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Abstract
In this work, we present a wide dynamic range (WDR) vision system that is able to
capture bright and low light objects in a single frame without being over or underexposed. The
data is captured and streamed in real time (RT) mode from the sensor to a monitor at 60 fps or a

PC.

The presented system includes:

1) WDR complementary metal-oxide-silicon (CMOS) image sensor design which is able to
update the integration time of each individual pixel depending on the ambient light and provide
output in a mantissa-exponent format (floating point) [1], [2].

2) Interface hardware designs including PCBs and HDL drivers required to activate the sensor
and all the peripheral components.

3) A tone mapping algorithm based on a mantissa/exponent representation along with its
hardware implementation that allows us to render WDR data on a conventional low dynamic

range (LDR) devices[3].



Preface

Throughout human existence, we can observe a constant process of creation of art which
has one of its expressions as drawings of familiar or imaginary objects. As the civilization moved
forward, the drawings transferred from caves to stones, from stones to trees or leather, and later
to newly invented materials such as rags and papers. Where the final creation stands behind a
digital way of data capturing and presentation such as TVs, smartphones, printers, or virtual
reality systems. Along with the presenting devices development process, art creation tools also
improved and significantly changed. In the beginning, humans used brushes, sticks or stones,
with different types of pigmentations that could be found in nature for colors to create a painting
and any type of art. The rise of the sciences; especially chemistry, brought us to the invention of
photography about two hundred years ago, where humanity no longer had the need to spend time
or to use complicated tools to depict their visual perception of objects. And finally, the latest

achievement is standing behind capturing of scenes on a digital camera and its direct presentation

on any types of image rendering devices [Figure I].

Figure I: Example of human art development from the oldest on the left to the latest on the
right; Lascaux Cave Paintings about 17,000 years old; Papyrus, paint 1050 B.C. Book of
the Dead for the Singer of Amun; 18"-century style artist Kasia Wozniak — R; Digital
Photo.



For the last 25-30 years, capturing and rendering digital devices were significantly
improved in main parameters such as resolution, frame rate, color depth, and physical
dimensions. The developed improvements have allowed a realistic representation of the
environment in most cases. Digital image sensors can feature more than 250 Million pixels, or
with less resolution, can feature high frame rates with more than 25k frames per second [4]. The
dimensions of the sensors are also very impressive, with a size of less than a quarter of 1 mm?,
allows them to be deployed in many applications where size is a critical consideration [5].

Current rendering devices can also feature high pixel per inch (PPI) density, with
resolutions of more than 8k, and frame rates of 240fps or above, which all together allows
visualizing image data in a very realistic manner. Regardless of all the presented features,
dynamic range (depth) of the scene (or the image data), is a limiting factor in allowing cameras
to “see” perfectly, and to rendering devices to visualize image data in a completely realistic
manner.

The dynamic range represents the ratio between the darkest and the brightest intensities
in the scene and is usually measured in dB where the value is given by (). In capturing devices
such as digital CMOS image sensors, the dynamic range is mainly dependent on the photodiode
capacity and the noise floor of the signal. Precise dynamic range considerations for CMOS

image sensors will be discussed in the next section.

brightest intensity)
darkest intesity

(Equation 1) dynamicrange = 20 X log, (

To present the image data (that was either captured or created), we will need to use a
possible rendering device such as a monitor, projector, printer, etc. In most of the cases current

solutions will work well; however, if the depth of the data exceeds the rendering capabilities of



these devices (Due to high or low light levels in the presented scene), they will either truncate the
data or in the worst case they will not render the signal at all. Current state-of-the-art rendering
devices such as TVs or monitors have different abilities in presenting high contrast data which is
usually dependent on the technology they are based on. Manufacturers claim the dynamic
contrast is 1:1,000,000 and the static contrast can reach 1:100,000 with a peak luminance of
600cd/m2 on state-of-the-art OLED displays; however, the measured contrast ratio in a dark
room remains at around 1:350 if compared to a real-life illuminance scale [6]. This rendering
limitation means, if we want to present data with a higher depth on existing devices, we will

need to compress the depth dimension of this data, this compression is called tone mapping,

which will be discussed in the next section.

In this thesis, we present two possible solutions for:

1) Capturing scenes with wide dynamic range (WDR) of brightness values
2) WDR data rendering for low dynamic range devices.
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Chapter 1 : INTRODUCTION

This thesis will discuss two different problems, and thus the introduction is divided into two
main parts. Part one will discuss the WDR capture, and part two will discuss the WDR data
display.

1.1. WDR Capture

Before CMOS image sensors became popular, and before the Charged Coupled Device
(CCD) was invented, there were MOS sensors. With varying levels of success of capturing light
NMOS, PMOS, or BJT image technologies were implemented; however, these sensors suffered
from high fixed pattern noise (FPN) which limited their applications. When CCD technology
was firstly introduced for light sensing applications during the late 1960s [7], [8] with improved
sensitivity and fewer process variations, many companies started to design image sensors based
on a CCD concept, this was the beginning of digital photography. Image sensors based on the
CCD concept continued to provide improved image quality, resolution, and frame rate until the
active pixel sensor was developed in 1985 by Tsutomu Nakamura [9]. and more broadly defined
by Eric Fossum in 1993 [10].

Even though image sensors based on CMOS technology were less sensitive, they had a few
advantages over CCD technology which made them so broadly successful. The advantage of
image sensors based on CMOS technology was the possibility of integrating well-defined
components on the same chip such as ADC, memory, and amplifiers, with the sensing matrix
(pixels). This made the design process faster, less complicated, and reduced some noise related
to external readout of analog signals. More than that, CCD sensors require different voltage
levels compared to other on-board components, requiring additional peripheral design, and they
were significantly more power “hungry” which made them unsuitable for low power applications
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[11]. These disadvantages made CCD technology a very small niche, and today they are found
only in applications where very high sensitivity is required above any other consideration, e.g.,
astronomy or microscopes[12].

