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Abstract 

 Quantitative magnetization transfer (qMT) is an advanced magnetic resonance imaging (MRI) 

technique with enhanced specificity to myelin. The acquisition of many images with unique 

magnetization transfer (MT) saturation results in a signal response curve known as the z-spectrum. The 

two-pool tissue model, which describes properties of nuclei with free and restricted motion, can be fit to 

the z-spectrum to provide details of macromolecular tissue content (including myelin) beyond what can 

be seen from conventional single saturation approaches (e.g. MT ratio). Widespread use of qMT has been 

hindered by long acquisition times inherent to z-spectrum based imaging techniques including qMT and 

chemical exchange saturation transfer (CEST). This thesis uses sparseSENSE, a combined parallel 

imaging and compressed sensing technique, to accelerate MT-weighted images. In this thesis, sparsifying 

reconstruction algorithms are shown to enable high quality image reconstruction from 4D qMT datasets, 

retrospectively undersampled by factors of up to 32!. MT-weighted images demonstrate exceptional 

image quality at high acceleration factors, which is shown to translate well to accelerated z-spectra. 

However, qMT parametric maps produced from accelerated z-spectra are shown to be sensitive to 

acceleration artefacts and can only be accelerated by a factor of 4! with minimal loss of image quality. 

Nonetheless, this acceleration can yield a significant acquisition time savings when applied to 

prospectively undersampled data. In addition, time savings created by acceleration can be used to increase 

spatial resolution or collect more MT-weighted images, enabling even higher acceleration factors. Long 

acquisition times have often been cited as a limitation of the qMT method. This work has addressed that 

limitation, making qMT protocols more feasible for in vivo research studies, particularly in youth and 

patient populations. 
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1! Introduction 

 Quantitative magnetization transfer (qMT)[1] is an advanced magnetic resonance imaging (MRI) 

technique that enables the measurement of a quantitative index of myelin content in brain white matter. 

Macromolecules, including those which make up myelin, have transverse relaxation (T2) times far too 

short to be directly detected with typical MRI techniques. These exceptionally short relaxation times 

(<100 µs) are caused by the restricted motion of protons (hydrogen nuclei) in macromolecules, which 

create an environment far more magnetically heterogeneous (and having long correlation times) than that 

of rapidly moving protons in liquids[2]. Although macromolecules cannot be imaged directly, 

magnetization transfer (MT) techniques exploit the interaction between free (liquid) and restricted 

(macromolecular) protons to create a new type of image contrast. When prepared with an off-resonance 

pulse, restricted protons become selectively saturated while free protons remain unaffected[2]. As a result, 

the transfer of magnetization between species induces an observable change in image signal. Typically, 

this phenomenon is represented by the MT ratio (MTR), which has been very useful in the study of 

human white matter (WM) disease[3]. qMT aims to describe the MT effect in greater detail by modelling 

several parameters of the two-pool tissue model[4]. Unlike MTR's, parametric maps from qMT modelling 

describe the underlying tissue properties that govern MT exchange and are independent of acquisition 

sequence parameters[3]. While MTR requires the acquisition of just two unique contrast images, qMT is a 

z-spectrum based modelling technique which requires a minimum of eight images and, in some cases, 

over thirty are desired. The large number of images required for qMT results in exceptionally long 

acquisition times - approximately 50 minutes for whole-brain coverage.  

 

 Despite long acquisition times, z-spectrum based imaging techniques including qMT and 

chemical exchange saturation transfer (CEST)[5], [6] provide a detailed insight into molecules of interest. 

Both techniques use off-resonance saturation pulses to induce an exchange of saturated protons; however, 
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each targets different molecules and has unique applications. CEST imaging is used to target exogenous 

contrast agents or specific endogenous biomolecules[7]. Whereas traditional paramagnetic contrast agents 

can be toxic and are required in high concentrations, CEST agents can include diamagnetic compounds, 

can be administered in much smaller doses, and can be selectively turned on or off[8]. Since its recent 

inception, a wide range of clinical applications for CEST imaging have emerged; exogenous agents such 

as glucose have been used to enhance gliomas[9] while endogenous molecules such as glutamate and 

lactate have been targeted to lateralize seizure foci[10] and study muscle physiology[11]. Whereas CEST 

utilizes the off-resonance frequency range much closer to water resonance, qMT modelling targets 

macromolecular tissue content by applying saturation pulses in the 400 - 20,000 Hz offset frequency 

range. Measures obtained from qMT modelling have been shown to strongly correlate with myelin in 

human brain WM[3], [12], making it a novel technique for the study of WM diseases and assessment of new 

therapeutics. Myelin plays an important role in healthy brain function, and demyelination is considered to 

be a major pathological feature of neurological diseases such as multiple sclerosis (MS), optic neuritis, 

and Devic’s disease. Demyelination can result in axonal loss and lead to devastating symptoms such as 

cognitive impairment and permanent loss of motor function[13]. The ability to non-invasively measure 

myelin content is essential in the development of drugs that attempt to slow or stop demyelination, as well 

as those that may promote remyelination. The application of qMT to improve specificity to myelin 

without hardware and sequence dependent results have made it a promising technique in the study of WM 

diseases. Unfortunately, the clinical translation of z-spectrum based techniques, including qMT, has 

remained hindered by inherently long acquisition times. The development of faster qMT protocols has 

often been cited as an important area of future research[2], [14]–[16]. The aim of this thesis is to shorten qMT 

imaging times using a combined compressed sensing (CS) and parallel imaging (PI) acceleration method. 

 

 In MRI, sampling requirements have traditionally been governed by the desired spatial and 

temporal resolution. Techniques which aim to collect fewer samples and maintain resolution can yield an 

immediate acquisition time savings and have become a desirable method of acceleration[17]. PI is used to 
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relax sampling requirements by collecting signal from multiple receive coils simultaneously[18]. The 

spatial information encoded by different coil locations supplements raw data to enable undersampling. 

Now widely used in many types of MRI, PI has enabled modest acceleration factors and is currently 

implemented in most qMT acquisitions. CS also aims to undersample data, however there is no additional 

information associated with the method. Based on image compression theory, CS enables highly 

undersampled data to be directly reconstructed with little-to-no loss of image quality[19]. Natural images 

(including MRI) are compressible, meaning they can be stored in a significantly smaller format such as 

JPEG[20]. Through the use of mathematical transforms and storage of only the most important coefficients, 

images can be successfully compressed, yet maintain diagnostic efficacy[19]. CS is based on the idea that 

if a small subset of data can maintain the important features of the final image, it should be possible to 

collect far less data during acquisition[17]. Using an iterative reconstruction method with sparsifying 

transforms, such as total variation (TV) or wavelet, CS is able to achieve high quality images from data 

up to 12.5! undersampled[21]. sparseSENSE is a method which combines both PI and CS to achieve even 

greater acceleration factors. In this thesis, a sparseSENSE reconstruction algorithm is applied to 

retrospectively undersampled qMT data to determine if it could be a feasible acceleration method for 

qMT, and what the highest possible acceleration factor is likely to be.  

 

 This thesis presents the first known work applying combined compressed sensing and parallel 

imaging (CS-PI) to qMT imaging. Retrospective undersampling of fully-sampled data is performed as a 

preliminary test of qMT parameter map acceleration. This retrospective study design enables accelerated 

images to be generated for multiple undersampling factors and unique sampling patterns, and provides a 

gold-standard point of comparison by which to assess accelerated image quality. The acquisition of fully-

sampled images has enabled this thesis to present the first detailed account of qMT parameter estimates 

obtained at 3T, and an analysis of inter-subject variability observed in five healthy control subjects. In 

addition, Section 3.2.4 outlines a novel strategy for the selection of undersampled data points. Overall, the 

aim of this thesis is to outline the potential for CS-PI to accelerate qMT imaging, and whether or not scan 
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times could be shortened to a clinically feasible duration. This study outlines some of the challenges 

associated with accelerated qMT and informs which acceleration factors may be possible in prospective 

work. 
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2! Background 

2.1! Myelin and Multiple Sclerosis 

Myelin is a sheath-like material that envelops the axons of nerve cells in the central and peripheral 

nervous system[22] and is an integral part of proper signal conduction through nerve cells. Acting as an 

electrical insulator, myelin can increase the speed of action potential transmission by up to 100 times 

compared to an unmyelinated axon[23]. Conduction speed is fundamental to complex motor and sensory 

processing, as well as cognitive ability. In addition to conduction, myelin is thought to regulate axonal 

transport[24], pH[25], and maintain axonal integrity[26]. Often described as an axon’s “protective coating”, 

diseases which undermine the health and abundance of myelin can have devastating effects on cognitive 

and motor function. 

 

Multiple sclerosis (MS) is a disease which affects the central nervous system and is characterized 

by loss of motor and sensory function. Although the cause is not fully understood, immune-mediated 

inflammation, demyelination, and subsequent axonal damage are known contributors to disease 

symptoms[27]. In WM, inflammation occurs in concentrated areas known as lesions. With time, this 

inflammation leads to the formation of demyelinating plaques and localized areas of damaged and eroded 

myelin[28]. Although visible on some types of MRI scans, it can be difficult to quantify myelin content 

within a lesion, making it difficult to assess disease progression and therapeutic response. Robust in vivo 

myelin measurement techniques are needed in order to improve diagnosis and treatment of MS and other 

demyelinating diseases. 

 

In the central nervous system, myelin is predominantly found in white matter (WM), although it is 

also present in gray matter (GM) in smaller quantities[23]. WM is therefore considered to be the tissue of 

primary interest throughout this thesis and is discussed separately from GM and brain tissue in general. 
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2.2! Basic MRI 

2.2.1! Generating Image Contrast 

MRI is made possible because of the relationship between electricity and magnetism. As 

described by Faraday’s law of induction, rotating magnetic charges induce an electromotive force in 

nearby electric circuits[29]. In the case of MRI, the body (or imaging object) provides the magnetic charges 

in the form of nuclei (hydrogen nuclei, most commonly), and the MRI hardware provides external 

magnetic fields and electric circuits designed to non-invasively interact with those nuclei. There are three 

main components present in MRI systems; the main magnetic field B0, the radiofrequency field B1, and 

linear gradient fields G.  

 

 The main magnetic field, B0, is produced by a high intensity magnet which is strong enough that 

nuclei with a net magnetic moment, often referred to as spins, tend to align with the field[29]. In the most 

commonly used cylindrical Helmholtz design, this field is oriented through the bore of the scanner which 

is conventionally defined as $. In the case of brain imaging, $ is oriented along the superior-inferior axes 

of the body. When in close proximity to B0, spins inside the body experience an alignment with the field 

and precession about the $ axis. Spins rotate at a well-defined frequency, the Larmor frequency H , FP, 

where B is the total magnetic field strength and F is the gyromagnetic ratio, a known constant unique to 

each species of nuclei[30]. Conventional MRI imaging is focused on the 1H species of hydrogen because it 

is the most abundant in the body due to high water content[29]. Though not all 1H nuclei in the body 

become aligned with B0, enough do so that there is a net magnetization vector along $. 

 

 The radiofrequency field B1 differs from B0 in that it is much weaker than B0, it is created by 

radiofrequency (RF) coil rather than by a static magnet, and that it is aligned orthogonally to B0. B1 fields 

are applied as an RF pulse tuned to the Larmor frequency of 1H in the transverse (?-#) plane. This has the 
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effect of rotating the magnetization vector of 1H spins towards the transverse plane by a prescribed angle. 

Though the spins are “tipped” towards the transverse plane, they continue to rotate about $ at the Larmor 

frequency. In the absence of B1, the rate at which spins realign themselves with B0 is tissue dependent, 

creating the image contrast essential for MRI. Characteristics which describe the relaxation back to 

equilibrium are; the recovery time constant of longitudinal magnetization vector components (T1), and the 

decay time constant of transverse magnetization vector components (T2). It is important to note that the 

length of the magnetization vector is not constant as spins realign to B0, therefore T1 and T2 are unique 

values where T1QT2 [29]. Different tissues have different MR contrast because of their unique T1, T2, and 

spin density (K) values. Adjusting MR pulse timing parameters enables images to take on different 

contrast characteristics weighted by the intrinsic T1, T2, or K of each tissue. As spins realign with B0, the 

net transverse magnetization can be detected as current induced in electric circuits, known in MRI as 

receive coils. Signal from the entire imaging object is detected simultaneously, making it necessary to 

distinguish unique spatial components of the signal using gradient fields. 

 

 

Figure 2.1 MRI pulse sequence diagram for a GRE sequence with slice-selective 
localization and 2D Fourier image reconstruction. Pulses shown for a duration of 
one TR. 
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 The gradient fields Gx and Gy are magnetic fields oriented along $, but vary linearly in amplitude 

along the ? and # directions respectively. The combined magnetic field (B0 and G), varying along one 

spatial dimension, say #, has the effect of changing the Larmor frequency of spins based on their y-

position. By applying a gradient for a small duration of time, the frequency differences in a given 

direction will cause a change of phase based on location. This is referred to as phase-encoding, and is 

conventionally performed in the # direction by Gy. If another gradient is applied in the orthogonal 

direction (?) during readout, the spins will have a unique frequency based on x-position. This is known as 

frequency-encoding, and is conventionally performed by Gx. In order to spatially encode signal in the $ 

direction, one method is to apply a gradient field Gz during the B1 excitation pulse. In the presence of Gz, 

spins have a variable Larmor frequency based on z-location, however only spins with a Larmor frequency 

matching the RF will be significantly “excited” by B1. By applying a sinc-like B1 pulse with a desired 

frequency bandwidth, only spins at a certain z-location with slice width 0$ (given by the RF pulse 

bandwidth and gradient strength) will be tipped into the transverse plane[30]. This is known as selective 

excitation, where Gz is the slice-select gradient. Alternately, signal in $ can be phase-encoded in the same 

way as #. Using the methods described above, linear gradient fields enable 3D spatial localization of MR 

signal, essential for producing MR images. 

  

2.2.2! Image Reconstruction 

 Figure 2.1 illustrates how gradients are applied during one readout cycle or repetition time (TR). 

Gradient and transmit RF coils are used to generate signal, followed by detection using receive RF coils 

which may be application specific (such as a head coil for brain imaging) and may include multiple 

channels (singular detection coils). During the readout of each TR, signal has already been localized to a 

specific slice in $, and by a specific phase in #, and is undergoing frequency localization in ?. In this way, 

we can think of one TR as filling one line (along x) of a raw data grid. In order to collect an entire image, 

the TR sequence is repeated with unique Gz and Gy encoding until all lines are collected. At the end of the 
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scan, we are left with a full grid of data, known as k-space. k-space is not the final image, but rather a 

representation of all the frequency and phase components of signal, more generally referred to as 

frequency-space. In order to reach the final MR image, k-space needs to be transformed into image-space 

via image reconstruction. 

