in MS
lesions in posmortem tissué”, andin vivd*®. The need to shorten acquisition timesdiimical
translation of qMT imaging is especially important for patient populations which may find long scans
especially challenging. Therefore, it is of critical importareettidy acceleration artefacts which may be
present in demyelinated lesions using either retrospeatipeospective CS study desigi$e choiceof
optimal acceleration factor f@MT imagingmust take into account the ability to accurately detect
restricted pool differences in WM lesions. Therefore, future watruldfocus on characterizing

acceleration artefacts in data gathered from MS patient populations
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6! Conclusion

In this thesis, the first known work applying combireeanpressed sensing and &l imaging
(CSPI) to gMT imaging has been present&tis thesis has outlinealnovel strategy for the selection of
frequencyencode lines ofdspace which incorporaté®isson disc sampling strategies without disruption
to the power probability dengifunction recommended for brain MRThefirst detailed account &£S
P1gMT parameter estimates obtained ata8&presented heras well as an analysis of inteubject
variability observed in healthy controls. Finallliis work hasdemonstrated thahe SPGR gMTmodelis
highly sensitive to small-gpectrum changes induced by image acceleration. Despite promising results in
raw imageswith little-to-no image degradation visible in images up to and includaugleration factors
of 16* , andthe abilty to produce accuratespectra at high acceleration factagp]T parametric maps
were shown to achieve much more modest acceleration factors. Based on changes in mean values and
within-ROI variations typically seen across fulgmpled imagesn accelation factor of 4 was found
to maintain acceptable image qualifihe exceptional agreement between fidmpled and accelerated
Z-spectra shows promising results for CEST imaging, which mégskesensitive to smaltspectrum
changes thagMT. In future work, optimization of regularization parameters will be of critical
importance to minimize acceleration artefaghdto increase the achievable acceleratimetdr.

Additionally, speciaktonsideration should be given to the specific impact these chioine on gMT
parametric maps, not just on MiWeighted imagedWith the current work supporting the use of an
acceleration factor of*4, acquisition times can be reduced significantly to make the gMT techaique

clinically feasibleimaging tool to study WMlisease.
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