For the last 25 years, CMOS image sensors have improved significantly in features such as
sensitivity, resolution, frame rate, and dynamic range. Although current features are sufficient for
most applications, the Dynamic Range ability is limited and requires either automatic or manual

calibration of Exposure Value (EV) and gain to select the required brightness level during the

capturing process as presented in Figure 1-1 - Same scene captured with different EV values..

EV-4 EV-2 EV+2 EV+4
Figure 1-1 - Same scene captured with different EV values.

To understand the challenge of extending the dynamic range let’s consider the following; an
image sensor is an array of photodiodes which convert incident light into a photocurrent iph.
Since the change in photocurrent is linearly related to light intensity, a photocurrent is a good
measure for the intensity of the captured light. The resulting photocurrent is usually very low and
difficult to measure, so it is accumulated into a charge which is later linearly translated into a
voltage, and finally, the voltage is digitized and read out.

Eliminating the dark current additive noise, which can be very destructive, noise can be
expressed as a sum of four independent components[13]:

1) FPN gain and offset due to process variation and device mismatches.



2) Readout circuit noise (including quantization noise) with zero mean and average power of
GZReadout-

3) Reset (KTC) noise.

tint

4) Integrated shot noise, which has zero mean and average power fon ¥ » Where q is the

de

electron charge. The output charge equation can be expressed as in Equation 1-2. Where
Q(tint) < Qmax and the saturation charge is referred to the well capacity.
Equation 1-1 - Qtind) = - (ipntint + Qepn + Qreadout + Qirc + Csor)
Assuming the correlated-double-sampling (CDS), is performed, we can eliminate Qrgser
and the offset part Qzpy. And if we assume that Fixed Pattern Noise (FPN) is negligible

compared to shot noise, Signal to Noise Ratio (SNR) is given by Equation 1-2

: . (iphtin)® , qQ max
Equation 1-2 - SNR(i,,) = —F—"—== or i, <—
q ( ph) qlphtint+q20'2 f ph tint

Note that SNR increases with i, first at / decade When readout noise variance

dominates, and then at 10dB/decade when shot noise variance dominates. SNR also increases

with t;,,; . Thus, it is always preferred to keep the integration time as long as possible.
Image sensor Dynamic Range is defined as a ratio of the largest unsaturated value to the

smallest detectable value, typically defined as a standard deviation of the noise under dark
current conditions. Assuming the above sensor model, i,,,,x = quat/tint and i,,;, =
QOread/ — the dynamic range is given by Equation 1-3

tmt

Equation 1-3 DR = max — Qmax

Imin Oread

Extending the dynamic range at the high end requires increasing i,,,, in one of the

following ways: Varying integration time: The integration time is adapted to pixel photocurrent



providing long integration times for pixels with small photocurrents and short integration times
for pixels with high photocurrents. Examples of such techniques are - well-capacity adjusting
[14]-[16], multiple-reset [2], [17], [18], logarithmic sensors variations [19] or other HDR
schemes which are not related to the parameter modifications of the DR equation such as

integration of multiple captures [20], [21].

Extending DR at the low end requires reducing i,,;,, which can be achieved by, reducing
Oreadout 122], by increasing t;,;, or when using multiple-resets a combination of image blur

prevention and weighted averaging of the samples[20].

In this thesis, we present an architecture to extend the DR into the high end which is
based on time and space trade-offs [1]. That implies an implementation of a multidimensional
pipeline control logic integrated with the pixel array that allows achieving more than 120dB of
linear dynamic range with up to 8 conditional resets and provides an output in mantissa-exponent
format. Compared to a previously designed CMOS Image Sensor (CIS), which is based on the
same concept but with only 3 integration times (2 conditional resets) [23], the presented design
has an increased DR, requires less memory and has more quantization levels to represent the
light, which increases the contrast and overall naturalness of the scene. In the presented sensor,

the internal pipeline controls the integration time of every pixel separately and can update their

integration time to the following partial values %,1 2L L L and % of the global frame

4’8’16 32"64 128’
time based on the amount of light they receive. This implies that the sensor can conduct up to 8

conditional resets to each pixel based on the ambient light. Knowing the number of resets



integrated with the sampled analog value of each pixel allows us to represent the captured WDR
data directly in a mantissa-exponent structure value = mantissa * 2 *P°™e"t \where mantissa
is the final sampled analog value of the pixel and the exponent is the number of resets the pixel

occurred during the frame time.

The presented technique allows us to embed nine integration times into in a single shot
acquisition time with corresponding incremental of the Dynamic Range by 20 * log,,(28) =
48dB. The number of resets is a function of the sensing matrix dimensions, and for a bigger
sensor (4096 rows), the number of resets will increase to 12 with a corresponding increment of
the dynamic range of another 24dB.

1.2. WDR Display

Compared to low dynamic range sensors, WDR sensors allows us to capture more levels
of the existing light intensities per pixel; this lets us see more details, have higher contrast, and
obtain high range data without losing information regardless of their illumination levels in the
scene. Captured WDR data may have more than 1000 times larger range than the presenting
capabilities of conventional visual devices. These LDR have limited range, or brightness values
they can render per single pixel and depending on the technology (Plasma/ LED/ OLED/ LCD,
etc.), the maximum range is usually varying from 1:256 to up to 1:1024 of discrete values, i.e., 8-
10 bit of brightness levels whereas the WDR data has 20-bits or more. The limitation of existing
display devices led to the development of the image processing application area called tone
mapping. Tone mapping or tone mapping operator (TMO) is a technique used in image
processing and computer graphics to map one set of brightness intensities to another to
approximate the appearance of high-dynamic-range images in a medium that has a more
limited dynamic range[24]. Tone mapping is a compression performed on HDR data to meet the
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LDR visualization standards of 8-10 bits by preserving the overall image naturalness and
structure.