 

 The Fourier transform is a mathematical transform which converts data between real-space 

(image-space) and frequency-space. In one dimension, the Fourier transform is defined as: 

 89: 5 ? , % RS , 5 ? (T=U;VWXS(Y?

Z

=Z

 [2.1] 

 

where F represents frequency-space and f represents real-space[29]. A spatial component x (in cm) 

transforms to kx (in cycles/cm) in frequency-space. The inverse Fourier transform, which is used to 

convert MRI k-space data (a.k.a. raw data) into the final image, is the inverse function of Equation 2.1: 
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[2.2] 

The equations above can also be used to represent time t (in s) in real-space and frequency f (in Hz) in 

frequency-space. These transforms can be expanded to 2D or 3D, as in the acquisition example above, 

depending on the type of imaging and reconstruction required. 

8<:
=9 % RS\ R]\ R^ , 5 ?\ #\ $

, %

Z

=Z

Z

=Z

RS\ R]\ R^ (T[U;V_WXS[W`][Wa^b(YRS

Z

=Z

YR](YR^ 

 

[2.3] 

Once the k-space F(kx,ky,kz) is converted to real-space using the inverse Fourier transform, f(x,y,z) is the 

final image resulting from an MR scan. 
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2.2.3! MRI Sequence Designs 

In MRI, the signal measured by receive coils is the net transverse magnetization of all spins 

within the sensitive volume of the receiver coil. The time constant of the exponential signal decay of the 

transverse plane is defined as T2 for ideal conditions; however, the net transverse magnetization decays 

much faster due to other interactions such as gradient fields, field inhomogeneities, and molecular 

shielding of electrons (chemical shift) [30]. The slightly different frequencies of the spins cause them to de-

phase from one another, resulting in a smaller net transverse magnetization vector. The time constant of 

the net transverse magnetization decay is defined as T2*. By altering the magnetic field such that spins 

begin to re-phase with one another, an “echo” is created with the remaining transverse magnetization 

components. MR sequences can be categorized by the method used to generate echoes. Gradient echo 

(GRE) sequences use only gradient fields to re-phase spins, while spin echo (SE) sequences use a 

secondary 180˚ RF pulse to invert the phase of spins, thus causing spins experiencing static field 

inhomogeneities to re-phase and produce a spin-echo (Figure 2.2 (a)), which is free of static field 

inhomogeneity effects.  

 

 GRE sequences apply a negative readout gradient before signal from an echo is collected. This 

has the effect of speeding up de-phasing of the initial signal. Once the net transverse magnetization has 

decayed, switching the direction of the readout gradient causes spins to re-phase and produce an echo. 

The pulse timing diagram (Figure 2.2 (b)) illustrates how gradients are applied to produce and record a 

gradient echo. GRE sequences are performed more commonly, as they can often be acquired in a faster 

time. 

 

 For shorter TR times such as those used in this study, magnetization may not be fully recovered 

(relaxed) along $ at the time of subsequent RF pulses. This is known as an uncontrolled partial steady-
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state free precession[31]. Spins can develop a position-dependent resonant offset angle which will affect 

the signal in the following RF cycle[31]. In order to prevent residual signal from affecting subsequent 

readouts, transverse signal must be eliminated, or “spoiled”, before the next excitation pulse. GRE 

sequences which include spoiling methods are referred to as spoiled GRE (SPGRE) sequences. There are 

several methods by which transverse magnetization can be spoiled, the precise implementation of which 

is often scanner manufacturer dependent. This thesis uses data collected on a General Electric (GE) 

Discovery 750 scanner which uses a technique called RF-spoiling. RF-spoiling is performed by randomly 

switching the phase of the RF pulse, or by incrementing the phase geometrically[32]. The phase 

accumulated between any two consecutive RF pulses is not constant, and may therefore cancel previous 

phase changes resulting in spoiled transverse magnetization[32]. 

 

 

Figure 2.2 Pulse sequence diagram for 3D spin echo (a) and gradient echo (b) 
acquisition techniques. In this illustration the spin echo is generated with a 
nonselective 180" pulse and the gradient echo is generated with a negative Gx 
lobe. Phase-encoding is performed in # and $ for 3D Fourier image 
reconstruction. Sampling of the data occurs during the ‘echo’ portion of the Gx 
gradient. 
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2.2.4! Myelin Imaging 

Conventional MRI techniques aim to image 1H atoms; however, not all 1H atoms can be observed 

directly. The interaction between these atoms and the applied magnetic fields depend on their molecular 

environment. 1H atoms which are bound to large molecules (macromolecules) have T2 times that are far 

too short to be observed using conventional MRI[33]. Myelin, which is composed of lipids (80%) and 

proteins (20%), is difficult to image directly because of the short T2 associated with these 

macromolecules[23]. Several methods have been developed which attempt to measure myelin content in 

vivo both directly and indirectly. 

 

 Ultrashort TE imaging[34] and 31P spectroscopy[35] have been proposed as direct measures of 

myelin; however, ultrashort TE is contaminated by water signal and 31P spectroscopy suffers from a 

difficulty to characterize signal from different phosphatidylcholine head groups[23]. Both of these 

techniques require further research before they can be clinically useful in the measurement of myelin. Of 

the MR methods developed to indirectly measure myelin, some have been shown to be more specific to 

myelin content than others. Conventional T1 and T2-weighted imaging, for example, is very sensitive to 

WM pathologies. Unfortunately, these techniques suffer from low myelin specificity as many other 

pathologic changes such as inflammation, gliosis, edema, and axonal loss can mimic the signal changes 

induced by demyelination[36]. In the case of young children (under 2 years of age) confounding effects are 

not as severe and T1 and T2-weighting techniques can be a useful measure of myelination during 

development[37]. Demyelination is associated with the presence of choline which can be detected using 

proton MR spectroscopy[23]. While this technique is successful in detecting active demyelination, other 

forms of myelin cannot be assessed. Another method for indirect measurement of myelin is diffusion 

tensor imaging (DTI). The presence (or lack thereof) of myelin affects the mean diffusively and 

anisotropy of water molecules. It has been shown that regions of decreased myelin result in an increase in 

the radial water diffusion[38] [39]. These measurable changes in the motion of water molecules can be an 
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indication of changes in myelination; however, DTI does not provide a quantitative measure of myelin 

and areas of crossing, branching, or splaying WM fibers can show paradoxical changes in radial 

diffusivity[23].  Quantitative multi-component T2 relaxation measurements can also be used to distinguish 

multiple water environments, long T2 intracellular and extracellular water, and short T2 from water 

trapped in the myelin sheath[40]. The signal from myelin water can be expressed as the myelin water 

fraction (MWF), an indirect measure of myelination.  

 

 MT imaging is another method known to be sensitive to myelin content. The MT phenomenon, 

based on the exchange of magnetization between pools of liquid 1H nuclei and pools of macromolecular 

1H nuclei, can be measured in several ways including the MT ratio (MTR)[41], inhomogeneous MT 

(ihMT)[42], and quantitative MT (qMT)[1]. MTR is the ratio between an MT-weighted image and a 

baseline image. Although widely available, semi-quantitative MTR techniques depend on acquisition 

pulse details, making it difficult to compare between individuals and across sites. ihMT uses two sets of 

images to improve myelin specificity compared to MTR[42]; however, it has been shown that ihMT is 

dependent on fiber orientation in human brain WM[43]. qMT represents the MT phenomenon more 

robustly, returning multiple measures associated with MT rather than a single parameter. Parametric 

images produced by qMT (discussed in the following section) reflect intrinsic MR properties of tissue and 

have been shown to correlate with myelin content and demyelination in postmortem histology validation 

studies. Most notably, the pool size ratio F has shown strong correlations between myelin in postmortem 

tissue [44][45], substantially reduced values in MS lesions[2][15][46]–[48] and slightly reduced values in normal-

appearing WM (NAWM) of MS patients[46][48][49]. Other qMT parameters such as the exchange rate, kf , 

and the relaxation time, T2f , have been shown to be sensitive to myelin related changes in MS lesions[48]. 

As qMT has shown specificity to normal and pathologic measures of myelin, and can differentiate various 

components that contribute to MT weighting in MR signal, the focus of this work is to improve the 

viability of qMT as a myelin imaging tool by shortening scan times. 
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2.3! Quantitative Magnetization Transfer (qMT) 

MT refers to an exchange of magnetization that occurs between groups of hydrogen nuclei 

characterized by their molecular environment; those in free water (free) and those bound to 

macromolecules (restricted). The MT effect enables investigation of macromolecules which do not 

directly contribute to conventional MR signal due to their very short transverse relaxation (T2) times[33]. If 

the MR pulse sequence is prepared with an additional RF pulse several hundred to thousand Hz away 

from the Larmor frequency, restricted nuclei become saturated while free nuclei remain largely 

unaffected. Section 2.2.1 states that nuclei (or spins) are affected only by RF pulses applied at the Larmor 

frequency. Although it is true that free atoms are only excited by a very narrow range of frequencies near 

the Larmor frequency, macromolecules experience a range of local magnetic fields, causing them to have 

a broad range of resonant frequencies offset from the Larmor frequency of free 1H nuclei – a phenomenon 

termed homogeneous broadening[50]. This phenomenon is important as it allows off-resonance pulses to 

saturate only restricted atoms, which exist in tissues of interest, such as myelin. Magnetization is 

exchanged between the groups of nuclei via cross-relaxation and/or chemical exchange[4], resulting in 

decreased MR signal attributed to restricted pool saturation. Although the MT effect is created by a 

variety of molecules which make up the group of restricted nuclei, myelin is believed to dominate the 

exchange process in WM[12][51][52].  
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Figure 2.3 Two-Pool Tissue Model. Free and restricted pools of size M0f and M0r 
exchange magnetization at rates kf and kr, respectively. White regions represent 
longitudinally aligned magnetization and shaded regions represent other 
magnetization. R1 represents longitudinal relaxation rate in each pool. Adapted 
from "Quantitative Interpretation of Magnetization Transfer" by R. M. 
Henkelman et. al., 1993, Magn. Reson  Med., vol 29, p.760 [4]. 

 

 The application of a restricted pool saturation pulse to generate MT contrast was first 

demonstrated by Wolf and Balaban[53]. While there are many ways to model the underlying mechanisms 

of MT, the two-pool MT model, introduced by Henkelman et. al.[4] (Figure 2.3), is the most common. The 

four-pool tissue model[54][55] has previously been proposed and includes multiple free and restricted pools; 

however, the two-pool model has been shown to sufficiently describe the MT effect in WM[56]. In the 

two-pool method of quantifying MT, all restricted nuclei from a given voxel of tissue are represented by 

the “restricted pool”, and all free nuclei by the “free pool”. Nuclei that are magnetized longitudinally are 

represented by the unshaded region of each pool, while the shaded region represents other magnetization 

(transverse or saturated). R1f  and R1r denote the longitudinal recovery rate of each pool (c9d , 9
efg

,  c9h ,

9
efi

). M parameters denote the pool sizes, where Mz is the number of nuclei aligned longitudinally (along 

$) and M0 is the total number of nuclei in each pool. To normalize the experiment, the constant M0f is set 

to equal to one. One of the primary interests of this model, and of MT in general, is the number of nuclei 

in the restricted pool. This value is often represented by the pool size ratio, j , kli
klg

. Between pools, MT 

exchange rate constants are defied by k, where kr is the transfer rate from restricted to free pools, and kf is 
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the transfer rate from free to restricted pools. Using this model, the magnetization at time, t, can be 

expressed using the Bloch equations, with an additional coupling term[4]: 
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where H9 n , FxP9 n x is a measure of the RF pulse intensity and G is the restricted pool absorption 

lineshape at frequency offset from resonance (0) and transverse relaxation time of the restricted pool 

(T2r). Henkelman et al.[4] originally proposed a Gaussian lineshape yz , e{i
;|

(}= ;|~e{i
{�;(for their 

experiment using agar gel. It has been shown that Gaussian lineshapes are suitable for agar gels[4] and that 

tissues are best described using Super-Lorentzian line shapes[57][58]: yÄÅ ,

Ç;h .�É 9
x<Ñ{=9x

9
s (}=; {ÖÜá{i

àâ{äf

{

ãå. Therefore, this thesis uses a Super-Lorentzian lineshape to model MT 

data. Substituting G for Gsl (or Gg) in Equation 2.7 results in a set of differential equations which have no 

closed form solution. Approximating the acquisition sequence by a series of instantaneous saturations and 

free precessions allows one to derive an analytical solution by which to fit qMT data. One must therefore 

take into account the qMT acquisition method. Common acquisition methods include MT-SPGR[1], SIR-

FSE[59]–[61], and bSSFP[62]–[64] (summarized in Figure 2.4 below). 
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Figure 2.4 RF pulse sequences for MT-SPGR (a), SIR-FSE (b), and bSSFP (c) 
qMT acquisition techniques. Adapted from "Quantitative magnetization transfer 
imaging made easy with qMTLab: Software for data simulation, analysis, and 
visualization" by J. F. Cabana et. al., 2015, Concepts. Magn. Reson., vol. 44, p. 
266 -268 [65]. 

 

 The first acquisition method, MT-SPGR, uses an SPGRE pulse sequence (see Section 2.2.3) with 

an additional off-resonance RF pulse to selectively saturate the restricted pool, often referred to as an MT-

pulse. The basic pulse sequence (excluding the imaging gradients shown in Figure 2.2), illustrated in 

Figure 2.4 (a), is repeated with unique MT-pulse powers (controlled by pulse flip angle )) and offset 

frequencies (0) for each imaging volume. The sequence can be approximated by instantaneous free pool 

saturation followed by restricted pool irradiation, leading to an analytical solution for the steady-state 

signal[65]. Several approximation methods have been developed including Sled and Pike continuous wave 

(SP-CW) and Sled and Pike rectangular pulse (SP-RP)[1], Ramani’s continuous wave power equivalent 

(CWPE)[16][66], and the Yarnykh and Yuan model[67]. The second acquisition method, SIR-FSE, is a 

selective inversion recovery (SIR) sequence with a fast spin echo (FSE) readout (Figure 2.4 (b)). Here, a 
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short inversion pulse is applied to selectively invert the free pool after a fixed or varied delay time (td). 

After waiting a variable inversion recovery time (ti), the resulting signal can be fit to a function of ti and 

td. An analytical solution can be derived by assuming no transverse magnetization is present after the last 

180˚ pulse. The third acquisition method, balanced steady state free precession (bSSFP), is a well-known 

sequence that was found to induce a significant MT effect[68], and has been optimized as a qMT method in 

its own right[63]. qMT maps can be acquired by varying the on-resonance pulse flip angles ()) or the RF 

pulse duration (Trf) (Figure 2.4 (c)). By approximating RF pulses as hard pulses of equivalent average 

power, and by fixing T2r to a constant value, it is possible to derive a steady-state signal equation by 

which to fit qMT parameters[69]. In this work, we have chosen to use the MT-SPGR acquisition with SP-

RP approximation method. Unlike SIR-FSE and bSSFP, the SPGR technique does not assume that T2r is 

constant, allowing the model to solve for T2r as an additional free parameter. Additionally, SP-RP is a 

common approximation method for SPGR acquisitions which accounts for duty cycle and pulsation 

frequency, offering extra freedom in designing experiments[1]. 

 

 The SP-RP model describes the SPGR sequence in three steps. First, the MT-pulse 

instantaneously saturates the free pool, which is described by a saturation fraction çd ( , (éèê_ëb [70]. 

Second, the excitation pulse has the effect of instantaneously saturating the free pool, again. Lastly, the 

restricted pool saturation is approximated by a period of constant saturation of duration equal to the full-

width-half-maximum (Lfwhm) of the MT-pulse. This approximation preserves the equivalent power of the 

MT pulse: 
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and the constant RF absorption rate of the restricted pool can be given by: 
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in tissues. The solution to the signal equation, while cumbersome, can be computed in matrix notation and 

is provided in the appendix of Ref [1]. 
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 The SPGRE method requires the acquisition of many volumes, each with a unique MT-pulse. 

Varying the MT-pulse by frequency offset from resonance (!) and pulse power (duration or )), yields a 

characteristic curve, the z-spectrum, to which the SPGR model is fit. The requirement to collect many 

MT-weighted images is a major limitation of the qMT-SPGR technique, as these protocols can be very 

time consuming. Other z-spectrum techniques such as CEST, suffer from the same limitation, as the z-

spectrum inherently requires many images with unique acquisition contrast parameters. In the case of 

qMT-SPGR methods, it is possible to collect as few as seven MT-weighted images, plus a baseline image 

with no MT-pulse[14]; however, most protocols include at least ten MT-weighted images[14]–[16][68], while 

some collect as many as sixty[2][33][48]. In addition, these techniques require supplementary images such as 

high-resolution anatomic images, T1 parameter maps, and B0 and B1 field maps. Data requirements for 

whole-brain qMT mapping result in extremely long acquisition times and have hindered the clinical 

translation of qMT. It is therefore necessary to consider methods of accelerated MR imaging to bring 

qMT-SPGR techniques to clinically feasible acquisition times. 

 

2.4! Compressed Sensing 

Imaging speed plays a crucial role in the clinical applicability of any MRI technique. The speed at 

which data can be collected is fundamentally limited by physical and physiological constraints such as the 

intrinsic relaxation times of tissue, and the maximum rate at which gradient fields can be turned off or 

on[71]. Due to these limitations, techniques which aim to accelerate imaging speed by acquiring less data 

have become increasingly favoured[17]. Traditionally, data size is determined by the desired spatial 

resolution and the Nyquist sampling theorem[72]; undersampling results in diminished data quality caused 

by lower resolution and/or aliasing artefacts[73]. Despite this restriction, many types of data remain 

compressible, meaning that they can be stored in significantly smaller formats such as JPEG[20] for image 
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compression, and MPEG[74] for video compression. The implication of compression is that only a small 

amount of the original data is retained, while the rest is essentially thrown away. Naturally, this leads to 

the conclusion that if a small subset of data can maintain the important information, it should be possible 

to obtain far less data during acquisition without diminishing image quality. This theorem, formally 

introduced by Donoho[75], extends far beyond the scope of MR imaging and has applications with many 

types of digital information. Lustig et.al.[17] first introduced a formal approach to compressed sensing in 

MR imaging just over a decade ago. 

 

 CS reduces data acquisition speed by sampling a fraction of the data that would be required under 

normal circumstances. In the case of MRI, only some frequency-encode lines are recorded, resulting in 

incomplete k-space. With careful consideration of which samples to acquire, and by changing the method 

of data reconstruction, aliasing artefacts that would ordinarily plague undersampled data can be avoided. 

The two main requirements for CS are 1) sparsity and 2) random sampling[17]. Sparsity, referring to a 

given dataset having few significant non-zero values, is essential for both image compression and 

compressed sensing techniques. An angiogram, for example, is sparse because a small number of pixels in 

the image represent blood vessels while the other “background” pixels are negligible in the overall image. 

Conversely, brain or heart images are not sparse as there are many pixels containing various grey values 

that make up the overall image. In image compression, “compressible” signals are synonymous with 

sparse signals because only the significant (non-zero) parts of the image need to be stored, of which there 

are relatively few. Similarly, CS aims to detect only a few significant coefficients. Unfortunately, most 

natural images and MR images are not sparse in their real-space representation. Furthermore, MR images 

are not sparse in k-space, where data is acquired. To overcome this obstacle, image compression and CS 

techniques utilize sparse representations of data such as spatial finite differences, wavelet coefficients, 

discrete cosine transform (DCT), total variation (TV), or other sparsifying transforms[17]. Wavelet 

transforms (e.g. Figure 2.5, bottom right panel) have been shown to perform best for sparsifying brain 

MR images[17][76] and are therefore a common choice for CS in MR.  
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 The second requirement of CS, random sampling, is simple to implement yet plays a key role in 

the success of image acceleration. Undersampling, or (uniform) sampling below the Nyquist rate, creates 

aliasing artefacts which cannot be distinguished from actual signal. However, if the same number of 

samples are acquired in a random fashion, the artefacts present are incoherent (noise-like) rather than 

aliased. From a mathematical perspective, these incoherent artefacts are essential to signal recovery, as 

they can be removed by iteratively thresholding and calculating the interference of previously recovered 

signal. A simple and intuitive example of this procedure is explained in further detail in Ref [17] and Ref 

[76]. Undersampled data which exhibits transform sparsity and incoherent aliasing can then be 

reconstructed using a non-linear iterative reconstruction method, as summarized in Figure 2.5. 

 

 

Figure 2.5 Diagram of domains and transform operators used in typical image 
reconstruction (left col.), undersampled reconstruction (middle col.), and CS 
reconstruction (shaded arrow). m and y represent the reconstructed image and 
measured k-space data (red dots), respectively. U is the undersampling 
operator, %> is the undersampled Fourier transform, and '(is the wavelet 
transform. 
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 While some of the best sampling patterns are a true random selection of k-space[76], many 

variations of random sampling have been proposed which may be more practical in MRI applications[77]–

[79]. As discussed in Section 2.2, the acquisition of a 3D MR image traditionally involves filling k-space 

one readout (frequency encode, kx) line at a time. MR pulse sequences traverse through k-space assigning 

unique phase-encode (ky) and slice-encode (kz) gradients with each TR. CS reduces acquisition time by 

sampling fewer phase and slice-encode points of k-space, resulting in fewer TR’s. It is important to note 

however, that frequency-encode lines remain fully-sampled, as there is no time reduction associated with 

collecting less of the data in a given frequency-encode line. Undersampling patterns are therefore applied 

in the ky-kz plane in Cartesian-sampled 3D MR data. One of the major limitations with random sampling 

distributions is that they do not take into account the energy distribution of k-space. As seen in Figure 2.5 

(bottom left panel), information is densely packed at the centre of k-space and rapidly decays towards the 

periphery. A logical approach to random sampling in k-space is to vary the density of samples to match 

the energy distribution of k-space[17][76]. Lustig et. al.[17] originally proposed to decrease the probability as 

a power of the distance from the origin, a strategy which has been frequently implemented since. 

Although the optimal details of this implementation are application dependent and remain a matter of 

further research, Zijlstra et. al.[79] found an inverse squared distribution to perform best in brain data from 

a single subject. Other more sophisticated approaches to determining the optimal sampling distribution 

involve the use of fully-sampled calibration data to produce data-specific sampling patterns[80]–[83]. These 

“data-driven” methods have shown marginally improved reduction of CS artefacts[79]; however, they can 

be computationally expensive to implement and remain less common than predetermined variable density 

sampling trajectories. 

 

 In addition to a variable density sampling distribution, many researchers choose to fully-sample a 

central region of k-space. The size of the central core is typically dependent on the rate of undersampling, 

and may be implemented with a circular[84] or a rectangular[77][79] geometry. In some cases, the fully 

sampled part of k-space is used for autocalibrating PI methods such as l1-SPIRiT[77]. Armed with a 
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random sampling strategy suitable for k-space data, it should be possible to collect an ideal set of 

undersampled data. Unfortunately, purely random selections of k-space may result in large sampling gaps 

which are intuitively undesirable for effective image reconstruction. In addition, undersampling k-space 

decreases SNR, a problem that is then exaggerated by random sampling and the associated incoherent 

artefacts. Lustig et. al.[78] demonstrated that optimal sampling strikes a balance between random 

distributions, which amplify noise, and uniform distributions, which have aliased artefacts unsuitable for 

CS. Poisson-disk (PD) sampling[85] addresses these concerns by enforcing a minimum distance between 

randomly selected data points. This technique applies a theoretical disc or ellipsoid around each chosen 

point which prevents any other sample from existing in that region. In the case of combined CS-PI 

techniques, PD sampling makes better use of coil geometries and sensitivity profiles[77]–[79]. PI uses coil 

sensitivity profiles to fill in information between samples of k-space, making clustered samples wasteful. 

Conversely, large sampling gaps reduce the reconstruction conditioning of PI, further adding to the desire 

to implement spacing constraints on random sampling strategies. It is common, in these cases, to base PD 

constraints on the receive coil array[77][84]; however, the detailed information about sample spacing is 

rarely provided. 

 

 The sampling strategies discussed thus-far apply to 3D datasets; however, they can easily be 

extended to 4D, as in the case of qMT. For 3D volumes collected at successive time points, the same 

sapling rules can be applied to generate a unique set of data points for each volume. In addition, PD 

constraints can be extended into the time dimension to prevent the same sample from being chosen in 

successive volumes. By extending the multidimensionality of the problem, greater sparsity can be 

exploited to achieve more ambitious acceleration factors. 

 

 The final requirement of CS is a non-linear reconstruction method which is used to enforce 

sparsity and ensure consistency between the solution and acquired data. Lustig et. al.[17] originally 

proposed a constrained optimization problem using both l1 and l2 norms. The lp norm is defined as 
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ú where õ is a vector of sparse coefficients of length N[73]. If we consider the l0 norm 

(p=0), the equation above reduces to the number of nonzero elements of õ, and is therefore a measure of 

sparsity. Unfortunately, solving a minimization problem with l0 is impractical as it is both numerically 

unstable and requires an exhaustive search of all possible nonzero locations in õ[73]. The l1 norm, which is 

the sum of non-zero elements, is also a measure of sparsity but requires far less computational 

complexity. In the case of p = 2, the lp-norm equation requires no sparsity and is instead a measure of 

signal intensity[86]. The optimization problem for CS reconstruction is given as: 

 ùûüûùû$T( 'ù
9
 &¡¢(n¢£n( %>ù( o (#

;
( ¤ ((¥ [2.10] 

where m is the image we aim to reconstruct, I(is the sparsifying transform, %> is the undersampled 

Fourier transform, and y is the measured k-space data. ¥ controls the fidelity of reconstruction and is 

usually set below the expected noise level[17]. Here, we aim to find the sparsest representation of the 

image (Iù), but ensure the undersampled solution (Fum) closely matches measured data (y). To solve 

Equation 2.10, CS algorithms find the solution that solves the equation: 
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where G is a constant adjusted to balance data fidelity and artefact reduction[87]. Here, only one sparsifying 

transform (I) is given, although others can be added as additional terms. Several minimization 

algorithms for Equation 2.11 have been proposed including nonlinear conjugate gradients[17], iterative soft 

thresholding[88]–[90], and iteratively reweighed least squares[86][91]. Recent research has focused on how CS 

could be combined with other acceleration methods, such as PI, to achieve even higher acceleration 

factors. 

 

 As mentioned briefly above, PI uses multiple receive coils to acquire data in parallel 

(simultaneously)[18]. Signal intensity varies in each coil depending on position; therefore, allowing the 

spatial dependence to be exploited to gain additional information about k-space while relaxing the 



 25 

sampling requirements. As PI has become widely adopted and is used in many stock (i.e. commercial 

product) sequences, it is logical to consider how CS can be adapted for multi-channel PI data. In matrix 

form, the final image (m) is calculated from multi-channel PI data (y) using: 

 ¦( , (§¨ [2.12] 

where E is the encoding matrix which includes an undersampled Fourier operator (Fu) and channel-

specific sensitivity profiles (S)[18][92]. If we let §( , ( %>©, the SENSE[18] method for PI reconstruction finds 

a solution to: 
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Here, we can see that the solution to PI alone is the first term in single-channel CS data (Equation 2.11) 

with an additional coil sensitivity operator (S). The combined CS and PI method therefore aims to solve: 
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where IU is a sparsifying transform such as wavelet or TV and GU is its weighting factor. This combined 

method, known as sparseSENSE, can be solved using nonlinear conjugate gradients[84][87], or by using 

Bergman iterative nonlinear reconstruction, as originally proposed by Liu et. al.[92]. 

 

 Recently, CS techniques have been used extensively in MRI. Achievable rates of acceleration 

have been shown to be both application and technique dependent. Work using sparseSENSE and other 

CS-PI combined techniques have demonstrated high quality images using acceleration rates ranging from 

1.5! to 36![84][93]–[99], depending on data size and number of channels. When sparseSENSE was proposed 

by Liu et. al.[92], clinically feasible image quality in retrospectively undersampled 2D brain data collected 

from a 4-channel head coil was demonstrated at an acceleration factor of 5!. In this case, it was 

successfully shown that combined CS-PI could achieve an acceleration factor higher than the number of 

channels, something that is not possible with PI alone. King[87] demonstrated a more modest acceleration 

factor of 3.3! in 8-channel brain data, while Lustig et. al.[78] were able to achieve an acceleration of 5! in 
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2D, 4-channel lower extremity tumor images (both retrospective). 3D imaging techniques have since been 

able to match and improve upon these results. Sanders et. al.[96] were able to achieve an acceleration 

factor 5! in retrospectively undersampled 18-channel prostate data, while Hollingsworth et. al.[94] and 

Fushimi et. al.[97] demonstrated acceleration factors of 4.94! and 5! in cardiac CEST data (6-channel) 

and brain angiography data (32-channel), respectively. Zhang et. al.[95] demonstrated an acceleration 

factor of 7.2! in 6-channel paediatric abdominal data, while Sharma et. al.[98] have shown 8.6! 

accelerated 8-channel chemical shift knee images (both prospective). 