Many TMOs have been developed by the academic or industrial groups for the last two
decades. Even though all of them has the same purpose, they all feature different capabilities and
work in different ways. Some of them are highly efficient and can be implemented on hardware
platforms such as a GPU or FPGA for real-time applications [25]-[29], and some of them are
less efficient [30] but give better visual results. Usually, the faster algorithms are based only on
a global operator (single equation applied to all the pixels in the picture) [31]-[33], whereas
more complex tone mapping have both, global and local operators (local operator is more
complex operator which is based on a spatial intensities and thus requires more memory and
computational effort to generate value) [34]-[37]. The latest achievements in TMOs are based on
neural network computing techniques[38]-[40].

To compress the data generated by the newly developed image sensor a special TMO is
required. The output from the sensor has a mantissa-exponent data structure where the mantissa
represents the detail level, and the exponent represent the scaling factor of the mantissa’s values.
To perform a tone mapping process on this data, we could transform the data into a standard
binary representation as is usually performed[41][42]; however, this was avoided due to the
additional logic implementation required making it an expensive operation in an ASIC. Thus, we
present here a new tone mapping algorithm that can process the image data in the specified
format. The designed TMO takes advantage of the input data structure for compression
proposes; this ensures lower computational effort, small footprint and possible integration with
the image sensor on the same chip. Integration of the TMO with the image sensor will reduce,
the interface with the image sensor, the driver complexity, and the complexity of the entire
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system in general. These features make the sensor suitable for medical, low power, and low
dimension WDR imaging applications. We note that for WDR inputs that do not satisfy our
mantissa/exponent representation, a conversion module may be used for formatting the pixel
intensities into the appropriate representation [Figure 5-9].

In the following sections, we will present the sensor design, the interface between the
sensor and the FPGA, the hardware driver to control the system and to stream WDR output, and

the tone mapping algorithm with its hardware implementation.

Chapter 2 : M-E SENSOR

The image sensor presented in this section was designed using the Cadence Virtuoso
software combined with an AMS 350-nm CMOS opto-process technology. Selected tools and
technology were provided by Canadian Microelectronics Corporation (CMC) Microsystems and
were the most suitable for light capturing application and for prototyping compared to other
provided technologies. We note that for improved image quality and lower SNR features a
special opto-process is required which should include pinned photodiode device, designed for
CIS analog components (charge amplifiers, capacitors) column ADCs, CFA, smaller gate size,
etc. A presented CIS has a completely new design which allows access in parallel to up to 9
pixels at the same time for resetting proposes to generate WDR output. Modules for this CIS
(FIFO buffers, Multiplexers) were designed for possible integration of the presented pipeline
with previously designed solutions by our group [43]-[45].

The following chapter is organized as follows: at the beginning, we present a precise

explanation of the designed blocks along with their operation and necessity to the design, and



after we finish to present each of the modules, we explain how all these modules work together
and generate WDR output.

The presented CIS is designed to perform up to 8 conditional resets for each pixel during
the integration time to avoid their saturation at the end of the frame time. To implement this logic

and to establish parallel access and conditional resets to 8 pixels a few necessary components

| Memory - 8 FIFO Buffers e |
- Column Select Arrays
| Parallel 9-bit Reset Logic unit " — | l
< 14§
Sl X
R
Parallel 9 to || parallel 256 | © || € Reacout
9-bit Row 256 bits to 8 bits ° Chan)
. - m in
Decoder multiplexer multiplexer D :
: : ’ P Pixel Array )
S r a I + 2585 to 1
Row Timing Reset Comparator i & 256x360 multiplexer
Generators Decision Decision ‘Pth
Delivery Delivery v @ Wi
e r Amplifiers
r s
s

Figure 2-1 — Sensor components. Blue arrows symbolize the control
lines. Yellow arrows symbolize the data flow

were designed and integrated together: 9-bit Row Decoder, Single bit ADC (latched comparator),
parallel 256 to 8 bits multiplexer, parallel 9-bit Reset Logic unit, parallel 9 to 256 bits
multiplexer, Row Driver, multiple access low noise pixel and readout chain. The complete
design is presented in the block diagram in Figure 2-1. In the following subsections, we will
describe each of the components and its importance for the presented sensor. And at the end, we

will describe the control/data-flow and WDR output generation process.



2.1.  9-bit Row Decoder

In a standard row decoder one signal can be selected (activated) each time, and the
address of the selected signal is provided as a binary input to the decoder. This allows random
access to each row in the image sensor. In our design, there is parallel access to 9 rows
simultaneously, and regular decoder couldn’t provide the necessary functionality. There was an
optional solution to use 9 row decoders in parallel; however, integrating 9 parallel decoders will
require 9 addressing busses, will consume a lot of power and a lot of chip space (row decoder is
a relatively big component). Since in our design, there is no random access to the rows, a
different solution for row decoding, based on an array of flip-flops only was designed. A
presented solution also allowed to reduce control logic complexity to only two signals (only reset
and clock signals required), make the design smaller and reduce the total power consumption of

the sensor. Here we explain the operation and design consideration of this module.
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Figure 2-2 - Row decoder internal design



The number of generated by this module signals and the physical distances between them
is strongly dependent on the number of rows in the pixel matrix. In the designed sensor the
number of rows is 256 and thus, following time and space logic, the intervals between the
accessed pixels and the intervals between the control lines are the following: 128, 64, 32, 16, 8,
4, 2,1, and another 1 (in terms of rows).

The distances between the nine activated control signals are always fixed, and there is no
option of random access (i.e., randomly switching from row to row).

The nine active control lines are moving in a circular direction and activating a different
set of 9 rows in the image sensor, where each next selection of 9 rows is triggered by the clock
signal.

The decoder (Figure 2-2) was implemented using flip-flops instead of using a common
for row decoders combinational logic design flow for a few reasons: There is no random access,
it has a much smaller footprint, only two control lines (reset and clock), and it consumes much
less power.

The module works in the following way:

1) The “running” logical 1 signal (called Pivot) represents the start of the frame integration
time.

2) This signal is “moving” in a circular direction from the first to the last (255™) flip-flop
and then repeat its cycle.

3) Every time this signal crosses its halfway (flip-flop #127), it sends a logical “1” to the
first flip-flop in the next circular buffer (called Pivot - 0.5).

This connection creates an effect of running in a circular direction two signals with a phase of
exact half frame time from each other. We note: The logic behind the buffer names is in the

delay between them and the Pivot signal.
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The next circular buffer is called “Pivot - 0.75” (Pivot -1/2-1/4), and the delay from Pivot
will be exactly 0.75 frame time. This buffer receives logical “1” from Pivot — 0.5 buffer from its
64" flip-flop. We continue to connect all the following circular buffers in the same way and thus
create all the explained above 9 signals/delays.

2.2. Latched Comparator

CLK

GND

Figure 2-3 - Latched comparator, transistor level design

The purpose of this unit (Figure 2-3) is to compare two analog values (inP and inN) and
return the result in digital form (terminal a and b, are outputs), in other words, this module works
as a single bit Analog to Digital Converter (ADC). This module is also synchronized so we can
use its output without inserting another latch. This is important for pipeline integrity and will be
explained later in the sensor operation section.

The reset logic, memory, and control circuits are digital circuitries whereas the pixel
matrix, the amplifiers, and the rest of the circuitries are based on analog concepts; therefore, this
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type of comparator plays a significant role as a separator in the presented mixed analog & digital
design and a few peripherals which were added to the original comparator to improve its
functionality. Here we will discuss the principles of these improvements.

Analog inputs were buffered with PMOS based common-drain (source follower)
amplifiers (pre-amplifiers) for the following reasons. To avoid injections of switching noise back
into the pixel matrix. The latch and the input clock signal are injecting a significant amount of
charge back to the analog parts which are then reflected to the sensing matrix (using an amplifier
before this module will suppress this noise). To match the analog values of the read line (from
pixel array) to the required by the comparator input values (the inputs of the latched comparators
must be above one volt, whereas the voltage over the read line is varying between 0 and 1V).
The PMOS based source follower increases the input analog value that fits the analog swing of
the comparator.

Digital outputs were buffered with inverters to equalize load capacitance on the output
terminals. Different load capacitance connected to the output terminals will have a direct impact
timing of the latch circuit and affect the cooperation abilities of the comparator.

2.3. Parallel 256 to 8 bits Multiplexer

In every clock cycle, up to eight pixels are being checked in parallel for possible
conditional reset. To meet the constraint of parallel access, an 8-bit multiplexer has been
designed (Figure 2-4). This module delivers 8 of 256 possible results from the latched
comparators, to the corresponding reset logic circuitries. The multiplexer inputs are presented on
the right side and called cmpln0-cmpIn255 (output from the comparators) whereas the outputs of
the multiplexer (left side) are called res1-res8 (connected to the reset logic inputs). The select
signals of the multiplexer (TL1 — TL8) and (TL1n — TL8n) are generated by the explained
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above 9-Bit Row-Decoder module and define the exact encoded combination to deliver 8 signals
from the inputs to the outputs of the multiplexer. The multiplexer was designed using
transmission gates instead of digital logic cells (Figure 2-5) mainly for integrating of current
design with active column sensing, SAR and AR solutions presented by our research team earlier

which requires of delivering an analog signal to the reset logic circuits.

TL 1-8 0:255

~L

res 1:8 cmpln 0:255

< @
8b 256b

e

TL 1n-8n 0:255

Figure 2-4 - 256 to 8 Parallel Multiplexer

A similar to a presented multiplexing module, another module was designed to deliver
eight results from the reset logic module back to the selected eight pixels and called
demultiplexer (Figure 2-6). This module has 10 inputs (resConf0-9): eight of them deliver the
conditional reset data, one to deliver the global reset signal, and the last to deliver logical “0” to
the 245 non-selected MOS gates (common to TTL logic design considerations). This multiplexer

has 256 outputs (resetToPixel0-resetToPixel255) that activate the corresponded reset “lines” in
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the pixel array. The select lines of the multiplexer (TLO — TL9) and (TL0O — TL9)' are controlled
by the same 9-Bit Row-Decoder module and define the exact encoded combination to enable

delivery of the reset signals back to the pixel array.

— >
— >3+ cmpOut<0>
>

—><J+ cmpOut<1>

:%— cmpOut<7>

Figure 2-5 - Single cell of the 256:8 multiplexer
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Figure 2-6 - 10:256 multiplexing module
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2.4. 9-bit Reset Logic Module

To
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Mamory

LEERBREEEE

Controla

Figure 2-7 - Reset Logic Module

This module (Figure 2-7) generates all the necessary reset signals to the pixel array.
Every clock cycle, this module receives information from the comparators (res1-res8) and the
memory (a0in - g2in) about eight of the nine selected pixels and makes the decision to generate a
conditional reset or not. Along with generating conditional reset signals (resConfl-resConf8),
this module also generates a hard-reset signal (resConf0), hard reset signal indicates a frame

starting point for one of the nine selected pixels in the presented rolling shutter sensor.
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Reset logic module consists of nine different combinational logic circuitries for each of
the resets (8 conditional and 1 hard-reset). To generate a hard-reset signal (start for the frame
time), no conditions are required, and thus this circuit receives only one input bit which is the

shared between all the reset circuits synchronization signal clkReset (
Table 2-1 case # 0). The first conditional reset circuit (

Table 2-1 case # 1), receives two bits, one is the result of the latch comparator and the
second is the synchronization signal (clkReset). Depending on the result of the comparator, the
reset logic will either generate a conditional reset or not. Regardless of the generated signal, we
store the result into a FIFO buffer (aOout) until the next time this pixel is being checked (FIFO

buffers and their structure is the next explained component).
The second conditional reset circuit (