 

 Although qMT data is not acquired temporally, the need to repeatedly acquire images with unique 

MT saturation gives qMT data a 4-dimensional quality that can be exploited to achieve greater 

acceleration. Other researchers have investigated the application of CS-PI acceleration on data with 

multiple offset frequencies. Heo et. al.[99] demonstrated 4! acceleration in 32-channel single-slice CEST 

brain data acquired with 52 offset frequencies (3D).  Zhang et. al.[100] applied this method to variable flip 

angle (VFA) T1 mapping brain data, which also requires multiple frequency offsets. Here, 4D 8-channel 

data with 10 frequency offsets demonstrated high image quality at a prospective acceleration rate of 6!. 

Other 4D imaging techniques such as dynamic contrast enhanced (DCE) imaging have demonstrated the 

ability of 4D data to achieve acceleration rates far beyond those reported in 3D imaging. For example, 

Lebel et. al.[84] performed a retrospective study using 8-channel DCE brain tumor data with 35 time points 

to achieve an acceleration factor of 18!. Their prospective study included similar data with 82 time 

points and an acceleration factor of 36!.  Although qMT data has not previously been accelerated using 

any CS methods, the use of CS-PI in other methods can inform what acceleration factor may be possible 

in this work. The data collected here is most similar to that of Zhang. et. al.[100] with 32-channel data 

instead of 8-channel data. In light of this, we predict it is possible to obtain high-quality qMT parametric 

maps with acceleration factors exceeding 6!.  
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3! Methods 

3.1! Study Population 

This study consists of data obtained from five healthy control subjects. In order to be considered 

for this study, subjects had to be between the ages of 18 and 60 and have no preexisting neurological 

conditions or contraindications for MRI. After providing written informed consent and undergoing 

thorough safety screening, subjects were instructed to remain as still as possible for the duration of the 

MRI exam (approximately 60 minutes). There were no additional tests, nor were there any tasks to 

perform during the MRI exam. At the end of the exam, subjects completed a debriefing form where they 

had the opportunity to express positive and negative feedback regarding their participation. Subjects 

included in this study ranged in age from 20 to 35 with a mean age of 29, two of whom were male. This 

study was approved by the Conjoint Health Research Ethics Board of the University of Calgary Cumming 

School of Medicine (REB14-1788). 

 

3.2! Experimental Design 

3.2.1! MRI Protocol 

Data was acquired using a 3.0 Tesla GE 750 Discovery scanner and 32-channel head coil 

manufactured by Nova Medical. qMT data was collected using an SPGRE sequence with Gaussian 

shaped MT saturation pulse to induce MT contrast. To be consistent with other qMT-SPGRE 

protocols[14][16][68][101][102], ten MT saturation images were collected using two MT pulse powers, each with 

five unique offset frequencies. The pulse powers were varied by changing the flip angle of the MT pulse 

to )@A , 1-." or )@A , -./", and the logarithmically spaced offset frequencies were set to q ,(443, 

1088, 2732, 6862, and 17,235 Hz. These values were chosen as they are common among qMT-SPGRE 

implementations and reflect typical protocols which can benefit from acceleration. In addition to the ten 
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volumes with MT saturation, a baseline image was collected using the same SPGRE sequence with no 

MT pulse. Acquisition parameters were: TR/TE = 25/4.06 ms, and excitation pulse flip angle ) = 7". The 

MT pulse was defined by a Gaussian pulse shape with 271 Hz bandwidth and 10 ms duration. The 

acquisition matrix size was 128!96!60, with 75% phase FOV resulting in a reconstructed matrix size of 

128!128!60 and 2 mm2 isotropic voxel size. The total acquisition time for qMT data was 28 minutes. 

Raw k-space data was saved for all acquisitions. 

 

 In addition to the qMT-SPGRE scan, a T1 map was collected to constrain the qMT model. Several 

methods exist to determine T1, including inversion recovery (IR)[103][104], Look-Locker (LL)[105], and 

VFA[106]. The primary method used to determine T1 was DESPOT1, a VFA implementation which 

acquires SPGR images at varying flip angles and constant TR[107]. Due to the fact that the SPGR signal 

equation can be linearized, DESPOT1 enables T1 calculation with only two flip angles, making it a fast 

and efficient method for whole-brain T1 mapping[108]. Data was acquired with TR/TE = 6.9/1.244 ms and 

flip angles ) , -"(and )( , 13"7(Full brain VFA T1 maps were collected in 1:25 min:sec. 

 

 Correction of spatial variations in the main field (B0) and the transmitted RF field (B1) are crucial 

in quantitative MT imaging, as frequency and flip angle variations can significantly bias qMT parameter 

estimations[2]. A B0 field map was collected using a multi-echo (ME) SPGRE sequence. This mapping 

technique collects magnitude and phase images, where the difference in phase between two or more echo 

times is related to the difference in echo times and B0 field inhomogeneities. B0 mapping data was 

collected from eight echo times TE = 1.916, 3.78, 5.644, 7.508, 9.372, 11.236, 13.1, and 14.964 ms with 

TR = 17.4 ms and flip angle )(= 20". B1 field maps were acquired using the actual flip angle imaging 

(AFI) technique[109]. This technique was chosen as it allows for rapid 3D B1 mapping and is insensitive to 

T1 variations. AFI uses an SPGRE imaging technique with a dual-TR acquisition. AFI B1 maps were 

collected with TR1/TR2 = 16/60 ms, and nominal flip angle )BCD ( , (/2". 



 29 

 

 A T1 weighted anatomical scan was collected to enable tissue segmentation. A single echo 3D 

SPGRE sequence was used to acquire the image with acquisition parameters TR/TE/TI = 6.656/2.928/650 

ms and flip angle ) , 12". The acquisition matrix was 256!256!192 with 1mm2 isotropic voxel size and 

scan duration of 4:31. Resolution, matrix size, and image location were matched to the qMT acquisition 

for all scans, excluding the high-resolution T1 weighted anatomic scan. The total time to acquire data in a 

single subject was 43:31 min:sec, plus setup and scan prescription time, resulting in a total scan session 

time of approximately 1 hour. 

 

3.2.2! Field Map Calculations 

The DESPOT1 T1 mapping technique acquires two SPGR images at with unique flip angles and 

constant TR. The measured signal intensity of one image can be expressed as: 
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where °1( , T
ä³´
³f , *s is the equilibrium longitudinal magnetization and ) is the flip angle[107]. The 

equation above represents a curve which is characterized by T1. This equation can be expressed in linear 

form Y = mX + b, as described in[110]: 
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where E1 is the slope (m) and M0 (1 - E1) is the y-intercept (b).  As mentioned previously, the 

linearization allows T1 to be determined with only two data points, a fact that makes this technique 

efficient both in terms of acquisition and computation. For two images collected with flip angles "1 and 

"2, T1 was calculated in Matlab using the equation: 
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where °1 , ¬f
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( is the equation of the slope defined by points 1 and 2, and Sn 

denotes the signal of the image acquired using "n. The images at points 1 and 2 have a prescribed flip 

angle of 4" and 18" respectively, however, B1 field inhomogeneities may alter the actual flip angles of 

individual voxels. To account for this, the B1 field map is multiplied by the prescribed flip angle to so that 

"1 and "2 are the actual flip angles in radians: 
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 As mentioned in the previous section, B0 maps were calculated using multi-echo data from eight 

echoes. The phase of each echo image is related to the main magnetic field by the equation Ps , 9
;VÀ

( 0Á
~AÂ

  

where 0J is the series of phase images and 0+° are the corresponding echo times[111]. B0 maps were 

calculated in Matlab using complex image data and a complex unipolar fit function. 

 

 B1 field maps collected using the AFI technique result it two images with signal from 

corresponding TR times, TR1 = 16 ms and TR2 = 60 ms. The B1 field is defined as the voxel-wise ratio 

between the actual flip angle (") and the chosen (nominal) flip angle ("nom): 
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)
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Using the Bloch equations for the AFI sequence, Yarnykh[109] outlines the derivation of the actual flip 

angle: 
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where r is the ratio between signals from each TR ( Ã , ª;�ª9( ) and n is the ratio between TR’s ( ü ,

+4;�+49 )[109]. The calculation of B1 was performed in Matlab, with "nom = 60". As is typical with other 

B1 mapping protocols[109][112][113], a Gaussian filter was applied to B1 field map to reduce noise and enforce 

smooth variance in the field. The desired FWHM of the Gaussian smoothing kernel was 10!10 mm2 
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(5!5 voxels), which is equal to standard deviation # = 2.1233 of the Gaussian distribution 5_?b ,

1�Ä .p(!(T
äX{

{Å{  centered about zero[114]. The Matlab function fspecial was used to define the filter using # 

and a 7!7 voxel kernel matrix. 

 

3.2.3! Image Registration 

To correct for any subject motion between scans and to inform tissue ROI's, image co-registration 

and tissue segmentation were performed using Matlab and the Statistical Parametric Mapping (SPM) 

toolbox[115]. The T1 weighted anatomic scan was first processed using the tissue segmentation function 

preprocess_structural. This function is designed to classify tissues based on high-resolution T1 weighted 

anatomic images by separating tissues based on their distinctive signal intensities. Tissue probability 

atlases are used to account for signal intensities not related to tissue type including noise, field 

inhomogeneities, and partial voluming effects. SMP uses affine registration to modified ICBM tissue 

probabilistic atlases followed by a local optimization procedure to produce probabilistic GM, WM, 

cerebral spinal fluid, and soft tissue maps. B0, B1, and R1 maps were converted into NIfTI format[116] and 

co-registered to qMT images using the coreg_spm function. In this process, the first qMT offset image 

was used as the reference image to which other images were registered. SPM uses a voxel-to-voxel 3D 

rigid body transformation matrix to register images, with three translations and three rotations. This acts 

to shift and rotate the images in 3D space while preserving the size and geometry of an individual image. 

Segmented WM and GM masks were also co-registered to remain in alignment with other images. All 

data was converted back to Matlab format for use in qMTLab. For each subject, image alignment was 

manually checked for accuracy using itk-SNAP[117]. 

 

3.2.4! Compressed Sensing 

 k-Space data was imported into Matlab using the CartesianRecon function of Orchestra SDK, a 

Matlab toolbox created by GE. k-Space data was stored as a 5D matrix organized into x, y, and z spatial 
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dimensions, a receive coil dimension, and an MT-offset dimension. As is typical in many image 

reconstruction techniques, a Hamming filter with 15 voxel edge size was applied to fully-sampled k-space 

data to minimize truncation artefact caused by the spatial response function[118]. Retrospective 

undersampling using pre-determined sampling schemes was implemented before image-space 

reconstruction and coil-combination. As sampling schemes are not coil specific, the same retrospective 

undersampling mask was applied to the k-space collected from each coil to mimic prospectively 

undersampled data. For each subject, one fully-sampled image was reconstructed using the same coil 

combination and inverse Fourier transform technique. 

 

 Undersampling patterns were generated in Matlab. First, a fully-sampled circular core containing 

10% of the total samples for the given acceleration rate was applied. For example, an acceleration rate of 

8! would have a total of 768 fully sampled frequency encode lines of a possible 6144. Of those encode 

lines, 10% (or üÆCtÇ ,(77) of them would be from the centre of k-space. Therefore, the diameter of the 

fully sampled core can be calculated using Y , üÆCtÇ(�p  where all frequency encode lines within the 

diameter are sampled and the remaining 691 are chosen from elsewhere in k-space. 

 

 Outside of the fully-sampled core, phase and slice-encode lines of k-space are sampled more 

densely near the centre, and less densely near the edges of k-space. As recommended by Zijlstra et. al.[79], 

the probability density function (PDF) was defined as 5_Ãb ( , (1�ÃÈ where r is the distance from the 

centre of k-space and d = 2 is the optimal distribution for brain images. The cumulative distribution 

function (CDF) was used to generate a random list of sample locations which follows the defined PDF. 

Samples were then randomly chosen from the list and checked for exclusion criteria before being added to 

the sampling scheme. Samples were individually added in this manner until the total number of samples 

in the generated scheme matched the specified rate of sampling. 
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 Exclusion criteria for samples were that: 1) there could not already be a sample in the same 

location, and 2) there could not already be a sample within the pre-defined Poisson disc radius of that 

sample. In this work, we employed a variable Poisson disc size. Due to the fact that the overall resolution 

is considerably lower than other Poisson disc applications, even small Poisson disc sizes can significantly 

distort the distribution of samples. This is due to the fact that in areas of denser sampling (i.e. near the 

centre), enforcing a minimum distance between samples prevents samples from meeting the desired 

density in that area. Since we did not want to significantly alter the chosen sampling distribution, it was 

not possible in some areas to have a Poisson disc size of even one voxel. In other less-dense areas (at the 

edges of k-space), Poisson disc sampling was still very useful in preventing sample clustering. Therefore, 

Poisson disc sampling was employed whereby the distance from the centre of k-space was used to define 

Poisson disc size, referred to here as “variable Poisson disc sampling”. Within a radius of the 15th 

percentile, Poisson discs were not used, from r = 15th to 35th percentiles, disc size was one voxel in the 

phase and slice-encode dimensions, and one voxel in the MT-offset dimension, for r = 35th to 65th 

percentile, disc size was two voxels in the phase and slice dimensions, and one voxel in the MT-offset 

dimension. This pattern was continued such that the maximum Poisson disc size was no larger than three 

voxels in any dimension. Though many studies report the use of Poisson disc sampling[78][79][119][120], few 

report disc dimensions[84]. In this study, disc size was chosen so that the resulting sampling schemes 

display limited sample clustering and have a density distribution closely matching the prescribed 

distribution. These constraints were verified manually by plotting sampling distributions (Figure 3.1) and 

histograms of actual radii against theoretical radii distributions to confirm the distributions were not 

significantly altered. 
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Figure 3.1 Variable density Poisson disc sampling scheme shown for a 16! 
undersapling factor. Undersampling in ky and kz for one 3D image volume (a) and 
for 4D data undersampling in ky, kz, and MT-offset dimensions (b). 

 

 Sampling schemes were generated for eight acceleration factors evenly spaced between 4! and 

32!. For each acceleration factor, four unique sampling schemes were generated. Here, we refer to each 

unique pattern as a “version” of the given acceleration rate. The same 32 sampling schemes were used for 

each of the five subjects, producing a total of 160 accelerated datasets to reconstruct and analyze. 

 

 After retrospectively undersampled data was generated by applying sampling masks to fully-

sampled k-space data, image reconstruction was performed on each 4D dataset using sparseSENSE 

(Equation 2.14) implemented in Matlab. For this reconstruction problem, local low rank, Daubechies-3 

wavelet (I), and total variation (TV) were used as sparsifying transforms. The equation: 

 5_ùb ( , ( %>ªù o # ;
; r G9 ù o ùt 9 r G; Iù 9 r G< +Éù 9 [3.7] 

was solved using the nonlinear conjugate gradient method, where the gradient was computed as described 

by Lustig. et.al[17]. Here, mr is the local low-rank reference image which promotes simple behaviour in the 

offset-frequency dimension. Regularization parameters were set to $1 = 0.005, $2 = 0.0005, and $3 = 

0.0001. Reconstruction time ranged from 8 minutes (44 iterations) in 4! accelerated data and 19 minutes 
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(135 iterations) in 32! accelerated data. After the sparseSENSE algorithm converges to a solution, each 

3D MT-offset volume is saved for qMT modelling. 