Table 2-1 case# 2) oversees resetting the pixels on the second time and will generate a
conditional reset signal only if the pixel crossed the threshold value and was reset previously.
Therefore, this circuit has three inputs, one bit from the comparator (about current status), one bit
from the FIFO (information about previous conditional reset) and the third bit is the sync. signal.
Here again, we store the decision into the next FIFO buffer until the next cond. (reset, access
phase (#3)). To store the decision of the second conditional reset logic, we will need two bits,

and thus the interface with the memory has two bits (blout and bOout)

Next conditional reset circuitries #3-#8 features the same logic. The difference between
them is a different bit selection from the corresponding FIFO buffers. The bit selection varies

from 1 to 3 bits depending on the reset circuit/case. e.g., at reset case #6. we need to check if the
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pixel received 5 conditional resets. If this is the case (5" FIFO stores binary value of <101°), we
can check only two bits (the first and the third one) if they store logical ‘1°.

The reset module is a set of combinational logic circuitries and to synchronize them to
generate a reset at the same time, we use a shared between all the conditional reset circuitries a

synchronization signal, and we call it clkReset.

Reset circuit # Schematic View Truth Table
Hard reset clkReset out
Reset #0 ‘1) (1)
Conditional Resl clkReset | TgIN
1
reset #1 g 2 5
1 0 0
1 1 0
Conditional Res2 EBO_1 clkReset | Tg2N
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0
Conditional Res8 EB7.0 EB7. 1 EB7.0 clkReset | Tg8N
reset #3 8 )1< )1< )1< 2 é
1 X X X 0 0
1 X X X 1 0

Table 2-1 — Internal reset circuits for reset #0, #1, #2 and #8
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2.5. Row Driver

ke cletault ©

by default 1

by defaull ©

Figure 2-8 - Row Controller Module

The row driver module (Figure 2-8) allows reading the analog value of the selected pixel
in the selected row by activating the Column Select line and the required for reading purposes in
row level circuits (current sink, source follower amplifier, and comparator). Combined signals
from the Row Decoder (TLOn-TL8n) and from the FIFO buffers will allow access to a pixel in
this row. Signals from the Row Decoder are activated only if there might be a need in a
conditional reset (based on time and space tradeoffs) and the signals from the FIFO shift
registers will be activated only if the requested for access pixel had a conditional reset on its
previous access phase (this data is stored in FIFO buffers). In total, we have 256 Row Controllers
in our sensor, one for each row and the output of each one of them is latched to avoid glitch

effects (Figure 2-9).
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The purpose of this module is to reduce the overall power consumption of the sensor and
to reduce the amount of noise injected to all the pixels in the accessed row.

The power consumption is being reduced since this module is turning on only up to 9
readout circuities from 256 possible options, and only doing so if there is a need of a conditional
reset (each readout circuitry includes: a comparator, source follower amplifier, and current-sink).

The noise is reduced since the “read line” will be activated only if the pixel had a
conditional reset on its previous access phase; otherwise, the access line will stay untouched.
Thus, if there is no need for a conditional reset, the number of reading accesses can be reduced
from nine to one. Reducing the number of accesses will reduce the noise injected to all the pixels

in the accessed row when the ‘read’ line is activated or deactivated.

Latch based
on a D-type
- flip-flop

Figure 2-9 - 256 Row controllers as a sequential module (chip level view)
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2.6.  Pixel design

Column
Select

Reset M5

Vvdd

Column
Select
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Figure 2-10 - Pixel Architecture (Schematics on the left and layout
on the right)

A standard 3T pixel configuration was chosen as a source to design a pixel that allows a
single pixel selection in the array as a combination of a row and column decoders. A 3T pixel
with a regular photodiode was used due to lacking a pinned photodiode in an AMS35 Opto-
process. Opto-process (C35B401): 3.3/5V provided by CMC is similar to the basic AMS35
process, but with a high-efficiency photodiode and anti-reflective coating for imaging and
optoelectronic detection applications. But, to take advantage of the CMOS process for low noise
imaging applications, technology with pinned photodiode must be selected.

To allow access to a single pixel from the pixel array a 3T pixel was modified as follows:

The reset transistor’s configuration was changed to perform as an AND gate. This
configuration allows us to reset a single photodiode in the array when both signals from the
column and reset logic arrives (are logically high).

A diode-connected transistor was added between the photodiode and reset transistor to
decouple switching noise. This noise is reflected on the photodiode when one of the terminals on

the reset transistor is being activated, that happens only when pixels in the same row or column
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are being accessed. The diode-connected transistor is activated only when there is reset access to
the transistor otherwise this transistor is off, and its drain terminal is reflected as capacitance load
that absorbs the charge injected from the reset transistor terminals.

Read access transistor as AND logic configuration was added to allow read access from a
single pixel when a signal from the row and column decoder appear.

In total, the pixel features 5 transistors, with a size of 10.4umx10.4um and 34% fill factor
(Figure 2-10).
We note — the pixel is very sensitive to access and reset noise since it features a regular instead
of a pinned photodiode, using a pinned photodiode will enable us to eliminate a major amount of
noise and will significantly increase the dynamic range of the sensor into the low end.

2.7. Readout Chain

Stage 1 Stage 2 Stage 3
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Row<241>
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Figure 2-11 - Readout chain with 3 multiplexers and amplifiers
The readout sequence from the sensor is the following: We select a row and scan all the

pixels in this row. Once the row scan is complete, we select the next row and repeat the pixel by

the pixel scanning process. We repeat this logic for all the rows in the sensor until we finish
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scanning the entire sensing matrix. We repeat the frame scanning process in a continuous data
streaming mode, and thus we ensure fixed frame time and fixed frame per second (fps) rate.

An Analog multiplexer module was designed to establish a fast and continuous scanning
process from all the sources (rows). The multiplexer is based on transmission gates and
amplifiers and allows us to read data from 256 different sources (rows) through a single analog
output (Figure 2-11).

The multiplexer features three amplification stages. The first stage is based on an op-amp
amplifier in a sample and hold (S&H) configuration (

Figure 2-12). The output terminal of each of the S&H amplifiers is multiplexed through a
16:1 analog multiplexer to the second amplification stage. In total 16 multiplexers are required to
deliver the outputs from 256 S&H amplifiers to the second amplification stage. Outputs of the
second amplification stage are multiplexed through a 16:1 analog multiplexer to a third and the
final unity gain amplifier which pushes the analog signal outside the sensor to the ADC.

In total, we have 256 op-amp amplifiers for the first phase, 16 amplifiers for the second and one

for the final amplification phase.

control {>O\|

Vin

Vth

Figure 2-12 - First stage amplifier in S&H configuration
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Figure 2-13 - general architecture of the 2nd and 3rd amplification stages

We use 3 stages of amplification to decrease the delay of the analog signal on its way out
from the sensor. The delay is caused by the different current driving abilities of the
internal/transistor level amplifiers to the required current driver to charge the capacitance of the
chip level pad.

In the described readout chain only the first amplifiers have S&H peripheral networks
whereas the rest amplification stages (second and third) are connected in a negative feedback
configuration with a bandwidth required to deliver the signal in one clock time.

We note:

1) In case of faster design constraints or more complex design, all three amplification
stages can be turned into S&H configuration.

2) To ensure a higher frame rate and lower read noise, an internal ADC must be used

instead of streaming the analog value outside the sensor for sampling.
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3) The reading sequence is synchronized with the Pivot signal, and the pixels are being
read and then reset during the same access time window.
2.8.  Sensor Operation

To understand the pipeline and the general data flow in the sensor let’s consider the
sequence of the events which are related to a single pixel and later extend and explain how the
same control logic applies to the entire pixel matrix and successfully generates WDR data in
mantissa-exponent format.

Let us consider a pixel located on the top left corner of the sensor and has the following
coordinates <0,0> (where the first digit represents the rows and the second the columns). After a
global pipeline reset, the pivot control signal (from the row decoder), and the column decoder
signal are set to select the row and column number 0 (<0,0>). l.e., the values from row decoder
and column decoder select a single pixel from the matrix. The pivot control signal enables the
connection between the row #0 and hard reset circuitry (reset #0) via the 9-bit demultiplexer, and
the column decoder defines a certain pixel in the selected row that will be connected to the reset
logic circuitry. Once access is established, the analog value of the pixel is sampled via the
readout chain for further ADC steps (the readout process will be explained later). Within the
same access window, the pixel is reset by a signal that arrives from the reset #0 circuitry (hard
reset), this moment indicates a beginning of the new frame time for this pixel. The column
decoder moves to the next column and selects the next pixel for readout and reset purposes. This
process is repeated for all the pixels in this row (row # 0), once the first row is completed, the
row decoder (Pivot) selects the next row (row #1), and column decoder repeats its cycle from

column #0 to the last column. A combination of the row and column decoders enables us to scan
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and reset the entire matrix in a continuous mode. I.e., the described operation is the exact
operation of a sensor in a rolling shutter mode with a single exposure setup.

To enable the WDR capture, the pipeline must be extended. In parallel with the
previously described process, the pipeline performs access to up to another eight pixels for
possible updating of the integration times and performing conditional resets (reset # 1-8). Here
we explain the signal sequence to generate the first conditional reset.

As explained in section 9-bit Row Decoder, the Pivot signal and Pivot-1/2 (P-1/2) signal
has a delay of an exact half frame time. The delayed control signal (P-1/2) is sent to row driver,
8-bits, and 9-bits multiplexers, these modules function to: activate the read circuitry in the
selected row, deliver the comparator result to the conditional reset logic circuitry # 1, and deliver
the reset logic result back to the pixel accordingly. Analog value of the selected pixel is being
compared with vTh (half of the possible voltage swing over the read line). If this analog value
crossed vTh means the pixel will be overexposed by the end of the frame time and must be reset
to prevent saturation and data loss (perform a cond. reset # 1). If the analog value from the pixel
did not cross the vTh, means the pixel will not be overexposed, and there is no need to restart the
light accumulation process (Figure 2-14). Regardless of the decision of the comparator, the
pipeline stores the decision in the memory for further access.

The selection of the Row Decoder will stay until the Column Decoder finishes scanning all
the pixels in the row. Once the Column Decoder finished its cycle, Row decoder will select the
next set of rows.

We continue to check the pixels at different stages of their integration times up to another 7
times for possible conditional reset to prevent their overexposure state by the end of their frame
time (Figure 2-15).
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Parallel access to up to 9 pixels is done in the following way: As discussed in section (9-
bit Row Decoder), the generated control signals have delays of 1/5, 1/,, 1/g. ... 1/,c . of the

frame time from the Pivot signals. All the generated delayed signals (after Pivot) have the same
purpose, they all activate the required read circuitries (via row driver), and they control the
parallel 8 and 9-bit multiplexers that delivers data from comparators to the reset logic circuitries
and back to pixels. I.e., in the same way as the P-1/2 signal allows the pipeline to sample pixels
at the middle of their integration time and connects them to the correspondent reset circuit #1, P-
1/2-1/4 control signal allows us to sample pixels that reached % of their integration time and
establish connection with the corresponding reset circuit (reset #2). The rest of the generated
control signals has a similar function, e.g., P-1/2-1/4-1/8 signal allows us to sample pixels that
reached 7/8 of the integration and so on where the latest delayed signal with a name: P-1/2-1/4-
1/8-1/16-1/32-1/64-1/128-1/256 is connecting pixels at 255/256 of their integration time to the
last reset logic circuit and back (reset #8). In general, we can select up to 9 different pixels at the

same time for possible updating of their integration times.