 

3.2.5! qMT Modelling 

 qMT modelling was performed using qMRLab software[65] downloaded on Oct 26, 2016. qMT 

parametric maps were generated for one slice prescribed 60 mm below the most superior point of the 

brain, in the middle of the imaging volume. qMRLab software provides a user interface with which to 

choose various model and fit options. This software uses all MT normalized images to create a voxel-by-

voxel z-spectrum of the MT response. The MT pulse power (adjusted using flip angle )@A) and frequency 

offset (0) are manually specified for each MT image. In addition, qMRLab can fit data to multiple MT 

models (those mentioned in Section 2.3), and provides an option to input B0, B1, and R1 maps. Without 

correction, the model assumes uniform field and excitation pulse powers. In practice however, magnetic 

fields and RF pulses have some degree of variation across the entire imaging volume. These variations 

can be accounted for in each voxel using the acquired B1 and B0 field maps, where B1 is used to adjust 

MT-pulse and excitation pulse powers, and B0 is used to adjust offset frequencies. The measured R1 map, 

R1
obs, is used to constrain the value of R1f using the relationship[65]: 
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[3.8] 

For each parameter in the two-pool tissue model, it is possible to fix its value or leave it as a free 

parameter. In this work, all parameters freely fit except for R1r and R1f, constrained by equation 3.8 above. 

The R1r parameter is difficult to estimate in imaging experiments and is therefore customarily set to 1s-1 in 

two-pool MT experiments[4][65]. Another modeling consideration are the pulse timing parameters and MT 

pulse shape and bandwidth. qMRLab performs a voxel-wise optimization function (lsqcurvefit) to fit the 

chosen qMT model to z-spectrum data [65]. The exact signal equation depends on the model and the 

restricted pool absorption lineshape, here the Sled-Pike RP[2] and Super-Lorentzian lineshape 
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respectively[1][57] (see Section 2.3). Fitting time for a single slice of qMT data is approximately 8h for high 

resolution (256!256) and 3h for low resolution (128!128) data. The output of the fitting procedure 

results in six parameter maps; F, kf, kr, R1f, T2f, and T2r. High resolution parametric mapping was 

performed in one subject for the purpose of generating figures in this thesis. High resolution data was 

generated using nearest-neighbour interpolation of qMT data, and high resolution field maps. Low 

resolution (native qMT space) parametric mapping was performed in all subjects for the purposes of all 

quantitative analysis performed in this thesis. In the case of low resolution data, tissue masks and field 

maps were down-sampled from high resolution using nearest-neighbour interpolation. All sparseSENSE 

reconstructions and qMT parametric mapping was performed on a 16-core Linux workstation with 32GB 

of RAM.  

3.3! Statistical Analysis 

In this work, accelerated qMT data is analyzed using both qualitative and quantitative techniques. 

While the focus of this thesis is on accelerated qMT parametric maps, intermediate data such as raw MT-

weighted images, normalized MT images, and accelerated z-spectra all provide interesting information 

about acceleration in qMT imaging; therefore, they have been analyzed individually. The first method of 

image analysis was to display fully-sampled images alongside accelerated images. This qualitative 

method is applied to raw MT-weighted images, MT-normalized images, and F-maps. To aid in this visual 

comparison, difference images are calculated and shown in the same figure. For each set of accelerated 

and difference images, the image generated with the first sampling version is used as the representative 

image for that acceleration rate. z-Spectra can also be assessed qualitatively by superimposing fully-

sampled and accelerated spectra, providing a visual indication of the variation caused by acceleration. z-

Spectra were analyzed by selecting two different ROIs; voxels of WM and voxels of GM. Each ROI mask 

was created using the probabilistic tissue segmentation maps generated in SPM, then selecting voxels 

with values Q0.95 in the tissue of interest. These are the same WM and GM tissue masks used in all data 
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analysis. All four sampling versions were averaged together to show the mean z-spectra value at the given 

acceleration rate. 

 

 To complement the qualitative comparison of images, it can be helpful to provide a quantitative 

measurement summarizing the error present in accelerated images. In this study, normalized mean 

squared errors (NMSE) are used as a quantitative estimate of deviations between fully-sampled and 

undersampled values. NMSE’s are calculated using: 
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for each pair of fully-sampled (?WBCìB) and undersampled (?¯\Ë) images or z-spectra at a given rate (R) 

and version (v). Here, the l2 norm is the summation over the number of pixels in the ROI, or the number 

of points on the z-spectrum. In some instances, NMSE’s have been provided for the entire brain, or for 

specific ROI’s of WM or GM. These are included as it is useful to point out tissues that are more or less 

affected by acceleration. In the case of z-spectra analysis, the values of ÌWBCìB and Ì¯\Ë are the mean z-

spectra values in the ROI corresponding to each tissue of interest for fully-sampled data and accelerated 

data.  NMSE’s are provided in terms of the mean and standard deviation (reported as error bars) across all 

sampling versions at the given acceleration rate (ie. Ê*ª°¯ , Ê*ª°¯\Ë
½
ËÍ9 (�(- ). 

 

 Several other quantitative analysis approaches are applied to F-maps in this thesis. Although all 

six qMT parametric maps provide valuable information about the MT effect, F-maps are the most 

clinically useful as they represent the pool size ratio, directly related to myelin content in brain 

WM[3][12][14]. Linear regression can be used as a means to compare fully-sampled and accelerated images. 

With this method, each reconstructed voxel is plotted with the reference data (fully-sampled) on the x-

axis and the accelerated data on the y-axis. If accelerated data exactly matches fully-sampled data, the 

resulting line of best fit will have a slope equal to one and y-intercept equal to zero, with all points lying 



 38 

exactly on the line. The advantage of this method is that it gives the reader a quick gauge of the 

agreement between two images and can provide statistical measures such as the coefficient of 

determination (R2) with which to classify agreement. Although convenient and often used in 

investigations of two different MRI techniques[84][99][121][122], linear regression is inappropriate for an 

assessment of agreement. Correlation coefficients only measure the strength of relation between two 

methods and can be affected by measurement range, while unaffected by scale differences, both of which 

are contradictory to the notion of agreement[123]. It should also be noted that one would expect two 

reconstruction methods for the same image to almost always be highly correlated, therefore a high 

correlation coefficient may not be meaningful. 

 

 Bland-Altman analysis provides a more appropriate measure of agreement by plotting the 

difference of each sample pair as a function of their mean[123]. Two important quantities to note are the 

mean and standard deviation of differences (Y, s). The mean difference is used as an estimate of bias and 

the standard deviation informs the limits of agreement (Y- 1.96s and Y+ 1.96s) between the two methods. 

The interpretation of these results is application dependent. In this work, we aim to have limits of 

agreement less than or equal to the variance (one SD) typically seen in fully-sampled data (for a given 

ROI). As qMT modelling is highly dependent on the baseline scan, to which all other MT-weighted 

images are normalized, any scan-rescan variations in the baseline may have a significant effect on qMT 

results. In one subject, the baseline image was re-scanned to compare differences induced by baseline-

rescan to differences induced by acceleration. As baseline-rescan differences may be an underestimation 

of typical variations seen in qMT imaging, mean differences were compared to scan-rescan variations 

reported in literature. Paired t-tests were performed to compare the means of WM or GM ROIs in 

accelerated F-maps to those of fully-sampled F-maps, across all five subjects. The null hypothesis is that 

the pairwise difference between fully-sampled and accelerated F parameters has a mean equal to zero. 

This analysis was repeated for each of the sampling versions at each acceleration factor. In addition to the 

mean difference measure from Bland-Altman analysis, paired t-tests provide a quantitative indication of 
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any bias between fully-sampled and accelerated images. t-Tests were performed in Matlab using a 5% 

significance level. Test results with an h-value equal to zero indicate the null hypothesis in not rejected, 

while h-values equal to one indicate the null hypothesis is rejected and the pairwise differences between 

fully-sampled and accelerated F-maps is significant. 

 

 In all quantitative statistical analysis, included voxels were limited to brain matter (and/or tissue 

of interest), and outlying voxels were excluded. Outliers typically occur at edges of the brain and in 

ventricles (in qMT maps) where field map fluctuations and partial-voluming effects can lead to unstable 

qMT fit results. In this work, outliers are defined using Tukey’s fences[124] where any value larger than the 

75th percentile plus 1.5 inter-quartile ranges (IQR), or any value less than the 25th percentile minus 1.5 

IQRs is considered an outlier and is removed from the dataset. ROI's labeled as "Brain" or "all brain 

voxels" represent all voxels that are fit in the qMT modelling process (including cerebrospinal fluid in 

ventricles) as a measure of overall agreement between fully-sampled and accelerated images. Note that 

the "Brain" ROI is more than the summation of GM and WM ROI's, which were restricted to voxels with 

Q0.95 probability of being the tissue of interest, whereas "brain" includes all WM-GM partial volume 

voxels and cerebrospinal fluid voxels. In the qMT modelling process, background and skull voxels are set 

equal to zero using a binary mask of all brain voxels, including ventricles. The same mask is used to 

exclude background voxels from statistical analysis because they are fixed to zero in both fully-sampled 

and accelerated cases and could bias the results. 
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4! Results 

4.1! qMT Modelling Results: Fully Sampled Data 

 

Figure 4.1 qMT parameter maps based on two-pool tissue model produced from 
one fully-sampled healthy control subject. Each image indicates the pool-size 
ratio (F), magnetization exchange rate from free to restricted pool (kf), 
longitudinal relaxation rate (R1f), and transverse relaxation times of free (T2f) and 
restricted pools (T2r). The contrast of each of these parameter maps is consistent 
with literature. 

 

An example of qMT parametric mapping is provided in Figure 4.1. This figure shows parameter 

maps derived from the fully sampled data of one healthy subject. Of the parameters in the two-pool tissue 

model, those with a potentially meaningful physiologic interpretation include the pool size ratio F, the 

magnetization exchange rate kf, and relaxation parameters of the free-pool (R1f and T2f) and restricted 

pool relaxation T2r
[68]. The qMT images used in this figure were collected at low-resolution (128!128) 

and have been nearest-neighbour interpolated to match the high-resolution (256!256) matrix size of field 

maps. For the purposes of Figure 4.1 and Figure 4.7 only, high-resolution parametric mapping was 

performed in one subject. qMT parameter maps for all subjects appear consistent with previously reported 

results[2][14], primarily that F values are greater in WM than in GM, indicating higher macromolecular 

content in WM, and that T2f and T2r have tissue contrast comparable to traditional T2-weighted and T1-

weighted images respectively.  
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Figure 4.2 qMT pool size ratio (F) maps produced in five healthy control 
subjects.  

 
 
 

Table 4.1 Mean qMT parameter values and SD (brackets) in WM and GM 
regions from fully-sampled qMT parameter maps. Key parameters reported 
include the pool-size ratio (F), magnetization exchange rate from free to 
restricted pool (kf), longitudinal relaxation rate (R1f), and transverse relaxation 
times of free (T2f) and restricted pools (T2r).  Rows in bold represent mean and 
pooled SD across all five subjects. Coefficient of variation (CoV) reports the 
variance between means of different subjects. 

 

  

Figure 4.2 shows the F-maps obtained from all subjects. This data was created with MT-weighted 

images in their native resolution (128!128), with field (B0, B1) and MR parameter (R1) maps nearest-

neighbour down-sampled to match MT image resolution. To quantify the results of qMT analysis, key 

parameter values were calculated for ROI's of WM and GM. Table 4.1 provides a detailed report of this 

analysis in each subject, as well as mean results from all subjects. This table is used to compare our 

results to those previously reported in literature, as well as provide a point of comparison for future 
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studies. Voxels determined to be outliers for each parameter were excluded from the ROI. Outliers were 

determined using Tukey's fences[124], where T2f was typically the parameter with the most outliers. The 

number of voxels removed for any subject or parameter did not exceed 5.8% in WM or 9.3% in GM, 

where the average number of included voxels were 1431 in WM, and 1227 in GM. The bolded rows in 

Table 4.1 indicate the mean value of each parameter across all subjects and the pooled standard deviation. 

In this thesis, values obtained for F were on the low end of values reported in literature [125][68]; however, 

they were consistent with those reported by Sled et. al.[3] and Cercignani et. al.[16]. T2r values were 

consistent with previously reported values[125][3]; however, kf, R1f, and T2f values are lower than those 

reported from the same sources. Inter-subject variation from this study is reported in the last row of  Table 

4.1. In comparison to a study by Sled et. al.[3] which analyzed data from seven healthy controls, the inter-

subject coefficient of variation (CoV) values listed here are slightly lower in F and kf, and slightly higher 

in R1f and T2r (T2f is not reported).  