Pixel
Voltage [V]

'
Reset
Voltage 7 4

Low Light

Threshold _
Voltage

>

Frame start Middle of the frame End of the Time [S]
(Pivot) time (Pivot—1/2) frame time

Figure 2-14 — Light blue line represents low light — no conditional reset. Dark blue line
represents higher light intensity, conditional reset will be applied.
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Inherent parts of the sensor are the memory buffers. The memory is required to store the
number of conditional resets for each pixel. The total number of resets is being accumulated in
the memory buffers and represents the final exponent value in the discussed mantissa-exponent
data structure. Besides the reset accumulator purpose, the memory plays a significant role during
the conditional reset #2-8 decision stages. To generate the second and above conditional resets
(#2-#8), two conditions must be met. The photodiode in the pixel must be more than 50%
discharged (crossed vTh value) which we know from the latched comparator module. The pixel
received a conditional reset signal on its previous access phase which we know from the memory
buffers. We are using the data from these two sources (memory + comparators) in order to

prevent unnecessary conditional resets. E.g., If reset #4 is the last conditional reset the pixel
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Figure 2-15 : Control signals and the selected pixels for conditional reset.

Presented on a 16x16 example matrix
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received (Figure 2-16), and there was no reset signal on the next reset phase #5 due to the
voltage over the photodiode didn’t cross the vTh value. There might be a case when the talked
about analog value will cross the vTh at the ascending conditional resets #6-8 access phases. If
the reset logic circuits rely only on comparators’ output to generate reset signals, they will
generate reset signals when the pixel will not be overexposed by the end of the fame time, and no
conditional resets should be applied and completely ruin the sensor data output values.

More than that, the row driver module is using the memory data as well to decide to
allow read access to the pixel or not. So not only unnecessary reset signals will not be generated,
but even the access to the pixel will not be granted if there is no need in resets, so the pixel will
be left untouched until the end of the frame time without being reset and accessed.

Finally, here we explained the exact purpose of the reset data (from the memory buffers)

being delivered to the conditional reset circuitries #2-8 and to row driver modules.

Pixel Voltage [V]

F'y

Reset
Voltage 7 A 4 44 ‘\’
Threshold
voltage | ] '\' 1

‘\\\\a

[~
-
Reset #4 Reset #5 Reset #6 #7 #B EOF Time [5]

Figure 2-16 - 4th reset is the last one the pixel received, at reset #5 the pixel didn’t
cross the vTh value and thus at reset #6-#8 stages the pixel must stay untouched

It is important to discuss the dimensions of the memory buffers and their type. We are
taking advantage of storing the exponent values only and the rolling shutter mode to design a

sensor which takes much less memory compared to storing a quantized value (after ADC) in the
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same rolling shutter mode or global shutter sensors. In global shutter sensors, to generate the
exponent part for this representation, we will need a memory buffer with similar dimensions to
the sensing matrix whereas in rolling shutter mode we are taking advantage of the fixed intervals
between the accessed pixels (based on the theory of time-space trade-offs [46]) and the fact that
we need only a few bits (1-4) to store the exponent values only for comparisons and for final data
representation instead of the storing the values after ADC (12 or more bits per pixel)[23]
significantly reduce the amount of embedded memory. E.g., the total number of pixels the
pipeline will scan between the conditional reset #1 and #2 will always be fixed and equal to the
Y4 of the sensing matrix. l.e., to store the generated data at reset #1 stage and until the data is
required on reset #2, we can use FIFO shift register with fixed dimensions of the ¥ frame
(Figure 2-17). Besides the length, first FIFO will have only one-bit in width to store the decision
of the conditional reset logic. The second and the third FIFOs will have 2-bit in widths (that will
allow them to store binary values of “10” and “11””) with correspondent lengths of 1/8 and 1/16
parts of the frame and so on. The final FIFO needs to carry up to 4 bits (to store binary value of 8
“10007) , and its length will be 1/256 of the frame sensor size. A complete FIFO structure is
presented in Figure 2-17.

In this work, the sensor size is 256x360 (0.09MP), and the required amount of memory is
56.7Kbit. For a 1024 x 1280 (1.3MP) sensor, the required memory will be ~1.06Mbit.
Regardless of the rolling/global shutter types of operations, the presented mantissa-exponent data
representation significantly reduces the embedded memory compared to other multiple-reset
WDR sensors/systems as discussed in the Introduction section. This allows for the
miniaturization and integration into systems where size and costs are key factors, E.g., in
biomedical or security applications.
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Figure 2-17 - Integrated altogether FIFO buffers with their sizing visualization according
to the reset data they carry

In the following part, we will present the designed hardware testing system to
communicate with the sensor and stream all the necessary digital signals to establish a real-time

WDR video stream to a PC or monitor via a DVI interface.

Chapter 3 : M-E SENSOR TESTING SYSTEM
To establish a video stream from the sensor to a screen or a PC, a set of analog and digital
signals must be provided and captured to and from the sensor respectively. All the digital signals
such as clocks, data to the sensor, ADC, memory, and streaming the data to a DVI or a PC are
handled by the HDL driver synthesized on Xilinx FPGA ML605 development platform. The
interface between the FPGA development platform and the sensor was established by a custom
designed PCB. In this chapter will present the design of the testing system and the achieved

results.
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3.1.

Interface Board:

A printed circuit board (PCB) was designed (Figure 3-1) to set up a complete interface

between the presented sensor and the FPGA with the following peripherals:

1)

2)

3)

4)

5)

6 Configurable low dropout regulators (LDO) — to provide the required analog voltages to
the internal modules in the sensor such as amplifiers, comparators, etc.

Pin grid array (PGA) socket to connect the sensor physically and electrically with the
designed board.

12-bit ADC with a sampling rate of 60Msps

Differential driver to create a differential signal from a single analog output from the
sensor. The differential signal provided to ADC increases its SNR abilities.

Level shifters — to match digital 10 sensor voltages with the values required by the FPGA.