  

4.2! Image Acceleration 

4.2.1! MT Weighted Image 

 Using Equation 3.7, sparseSENSE reconstruction was performed on retrospectively 

undersampled images. Figure 4.3 demonstrates the MT-weighted images that result from CS-PI 

reconstruction, simulated in one healthy subject at eight acceleration factors, as labeled. The purpose of 

this figure is to investigate acceleration artefacts in the raw images, prior to any qMT modelling 

procedure. Absolute difference images are shown below, scaled by a factor of five for visibility. Of the 

eleven MT-weighted images collected (including baseline), Figure 4.3 shows the image with the most 

WM/GM contrast, collected with )@A , -./" and 0(, 1233 Hz. Some ringing artefacts are visible 

around the perimeter of the brain at acceleration factors of 8 and higher, and increased noise is observed 

with increasing acceleration factors, as indicated by arrows on Figure 4.3 Absolute difference images 

report minimal artefacts in WM regions, and maximum differences occurring at structural boundaries 



 43 

 

 

Figure 4.3 Accelerated MT-weighted images (a) and difference images (b) for one subject. Figure depicts how raw 
MT-weighted images respond to acceleration before any qMT mapping procedures are applied. Images were 
collected with !"# $ %&'( and )*$ +,-- Hz. Difference images (b) show the absolute difference scaled by a 
factor of 5. Key artefacts include ringing around the perimeter of the brain (indicated by arrow A), and blurring of 
structural boundaries (difference images and arrow B), which are not present in fully-sampled data (acceleration 
factor = 1). NMSE plot (c) shows the mean NMSE for the whole brain and ROI's of WM and GM in the same MT-
offset volume as shown above, averaged over all subjects and versions (n=20). Error bars indicate one SD. 
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Table 4.2 NMSE values from all accelerated MT-weighted images and baseline image. NMSE's were 
calculated in all brain voxels, averaged across all subjects and versions (n=20). Uncertainty values 
indicate one SD.  This table presents errors present in raw MT-weighted images before any qMT modelling 
procedure is applied. Note that images collected at the lower end of the z-spectrum (. = 433, 1088 Hz) 
have more error than those at the upper end. 
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such as the outside edges of the brain and around the ventricles. These artefacts are consistent with those 

reported in previous studies,[19] and are logical given limited data acquired from the periphery of k-space, 

where high spatial frequency components are stored. Errors between fully-sampled and accelerated 

images are quantified by the NMSE plot in Figure 4.3(c). The plot, which includes data from all versions 

and subjects, demonstrates increasing error with acceleration factor, with most error coming from voxels 

of brain matter of GM, and the least error from WM voxels. Errors from all eleven MT-weighted images 

are quantified in Table 4.2. The purpose of this table is to compare acceleration in each MT-weighted 

image and provide detailed information about the non-uniform effects of acceleration in MT-weighted 

images. NMSE's are much greater at the lower end of the z-spectrum (lower !'s) for "#$ % &'(). It 

should be noted that the MT-weighted image used in Figure 4.3 (second row of Table 4.2) has more error 

than most other MT-weighted images. Overall, these results demonstrate exceptional agreement between 

fully-sampled and accelerated MT-weighted images at undersampling factors exceeding 8*+ 

 

4.2.2! MT Normalized Images 

 The first step in modelling the MT response is to normalize MT-weighted images by the baseline 

image. Figure 4.4 (a) shows the accelerated MT-normalized images for the same subject and volume 

shown in Figure 4.3. This analysis was done to show what, if any, affect normalization has on accelerated 

MT-weighted images. Similar to the pre-normalized MT-weighted images, ringing artefacts are present in 

images accelerated by a factor of 8* and higher (see arrow A), with blurring of structural boundaries and 

increased noise visible at acceleration factors of 8* and above (see arrow B). Difference images (Figure 

4.4 (b)) are unscaled and demonstrate negative errors inside the ventricles, positive and negative errors 

around the perimeter of the brain, and ringing artefacts within the brain. Average NMSE's across all 

subjects and versions are reported in Figure 4.4 (c). In MT-normalized images, the lowest errors are 

reported in the WM ROI, consistent with pre-normalized results. NMSE's in Figure 4.4 (c) are depicted 

on the same scale as those in Figure 4.3 (c) and report very similar values. NMSE's from all MT- 
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Figure 4.4 Accelerated MT-normalized images (a) and difference images (b) for one subject. Normalization, 
the first step in qMT modelling, is performed to isolate the MT effect. This figure shows the effect of 
acceleration on qMT data after normalization is performed. Arrow A indicates ringing artefact seen at higher 
acceleration factors, and arrow B indicates blurring of structural boundaries. Difference images (b) show 
positive and negative errors in accelerated images. Images were collected with !"# $ %&'( and )*$ +,-- Hz. 
NMSE plot (c) shows the mean NMSE for the whole brain and ROI's of WM and GM in the same MT-offset 
volume shown above, averaged over all subjects and versions (n=20). Error bars show one SD.  
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Table 4.3 NMSE values from all accelerated MT-normalized images. NMSE's were calculated in voxels of 
brain matter, averaged across all subjects and versions (n=20). Uncertainty values indicate one SD. This 
table demonstrates errors present in qMT data on different points of the z-spectrum. Note that images 
collected at the lower end of the z-spectrum (. = 433, 1088 Hz) demonstrate more errors than those at the 
upper end. MT-normalized images in this table had less error as compared to pre-normalized MT-weighted 
images (Table 4.2). 
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normalized images are provided in Table 4.3. Overall, NMSE values are lower in MT-normalized images 

than they were for MT-weighted images. Following the trend of Table 4.2, Table 4.3 shows increased 

error at the lower end of the z-spectrum for !"# $ %&'(; however, the trend is also present for !"# $

)%&(. Results from MT-normalized images are consistent with those of MT-weighted images, reporting 

exceptional agreement between fully-sampled and accelerated images for acceleration factors exceeding 

8*. 

 

4.2.3! z-Spectra 

 The z-spectrum is used to summarize the signal response across all MT-saturation points. It is an 

important part of qMT-SPGRE imaging as this is the signal response to which the qMT model is fit. 

CEST imaging also relies on the signal response curve, however utilizes different ranges of the z-

spectrum. Figure 4.5 shows the z-spectra for ROIs of WM (top row) and GM (bottom row) in each 

subject (columns), superimposed with accelerated z-spectra. The shaded region indicates one SD within 

the ROI for fully-sampled data. Figure 4.5 demonstrates exceptionally close agreement between fully-

sampled and accelerated z-spectra at all acceleration factors. For all acceleration factors, z-spectra data 

points fall within one SD (shaded region) of fully-sampled z-spectra. In GM, the data points with most 

error are typically at the lower end of the z-spectrum, corresponding to the results in Table 4.2 and Table 

4.3. Within WM ROI's, there is less signal variance as compared to GM, as depicted by the differing 

widths of the shaded region. In GM ROI's, Figure 4.5 demonstrates a trend of consistently overestimated 

signal at the lower end of the z-spectrum (blue arrows) and underestimated signal at the upper end (red 

arrow, for !"#+ $ +%&'(). In WM ROI's, all z-spectra points are consistently overestimated (black arrow), 

except for !"# $ %&'(, -$ ).+/01, which is consistently underestimated. Figure 4.5 suggests that 

accelerated z-spectra are in closer agreement with fully-sampled spectra in GM as compared to WM. This 

result is quantified in Figure 4.6, which shows the NMSE's of z-spectra points in WM and GM, averaged 

across all subjects and versions. Figure 4.6 demonstrates higher errors in WM, and that WM errors    
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Figure 4.5 Accelerated z-spectra for ROI's in WM (a-e) and GM (f-j) in five healthy subjects (one per column), averaged across all 
versions (n=4). In all images, the upper z-spectra was collected with a 142! flip angle and the lower z-spectra was collected with a 
426!"flip angle. Shaded grey regions indicate one SD of signal values for fully-sampled data. Coloured lines indicate accelerated z-
spectra at rates indicated in legend (j). In all cases, accelerated z-spectra are in close agreement with fully sampled z-spectra and may 
not be fully visible. Key differences between accelerated and fully-sampled z-spectra include a systematic overestimation in the WM z-
spectra (black arrow). In the GM z-spectra, an overestimation on the lower end of the z-spectrum is visible (blue arrows), in addition to 
an underestimation on the upper end of the 426! flip angle spectrum (red arrow). 
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increase more rapidly as acceleration increases, as compared to GM. This is an interesting result 

considering the tendency of WM voxels to have less error in accelerated MT-weighted and MT-

normalized images. Nonetheless, the scale of NMSE values in Figure 4.6 is 20!"smaller than Figure 4.3 

(c) or Figure 4.4 (c), suggesting exceptional agreement between fully-sampled and accelerated z-spectra 

at all acceleration factors. 

  

 

Figure 4.6 z-Spectrum NMSE plots in ROI's of WM and GM. Each point is 
averaged over all subjects and versions (n=20) and error bars represent one SD. 
The z-spectra of WM contain greater error as a result of acceleration as 
compared to GM. 

 

4.2.4! qMT Parametric Maps 

 Accelerated F-maps from a single subject are shown in Figure 4.7 (a). Of the fitted qMT 

parameters, the pool size ratio, F, is most strongly correlated to myelin content in brain WM and is 

therefore the focus of qMT acceleration analysis. Some of the differences observed in all accelerated 

images include decreased F values in WM and an increased number of miss-fit voxels in ventricles, as 

indicated by the red arrow in Figure 4.7. Ringing artefacts are visible at acceleration factors of 12! and 

above. Difference images, shown with a diverging colour-scale in Figure 4.7 (b), demonstrate increased F 

values in ventricles, and decreased F values in WM, particularly at acceleration factors of 16! and higher. 
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Areas of largest differences include voxels with unusually high F values in fully-sampled data (see arrow 

A in Figure 4.7). Although these voxels may not represent physically reasonable values in fully-sampled 

data, z-spectrum changes induced by acceleration result in significant changes in the fitted F value.  

 

 Figure 4.8 illustrates the errors in key qMT parameter maps, averaged across all versions and 

subjects. The purpose of this figure is to compare agreement between fully-sampled and accelerated 

parameter maps in each of the key parameters, as well as to determine which tissue types have a greater 

contribution to accelerated image errors. For parameters F, kf, T2f, and T2r, NMSE values are significantly 

higher than those reported in MT-weighted and MT-normalized images (Figure 4.3(c) and Figure 4.4(c)), 

or those reported in accelerated z-spectra to which the qMT model is fit (Figure 4.6). The R1f parameter 

demonstrates much lower NMSE values than other qMT parameters, and even has lower errors than MT-

weighted and MT-normalized images (Figure 4.3(c) and Figure 4.4(c), respectively). This is likely due to 

the fact that the R1f parameter is constrained by R1obs, an unaccelerated MR parameter map. The 

parameter with the most error is kf, which is known to be difficult to constrain[68], followed by F. Across 

all subjects, errors in GM tend to be greater than those from WM or all brain voxels. These results 

indicate that qMT parameter maps are more susceptible to errors than the MT-weighted and MT-

normalized images from which they are estimated.



 52 

 

 

 

Figure 4.7 Accelerated F-maps (a) and difference images (fully-sampled F-maps subtracted from accelerated F-maps) (b) from 
one healthy subject. Acceleration factors are indicated on the x-axis where fully-sampled data has an acceleration factor of 1. 
Negative errors indicate underestimated voxels in accelerated F-maps. Difference images depict a clear underestimation of F 
values in WM at all acceleration factors. Arrow A indicates areas of overestimated F in fully-sampled data, correlated with 
areas of large differences in accelerated data. Key acceleration artefacts include voxels in ventricles with a high F value (arrow 
B) and ringing artefact at higher acceleration factors (arrow C). 
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Figure 4.8 NMSE values from qMT parameter maps for ROI's of all brain voxels (Brain), 
WM voxels, and GM voxels. All NMSE's are shown on the same scale, except for !"#, 
which is shown on a scale 100$ smaller. NMSE's were averaged across all subjects and 
versions (n=20), with error bars representing one SD. Pool-size ratio(F) and free to 
restricted pool exchange rate (kf) maps are shown to result in the most error, with GM 
contributing more error than other tissue types. 

 

 Bland-Altman analysis results are shown in Figure 4.9 for ROI's containing WM, GM, and all 

brain voxels. Each point represents the mean (x-axis) and difference (y-axis) between a pair of 

corresponding voxels of fully-sampled and accelerated images. Plots include voxel pairs from all versions 

and subjects at the labeled acceleration rate. Voxels considered to be outliers from the fully-sampled 

image ROI were excluded from the analysis. For clarity, Figure 4.9 summarizes data from four of the 

eight acceleration factors; excluded factors follow the same trend. Bland-Altman analysis represents the 

agreement between two data sets using limits of agreement (1.96 SD, dashed lines) and mean differences 

(solid blck line). As expected, limits of agreement increase with acceleration factor and are generally 

largest in the ROI containing all brain voxels and smallest in the GM ROI. In all cases, the mean 
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Figure 4.9 Bland-Altman plots for accelerated F-maps in all brain voxels (top row), ROIs in WM (middle row), and ROIs in 
GM (bottom row). Plots summarize data from all subjects and sampling versions (n=20). Of the eight acceleration factors 
produced in this work, four are shown here, as indicated on upper x-axis. Factors not shown follow the same trend. Solid 
black lines indicate mean differences between pairs of voxels in fully-sampled and accelerated images, as compared to zero 
(red line). These indicate any bias present between measurement methods. Dashed lines indicate limits of agreement (! 
1.96 SD), which represent overall agreement between methods. Limits of agreement are compared to gold-standard values 
(shaded regions) in WM and GM ROIs, based on pooled SDs in fully-sampled data. This plot indicates acceptable mean 
differences and limits of agreement occur at an acceleration factor of 4"#  
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difference line is very close to zero (red line), indicating very little bias in accelerated F-maps as 

compared to fully-sampled F-maps. The largest bias occurs in WM, and the smallest in GM. Shaded 

regions indicate acceptable limits of agreement in WM and GM ROIs. An acceleration factor of 4 has 

limits of agreement (dashed lines) within the acceptable range for WM and GM; however, acceptable 

limits of agreement have been exceeded for all other acceleration factors. The acceptable limits have been 

defined using the pooled SD within fully-sampled ROIs, and are discussed further in the following 

section and in Table 5.1. 

 

 Table 4.4 summarizes the results of Bland-Altman analysis and linear regression analysis at all 

rates. The table supports the observation that the largest bias occurs in WM, with a -1.14% bias in WM at 

an acceleration factor of 36! . Referring to Table 4.1, this bias is considerably smaller than the SD of F 

within WM for fully-sampled data (2.8%). For Bland-Altman analysis, mean differences and limits of 

agreement need to be interpreted in the context of the measurements in question. To provide a point of 

comparison, the last row of Table 4.4 shows statistical data analysis between a fully -sampled scan-rescan 

baseline image collected in one subject. Due to time constraints, it is not possible to re-acquire the entire 

set of MT-weighted images in a single session for the protocol used in this thesis. Therefore, only the 

baseline volume was re-acquired, described here as baseline-rescan (B-R) results. Although this may be 

an underestimation of changes seen between a true scan-rescan comparison, discrepancies between 

baseline scans propagate to all volumes during the MT-normalization step, therefore making it a logical 

point of comparison. These results, presented in the bottom row of Table 4.4, show a small positive bias 

and limits of agreement smaller than those of any acceleration factors used in this thesis. For example, in 

an ROI of all brain voxels, the limits of agreement are 1.4 times larger for an acceleration factor of 4!  as 

compared to B-R data. 

 

  Linear regression results presented in Table 4.4 were performed on scatter plots in which voxel 

pairs were plotted with the accelerated F value on the y-axis and the comparison (fully-sampled) F values 
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on the x-axis. For all acceleration rates and ROI's, slopes indicate voxel pair deviation greater than 10% 

(slope < 0.9), and underestimation of accelerated F values increase as acceleration factor increases. This 

corresponds to the increasing negative bias observed in Bland-Altman plots. y-Intercepts are consistently 

above zero and increase with acceleration factor. Finally, R2 values decrease as acceleration increases, 

and are below 0.9 for all acceleration factors presented in this thesis. Overall, linear regression analysis 

does not report a high degree of correlation at any acceleration factor studied in this work. As explained 

in Section 3.3, linear regression results may not be indicative of true agreement; however, they are 

included in this work as they may provide useful comparisons against other research, which reports these 

values. 

 

 Paired t-tests were performed to determine if there was a statistically significant difference 

between the pairwise means of fully -sampled and accelerated F-maps in WM or GM ROIs. The results of 

this analysis detected significant differences (i.e. h=1, null hypothesis rejected) between fully-sampled 

and accelerated means of F in WM, for all acceleration factors and sampling versions. This result is 

consistent with findings from the Bland-Altman analysis which demonstrated negative bias in all 

acceleration factors of a WM ROI; therefore, the pairwise difference between means in each WM ROI 

does not have a mean of zero and the null hypothesis is rejected. In GM, significant differences were not 

detected for any sampling version at acceleration factors of 4! , 8! , and 12! . For 16-32!  accelerated 

data, some (but not all) of the versions resulted in statistically significant differences. Bland-Altman, 

linear regression, and t-test statistics are summarized in Table 5.1 (Section 5.2). Overall, Bland-Altman 

analysis supports the use of modest acceleration factors; however, F-maps are shown to be much more 

susceptible to acceleration artefacts than raw images and z-spectra.
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Table 4.4 Bland-Altman and linear regression analysis of accelerated F-maps for all brain voxels, and ROI's in WM, and 
GM. Analysis of baseline-rescan (B-R) versus initial scan is provided in the bottom row. Bland-Altman results may provide 
a helpful point of comparison for future studies, and linear regression, summarized by the R2 value, can also be used for 
comparison against other studies. No R2 value was greater than 0.9 for any acceleration factor, however baseline-rescan 
data was highly correlated (R2>0.9). 
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5! Discussion 

5.1! qMT Modelling  

 Detailed qMT modelling results from fully-sampled data are provided in Section 4.1 to validate 

the qMT protocol used in this work. Although this information is independent of image acceleration, it 

was reported to compare the qMT results of this work against existing literature and to contribute new 

knowledge to the expected qMT parameters in healthy subjects at a field strength of 3T. In fully-sampled 

data, the results of qMT parametric F-maps (Table 4.1) are consistent with literature values. Sled et. al.[3] 

reported F values of approximately 0.124 in frontal and occipital WM and 0.067 in frontal and occipital 

GM in their study of regional variations in qMT parameters. F-maps acquired in this study are in 

agreement with values reported above, which were acquired using a 60-point protocol. Admittedly, F 

parameter values found in WM in this work are on the low end of typical literature values. In a study 

regarding the reproducibility of qMT parameters, Levesque et. al.[68] found F to be around 0.16 in WM 

ROI's and 0.07 in the caudate nucleus (GM), averaged over scan-rescan values in six healthy subjects. 

The assessment of timing and transfer rate parameters is more challenging due to the limited number of 

studies which report these qMT parameter results at a field strength of 3T. In their investigation of MR 

and qMT parameters measured in various tissues at 3T, Stanisz et. al..[126] reported F, kf, and T2r 

parametric values collected in tissue samples of bovine WM and GM. Reported findings were F = 0.14, kf 

= 3.2 s-1, and T2r = 10!" s in WM, and F = 0.05, kf = 2 s-1, and T2r = 9!" s in GM. Their study varied 

significantly form work presented here in that qMT values were measured ex vivo in bovine tissue 

samples, and that the study was performed with a significantly different protocol consisting of a CW 

pulse model and 182 MT-weighted images. Nonetheless, F and T2r values were consistent with those 

reported in Table 4.1. kf values reported in this work (kf = 1.99 in WM and 0.78 in GM) are significantly 

lower than those reported above. Other studies which implement qMT imaging at 3T provide some 
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insight into expected parameter values, although detailed results are not reported. Boudreau et. al.[102] 

presented qMT parameter maps collected in vivo at 3T using the same acquisition sequence as this work; 

however, they did not report measured values directly. These maps appear to correlate with the results of 

this work in kf and in GM regions of F. T2f results are considerably higher than those of this work, and R1f 

is not presented. In a similar paper, the authors used qMRLab to simulate qMT responses for the same 

signal model used here[127]. Although real measurements are not performed, simulation parameters were 

set to; F = 0.15, kf = 4 s-1, R1f = 1.11s-1, T2f = 30ms, and T2r = 12!" s in WM, and F = 0.075, kf = 2.5s-1, R1f 

= 0.77s-1, T2f = 55ms, and T2r = 11!" s in GM. By comparison, the results of this thesis are smaller in kf 

and T2f, while other parameters are in close agreement. The results of this work are believed to be 

consistent with literature values for all qMT parameters except kf, which is likely to be an 

underestimation of the true free pool exchange rate, and T2f, which is below the expected T2 relaxation 

rate of the free pool.  

 

 MT parameter and field maps used to correct field inhomogeneities and constrain parameters in 

the qMT model may be responsible for below-average values reported in this work. For example, the 

VFA T1 mapping technique (used here) is known to overestimate T1 values in brain tissue compared to 

the conventionally accepted gold-standard IR technique by up to 30%[128]. Although there are a wide 

range of T1 values reported in the literature in both WM and GM tissues[108][128]Ð[131], it has been 

recommended that T1 mapping techniques be validated against IR measurements[128]. Time constraints 

preclude the use of IR as the primary T1 mapping technique in this study; however, it may be helpful to 

implement IR T1 mapping in accelerated protocols, or to perform single-slice IR T1 mapping to validate 

VFA maps. In addition, errors in the estimation of B1 field maps are known to affect qMT parameters. In 

a study regarding the sensitivity of qMT parameters to B1 variations, Boudreau et. al.[102] found that a 

10% underestimation of B1 maps (in combination with B1 corrected VFA T1 maps) at 3T resulted in 25% 

error in kf and 6.7% error in T2f. The likely overestimation of T1 and potential variations in B1 may 

account for the underestimation of kf and T2f seen in this work. Table 4.1 reports the inter-subject 
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variation of mean qMT parameters found in this thesis. These variations (reported as CoV) are similar to 

Sled et. al.[3], who found COV's of approximately 9% in F, 12% in  #$, 5% in  %&$, and 4% in  ' ( )  (T2f 

not reported) compared to approximately 6% in F, 11% in  #$, 8% in  %&$, and 6% in  ' ( )  in this work, 

averaged across ROI's. Overall, the inter-subject variability found here is considered to be reasonable 

based on findings reported in literature.  

 

5.2! Accelerated Image Quality  

 Section 4.2 reports accelerated image quality as images are collected and passed through the qMT 

parametric mapping protocol. Data was analyzed across each of these steps to determine how each step 

affects the final parametric qMT map quality. Figure 4.3 and Figure 4.4 demonstrate a high degree of 

accuracy in the initial MT-weighted images. This finding is particularly notable considering the 

substantial acceleration factors attempted in this work, and that figures depict data from volumes with 

relatively high errors compared with the overall dataset (Table 4.2 and Table 4.3). Regions most severely 

affected by image acceleration occur at structural boundaries such as the perimeter of brain tissue and 

edges of ventricles. Accelerated images demonstrate blurring of WM/GM boundaries that is more 

prominent as acceleration factor increases. High spatial frequency information (such as sharp edges) are 

most susceptible to errors caused by acceleration, as this information is encoded in the periphery of k-

space where sampling is the least dense. The errors present in absolute difference images Figure 4.3 (b) 

appear to be more prominent in outer regions of the brain. This observation corresponds to the 

quantitative analysis, where NMSE values are higher in GM than in WM, as depicted in Figure 4.3 (c). 

Another notable artefact present in accelerated images is the ringing present in the posterior outer portions 

of the brain, which increases as acceleration increases. In their review paper, Jaspan et. al.[19] cite blurring 

of fine detail and global ringing as the two primary artefacts observed in CS studies, prominent in brain 

images above acceleration factors of 2* . Although present at higher acceleration factors, these artefacts 
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are not directly visible at an acceleration factor of 4*  in this work. The improved performance of raw 

images in this work is likely due to larger matrix sizes which exploit sparsity in four dimensions. Figure 

4.4 demonstrates the same trend in MT-normalized images as was present in raw MT-weighted images. 

One notable difference is the clear underestimation of voxels in ventricles, which appear darker as 

acceleration increases (Figure 4.4 (a)) and are the most prominent feature present in difference images 

(Figure 4.4 (b)).  

 

 An interesting result of image reconstruction in multiple sampling versions is that the variability 

between sampling versions can match or exceed differences between different acceleration rates. For 

example, Figure 4.3 (c) demonstrates very little change in NMSE between 12*  and 16*  acceleration 

factors. In this case, the error bar of each measurement surpasses the difference between them. This 

indicates that sampling pattern can potentially have a large effect on achievable acceleration factors, and 

that care should be taken to choose an optimal sampling version when applying these results to 

prospectively acquired data. 

 

 The results of z-spectra analysis show exceptional agreement between fully-sampled and 

accelerated z-spectra, even at the highest acceleration factors attempted in this work. Some important 

differences to note are the slight over-estimation of z-spectra response in WM, and the overestimation at 

lower +,-  and underestimation at higher +,-  in GM. Although barely visible in the z-spectra themselves, 

these systematic differences can have a significant impact on the fit results of the qMT model. Figure 4.6 

demonstrates that accelerated differences are much greater in WM as compared to GM, and that WM 

errors increase at a much faster rate than GM errors as acceleration increases. This is a surprising result 

given that errors in MT-weighted and MT-normalized images were substantially smaller in WM as 

compared to GM. One possible explanation is that the regularization parameters (. ,- ) used in this work 

have a disproportionate effect on different MT-offset images. This could impact the z-spectra by biasing 

one end more than the other (ass seen in Figure 4.5), in effect altering their shape. Due to differences in 
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WM and GM responses (uniquely shaped z-spectra), it is possible that the effect is more pronounced for 

WM z-spectra than for GM z-spectra. One possible culprit could be the local low-rank constraint (. &), 

designed to enforce smooth variation between adjacent time points. For data acquired in the MT-offset 

dimension, it may be necessary to sub-divide the reconstruction problem into two 4D reconstruction 

problems, one for each / 01 . Alternately, it may be necessary to re-define the regularization parameter 

affecting the MT-offset dimension to be more appropriate for MT data as opposed to temporally acquired 

data. The increased error in WM z-spectra not accounted for in normalized images highlights the need to 

select and optimize regularization parameters based on z-spectra and qMT map performance, rather than 

on MT-weighted image performance alone. Nonetheless, NMSE values presented in Figure 4.6 are 

substantially smaller than those presented for MT-weighted and MT-normalized images, providing 

promising results for future work accelerating qMT and CEST imaging. 

 

 Accelerated F-maps demonstrate ringing artefacts for acceleration factors 16*  and above, 

however blurring of tissue boundaries is not noticeable at any acceleration factor. The most obvious 

difference present in Figure 4.7 is the underestimation of WM values in accelerated F-maps. It is 

important to note that the colour bar used in Figure 4.7(a) can make small changes very evident at the 

higher end of the scale, and that F-map biases are best summarized using Bland-Altman analysis (Figure 

4.9). Nonetheless, these discernable underestimations present at all acceleration rates are concerning, 

especially given that the primary application of F-maps is to determine the relative restricted pool size in 

healthy and diseased WM. Other observable changes induced by acceleration include increased values in 

ventricles and decreased values in areas of above average WM parameters. All five subjects have areas 

within fully-sampled WM where F values are above normal (F>0.18), typically near the outer perimeter 

of the brain (see Figure 4.2). Of all subjects, the subject shown in Figure 4.7 demonstrates the largest area 

of above normal F values. These discrepancies are believed to be due to the coil sensitivity profile of the 

head coil used in this imaging study. Sub-optimal field mapping techniques may also play a role in 

inconsistent qMT results throughout the entire brain volume. Aside from these differences, which are 
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present at all acceleration factors, accelerated F-maps appear very similar to fully -sampled maps, 

particularly at acceleration factors of 4*  and 8* . 

 

 Figure 4.8 presents quantitative NMSE analysis for differences observed in all qMT parameter 

maps. When averaged across all subjects and versions, errors in GM remain much higher than those 

present in WM. This could be due to ringing artefacts which primarily affect outer regions of the brain 

that are dominated by GM. Of the qMT parameter maps assessed in this thesis, F and kf result in the 

largest NMSE values. Unfortunately, these parameters are the most clinically useful, therefore errors 

present in these parameters need to be addressed and characterized before routine use of CS in qMT may 

be possible. As noted in the results section, the R1f parameter has significantly less error than any other 

parameter; however, the model constrains R1f by R1
obs, an unaccelerated MR parameter map. The variable 

performance among other qMT parameters can, at least partially, be attributed to non-uniform errors 

observed in accelerated z-spectra as specific parameters are more closely related to different regions of 

the z-spectrum[68]. For example, T2r estimation is most dependant on parts of the z-spectrum collected far 

off-resonance, while T2f depends on points near resonance, as well as far off-resonance points. Notably, 

errors are typically largest and demonstrate the most variability in the kf  parameter, which has been cited 

as being the most difficult parameter to constrain[68]. Therefore, small variations induced by 

undersampling are likely to affect the fit of kf  more severely than other parameters.  

 

 Perhaps the most important assessment of image quality comes from Bland-Altman analysis. As 

opposed to methods such as linear regression, which are designed to assess correlation, Bland-Altman 

plots are designed to assess agreement between two different measurement techniques. Figure 4.9 

demonstrates the agreement between fully-sampled and accelerated F-maps produced in this thesis. When 

calculated for all brain voxels (Figure 4.9, top row), there appears to be two distinct clusters of sample 

pairs, each centered at unique positions on the x-axis. These clusters correspond to voxels of GM (lower 

mean F) and voxels of WM (higher mean F), which are therefore analyzed separately and are provided in 
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the bottom two rows of Figure 4.9. The y-axis of Bland-Altman plots presents the difference in pairs of F 

measurements, in the same ratio units that F-maps are presented in. The key measurements by which to 

evaluate agreement are the mean difference between voxel pairs (Figure 4.9, solid lines) which indicates 

any bias present between measurement methods, and the limits of agreement (Figure 4.9, dashed lines), 

which indicate overall agreement between the methods. Table 4.4 presents these values for all 

acceleration factors studied in this thesis. In the overall image (top row), a small yet statistically 

significant negative bias can be observed in the Bland-Altman plots. Mean difference (bias) values were 

tested to determine if they were significantly different from zero using a one-sample t-test at the 5% 

significance level. In WM voxels (middle row), a statistically significant negative bias is present at all 

acceleration factors. This is consistent with trends observed in accelerated F-maps, which had a noticeable 

decrease in WM F values at all acceleration factors (Figure 4.7). In GM, no bias is observable in Bland-

Altman plots; however, Table 4.4 reveals a small negative bias at lower acceleration factors and a small 

positive bias at higher factors (mean difference not significantly different from zero at an acceleration 

factor of 20* ). It should also be noted that the bias present between two fully-sampled datasets collected 

with a rescanned baseline image were statistically significant. As expected, bias and limits of agreement 

tend to increase as acceleration factor increases (except for GM bias, as noted above). While bias and 

limits of agreement support previous observations, they are most informative when used to quantify 

acceptable agreement between accelerated and fully-sampled measurements. 

 

 Acceptable bias and limits of agreement are those which do not exceed values typically observed 

between two gold-standard measurements (i.e. fully-sampled scan repeated twice). Baseline-rescan (B-R) 

results were performed in one subject to compare agreement in accelerated images. Table 4.4 

demonstrates that B-R bias and limits of agreement are smaller than any acceleration factor studied in this 

work. For all brain voxels, an acceleration factor of 4*  has a bias approximately 1.7*  larger and limits of 

agreement approximately 1.5*  larger than B-R differences. Although B-R is a useful comparison, other 

measures may better characterize typical agreement between fully-sampled qMT data. By rescanning only 
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the baseline image in one subject, it is likely that the B-R differences have underestimated typical scan-

rescan variability in qMT imaging. In a study regarding the reproducibility of qMT parameters at 3T, 

Levesque et. al.[68] reported mean intra-subject variation from longitudinal data collected over a period of 

3 years. Although this information cannot help determine acceptable limits of agreement, an acceptable 

amount of bias in an accelerated image can be defined as less than or equal to the CoV reported across 

longitudinal measurements. From a sample of five healthy controls, mean CoV's were approximately 5% 

in F, averaged over data collected in multiple ROI's. This longitudinal intra-subject variation corresponds 

to F differences of 0.64% in WM and 0.34% in GM. Bias values reported in Table 4.4 are less than or 

equal to the longitudinal intra-subject CoV for all acceleration factors in GM, and for acceleration factors 

of 4* , 8* , and 12*  in WM. This thesis presents typical F parameter variance within fully-sampled ROI's 

in Table 4.1 (within ROI SD, pooled across subjects). These values can be used to inform acceptable 

limits of agreement in accelerated data, and are depicted as shaded regions in Figure 4.9. The pooled SD 

within an ROI of WM for fully-sampled data was found to be 0.028, or 2.8%. For an acceleration factor 

of 4* , limits of agreement in WM are less than the SD of fully sampled data. For an ROI of GM, limits of 

agreement in 4*  accelerated data (2.2%) are less than the fully sampled SD (2.4%).  Overall, Bland-

Altman findings support the use of image acceleration, for the qMT protocol used in this work, up to an 

acceleration factor of 4* . If bias alone is considered, acceleration factors of 4* , 8* , or 12*  can produce 

F-maps of acceptable image quality.  

 

 Paired t-tests were used in addition to bias assessment from Bland-Altman analysis. The purpose 

of this test was to determine if there was a significant difference between WM and GM means in fully-

sampled and accelerated F-maps. As discussed in Section 4.2.4, there were significant differences for all 

acceleration factors and sampling versions in WM, and there were no significant differences in GM for 

acceleration factors of 4* , 8* , and 12* , in any of the four sampling versions. These results were 

consistent with Bland-Altman analysis in that WM tissues, which were shown to have a negative bias at 

all acceleration factors, also resulted in significant pairwise differences between fully-sampled and 
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accelerated F-maps across the five subjects. Although this result indicates that accelerated F-maps cannot 

be considered an equivalent measure of F in WM, measurement bias's may not be the most important 

measure of image quality. For example, a measurement which maintains good limits of agreement but has 

a known bias can be could be scaled by a correction factor, resulting in an image which is in close 

agreement with the gold-standard method. Each of the comparison methods stated here have been 

summarized in Table 5.1 below. The true test of image acceleration will come from future studies that 

implement this accelerated acquisition technique prospectively; however, these findings suggest 

acceleration factors of 4*  are likely possible, and that acceleration factors up to 12*  should be explored.  

 

Table 5.1 Summary of statistical tests. Each method of comparison used in this study 
is presented alongside its cut-off value and the acceleration factors which fell within 
the acceptable range. Mean differences (23 ), and limits of agreement (LOA/!43 ) refer 
to the measures obtained from Bland-Altman analysis. B-R indicates the baseline-
rescan test performed in one subject. These statistical measures can be used together 
to inform future directions and which factors to explore further. 

 

 * Longitudinal coefficients of variation within healthy subjects reported in Ref [68]. 
**Pooled standard deviation across the ROI in fully-sampled F-maps presented in this 
thesis. 

 

5.3! Limi tations  

 In this thesis, several important limitations may have hindered the performance of image 

acceleration and the interpretation of those results. Notably, sparsity constraints and their associated 

regularization parameters (. 's) were selected empirically based on a single MT-weighted image.  Each 
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sparsifying term was removed and replaced from the reconstruction one-by-one to confirm that it 

improved reconstruction performance. Regularization parameters (. 's) were chosen by increasing and 

decreasing the default values by factors of 5 and 10 to determine which had the least observable artefact. 

Once the ideal range of each .  was identified, parameters were further refined using 10% intervals of that 

range. The .  resulting in the least observable artefacts in the reconstructed MT-weighted image was 

selected as the weighting factor for that parameter, using a median value when differences were not 

discernible. This pseudo-systematic approach can be improved in future research by performing an 

exhaustive search of all possible regularization parameter combinations, and quantitative analysis of 

lowest resulting NMSE. In addition, the performance of qMT parameter maps differs from that of MT-

weighted images, as seen by the change from GM to WM dominant errors in parameter maps. It would be 

preferable to select regularization parameters based on overall qMT performance rather than a single 

representative MT-weighted image. Selection of appropriate regularization parameters are often cited as a 

challenge in CS studies[19]. It has been suggested that a standardized method for selecting regularization 

parameters may be necessary before widespread clinical adoption of CS may be possible[19]. Optimization 

of sampling patterns are also considered to be a challenge of the CS method, especially as they are 

application dependent. Although sampling patterns were selected based on literature recommendations, 

the results of this study may be improved through the implementation of qMT specific sampling pattern 

optimization, or through the use of data-driven sampling strategies. 

 

 Although the acquisition protocol used in this work is common among qMT studies, it is possible 

to optimize qMT protocols to capture MT-offsets which result in a more stable fit of the qMT model[14]. 

Improving the fit results of qMT could lead to more accurate parameter estimations in both fully-sampled 

and undersampled MT data. As seen in Figure 4.7, areas of inconsistent parameter estimation in fully-

sampled F-maps correspond to areas of increased error in undersampled F-maps. These differences make 

it difficult to assess meaningful variation between fully-sampled and accelerated images. Optimized qMT 

protocols have been shown to result in decreased F-map variability (within an ROI of WM) as compared 
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to the uniform protocol used in this work[14]. Implementation of an optimized qMT protocol may therefore 

improve the reliability of fully-sampled F-maps, thus the ability to assess image quality in accelerated F-

maps. 

 

 This work has assessed a wide range of acceleration factors (4*  to 32* ) with relatively large 

increments between them. Although appropriate for MT-weighted, MT-normalized, and z-spectra 

analysis, large gaps between lower acceleration factors have hindered the interpretation of results in qMT 

parametric maps, which are more sensitive to acceleration artefacts. Overall, these results support the use 

of an acceleration factor of 4* , and in terms of bias alone support the use of an acceleration factor of up 

to 12* . Had acceleration factors of 5* , 6* , and 7*  also been explored, it is likely that the results would 

have supported the use of 5*  or 6*  undersampled data. Due to long reconstruction and qMT modelling 

times, analysis of more rates were not considered in the present work, although these sampling rates can 

be retrospectively applied to the current dataset in future work. It is important that the prospective 

translation of this work include more acceleration factors in the 2*  to 12*  undersampled range, if the 

current acquisition protocol is to be used. More generally, qMT acceleration is only possible in 

acceleration factors much lower than what can be achieved in 4D MT-weighted data, therefore it is 

important to study a smaller range of acceleration factors below what is predicted by raw image 

acceleration studies. 

 

 Although scan-rescan variation was approximated using the rescan of a baseline volume in a 

single subject, this comparison method does not represent true scan-rescan variability of a full qMT 

protocol, and has not been performed in all subjects. One limitation of this work is the lack of a robust set 

of criteria to determine which accelerated images are clinically acceptable. Although a full scan-rescan 

protocol was not possible in this work due to time limitations (subject tolerance), allowing time for such 

an investigation or designing a separate investigation to explore this would be highly beneficial when 

assessing accelerated images. Part of the difficulty in defining acceptable limits of agreement for 
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accelerated images is the lack of literature regarding expected qMT parameter values at 3T. Additionally, 

although some researchers have investigated the variability between mean qMT parameters[3] and the 

reproducibility of mean values[68], detailed information about within-ROI variability is limited. As image 

acceleration increases the within-ROI variability, it would be helpful to know typical variability and use it 

to inform acceptable limits of agreement for accelerated images. A limitation of prospective studies is the 

lack of a gold-standard case by which to compare accelerated images. This limitation can be avoided in 

the prospective translation of this work by designing a case-control study that acquires fully-sampled and 

prospectively undersampled qMT data in each subject. This can enable a robust characterization of 

accuracy in prospectively undersampled data; however, information about tolerable limits of agreement 

are still required. 

 

5.4! Future Work  

 As this work presents only retrospectively undersampled data, it is important to consider how 

these results will translate for prospectively undersampled data with real acquisition time savings. 

Achievable acceleration rates may differ between retrospective and prospective studies, with prospective 

studies being unable to match acceleration rates predicted retrospectively. Although the cause of this 

discrepancy is not definitively known, it has been proposed that eddy-currents induced by the acquisition 

of data in a random trajectory may be a factor[132]. It should also be noted that in their clinical review 

paper, Jaspan. et. al.[19] observed no discernable difference in achievable acceleration factors reported 

between retrospective and prospective CS studies. The prospective translation of preliminary 

retrospective studies may also be affected by the desire to use some of the additional acquisition time 

allowance to collect higher resolution images; either spatially, temporally (MT offset), or both. This has 

the effect of increasing the maximum achievable acceleration factor, as sparsity is increased with 

dimensionality. Although larger matrix sizes facilitate higher acceleration factors, high-resolution 
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prospective studies are not directly comparable to low-resolution retrospective studies. The prospective 

translation of this work should proceed with the knowledge that the maximum acceleration factor reported 

here may not provide acceptable images acquired prospectively, or that results may not be directly 

comparable between the two methods due to an increase in matrix size. 

 

 MR parameter mapping (MRPM) and DCE techniques have many similarities with qMT imaging 

and have been successfully accelerated using emerging acceleration techniques. In the case of MRPM, the 

acquisition of multiple datasets with modulated pulse sequence parameters enables quantitative tissue-

dependent parameter estimation, while DCE requires multiple datasets to be acquired during the 

administration of a contrast agent. Parameter estimation is achieved by fitting a parameter-dependent 

model such as T1, T2, or vascular permeability (Ktrans, in DCE tracer-kinetic TK modelling) on a voxel-

wise basis, in much the same way as qMT. Signal evolution as a function of modulated acquisition 

parameter (or contrast agent) usually yields a smooth curve with a sparse first or second-order derivative. 

This provides an additional opportunity to exploit sparsity during reconstruction[100]. Unlike typical 

acceleration protocols (such as the one used here) which reconstruct intermediate images before 

modelling occurs, Guo et. al.[133] have demonstrated a framework of TK parameter estimation that directly 

incorporates undersampled k-space data. Here, multiple TK parameter maps were reconstructed with high 

fidelity at undersampling rates up to 100* . This so-called "direct" reconstruction method was able to 

significantly out-perform the combined CS-PI indirect reconstruction method, similar to the method used 

in this thesis. Model-based direct reconstruction has also been demonstrated in T1 and T2 parameter 

mapping. Sumpf et. al.[134] were able to achieve acceptable T2 maps from 5*  undersampled multi-channel 

data, and Zhao et. al.[135] demonstrated 5.33*  undersampled T1 maps from simulated data. Direct 

reconstruction methods can be implemented with or without additional sparsity constraints, which 

incorporate CS theory into parameter estimation. In light of the success of other direct modelling 

strategies, it may be of future interest to investigate the feasibility of incorporating undersampled k-space 

data into the qMT model to achieve direct qMT modelling, potentially at much higher acceleration 
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factors. This would involve reframing the qMT signal equation in terms of k-space, and formulating the 

parameter modelling problem as a statistical parameter estimation problem. 

 

 One of the primary applications of qMT imaging is its use in the investigation of myelin content 

in WM diseases such as MS. Previous work has focused on the characterization of qMT parameters in MS 

lesions in post-mortem tissue[44], and in vivo[15]. The need to shorten acquisition times for clinical 

translation of qMT imaging is especially important for patient populations which may find long scans 

especially challenging. Therefore, it is of critical importance to study acceleration artefacts which may be 

present in demyelinated lesions using either retrospective or prospective CS study designs. The choice of 

optimal acceleration factor for qMT imaging must take into account the ability to accurately detect 

restricted pool differences in WM lesions. Therefore, future work should focus on characterizing 

acceleration artefacts in data gathered from MS patient populations. 
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6! Conclusion 

 In this thesis, the first known work applying combined compressed sensing and parallel imaging 

(CS-PI) to qMT imaging has been presented. This thesis has outlined a novel strategy for the selection of 

frequency-encode lines of k-space which incorporates Poisson disc sampling strategies without disruption 

to the power probability density function recommended for brain MRI.  The first detailed account of CS-

PI qMT parameter estimates obtained at 3T are presented here, as well as an analysis of inter-subject 

variability observed in healthy controls. Finally, this work has demonstrated that the SPGR qMT model is 

highly sensitive to small z-spectrum changes induced by image acceleration. Despite promising results in 

raw images, with li ttle-to-no image degradation visible in images up to and including acceleration factors 

of 16* , and the ability to produce accurate z-spectra at high acceleration factors, qMT parametric maps 

were shown to achieve much more modest acceleration factors. Based on changes in mean values and 

within-ROI variations typically seen across fully-sampled images, an acceleration factor of 4*  was found 

to maintain acceptable image quality. The exceptional agreement between fully-sampled and accelerated 

z-spectra shows promising results for CEST imaging, which may be less sensitive to small z-spectrum 

changes than qMT. In future work, optimization of regularization parameters will be of critical 

importance to minimize acceleration artefacts and to increase the achievable acceleration factor. 

Additionally, special consideration should be given to the specific impact these choices have on qMT 

parametric maps, not just on MT-weighted images. With the current work supporting the use of an 

acceleration factor of 4* , acquisition times can be reduced significantly to make the qMT technique a 

clinically feasible imaging tool to study WM disease.  
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