&0 bits bus 10

Figure 3-1 - Modular representation of the designed PCB
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6) DC-DC chain—to provide voltages to all components from a single 12V input. The chain
supplies the board with 4 different voltages: 5V for the ADC, 3.3V analog & digital for
the sensor, level shifters and ADC, and 1.8V for level shifters.

A complete schematics and PCB layout are presented in 7.1: Appendix: PCB Schematics

3.2. HDL Controller

e 3\
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Ein<2:0> Eout<2:0>
Fin<2:0> Fout<2:0>
Gin<2:0> Gout<2:0>
Hin<3:0> Hout<3:0>
DVI Controller
RGB<23:0>
Sync<2:0>
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Frame Buffer UART Controller
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Clock Generator
resMainClk
resCircuitClk
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Figure 3-2 - HDL sensor driver in modular view

To provide a complete operation of the sensor, a set of digital signals like synchronized
clocks and direct interface with memory buffers must be provided. Along with the signals
required by the sensor, the controller handles the onboard ADC, embed and controls the frame
buffer, and streams the picture to digital video interface (DVI) or a PC.

The sensor HDL driver includes the following main modules: FIFO buffers, frame buffer,

clock generator, DVI controller, UART controller, and PLL.
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The FIFO buffers purpose is to store the exponent (number of resets) values generated by
the sensor and to stream these values back (size and number required FIFO buffers are explained
in the previous - Sensor Operation section.). Only the values from the final buffer (Hout) are later
combined with the values received from ADC and represents the final value of the pixel’s light
intensity in a mantissa-exponent format where the mantissa is the output from the ADC, and the
exponent is the output from the last FIFO buffer. The combined value is stored in a full duplex
frame buffer. A frame buffer is designed to allow read and write simultaneously from different 2-
dimensional locations and with different frequencies, so the data populates the buffer with the
frequency it arrives from the sensor independent of the read with a frequency is as required by
the DVI or UART interface. The data from the frame buffer is then redirected either to the
monitor via DVI or to a PC via UART. DVI and UART controllers both feature the required by
the interface physical layers (PHY) to meet the communication standards on the receiving side.
Another essential module is the clock generator. This module provides 7 different clocks to the
sensor, ADC, DVI chip, and to some of the internal modules. The code is presented in HDL
Driver Top-Level Source Code and the internal modules can be provided by request
3.3. M-E sensor Results

The proposed image sensor design was plugged into a designated PGA socket on the
designed PCB, and the entire system was activated by a Xilinx ML 605 FPGA development kit,
the designed HDL driver took control over the sensor and the required peripherals to capture and
stream the data to a monitor or a PC. To capture the image data from the FPGA via UART
interface (COM port), a dedicated software was designed on a C# programming language using a
Visual Studio (VS) software development tool (Figure 3-3). The presented software is able to
reconstruct the image data from the input stream based on the synchronization signals from the
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FPGA. Bottom two pictures are showing not synchronized data, and the top pair are showing
synchronized exponent and the mantissa data on two separate images.

88 Mantissa Exponent Interface - [m] X

Port name Exponent

Baudrate |460800 ~

open/close port

Read Data

Messages

1) Address 1: 38947
2) Address le: 39087
3) Address 2: 38947
4) Address 2e: 39087

—>>>

data stream from FPGA
To measure the sensor response to the light and the dynamic range the following

experiment was set up (Figure 3-4). A controllable 200W light source was set up 1m from the
designed sensor and from the light power meter (PM100usb). In this experiment, we can control
the light intensity, see the output of the sensor and measure the received by the sensor light

intensity by measuring its power.
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Im

Figure 3-4 : Experiment setup

Since the rendering devices aren’t able to present WDR data, the output from the image
sensor is presented separately on two different images. The first image (Figure 3-6) shows the
mantissa which is the output of the ADC and represents a detail level for each of the exponents.
The second image (on the right) shows the exponent values — where the darker pixels represent
the lower exponent values and the brightest the higher exponent values. The separation allows
seeing the conditional reset performances along with the detail levels represented by the
mantissa. We can see the successful generation of conditional resets and general performance of
the designed pipeline. Even though the sensor shows a successful generation conditional resets
based as a function of the received light intensity, it is lacking to detect objects in low light due
to high noise levels and significant leakage current (Figure 3-6). The Mantissa shows all the
details captured from the second exposure mostly when the exponent equal to 2 in most of its
regions. More than that, the leakage current is strong enough to generate the first and the second
conditional resets automatically when the light intensity is about 2uW (room light), and this has a
direct impact on the dynamic range of the sensor. Considering we have only 6 of the 8

conditional resets instead of 8 and the data from the ADC has 10 valid bits, the total achieved
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dynamic range of the sensor can be estimated as following (Equation I), with total resulting

dynamic range of 96 dB (dynamic range = 201log,,(21° = 26) = 96dB).

Mantissa Exponent

Figure 3-6 - lowest possible detection, ~ 2uW of light intensity generate first
conditional reset (Mantissa on the left, Exponent on the right)

Figure 3-5 - Power of ~50 uW, Exponent has 3 values, mantissa shows the details
for higher exponent values

Stronger light with 50uW of power (Figure 3-5) causes more conditional resets. Each
brightness region in the exponent image represents a different exponent value where the gradient

values in the mantissa image represent the detail levels. Here again, low light objects are
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impossible to detect due to the high dark current, but for the third exponent region, we can see
brightness gradient in the mantissa image.

For a stronger light with 430 uW of power (Figure 3-7), we can observe a higher number
of generated conditional resets by the pipeline. Up to 5 conditional resets are generated and
appear on the exponent image (higher number of conditional resets represent higher exponent
value) and accordingly for each of the exponent, we can observe the gradient level represented
by the mantissa.

Finally, for the DR measurement and comparison with single exposure DSLR camera, we
set up two light emitting objects with different light intensity as presented in Figure 3-9Figure
3-8. A lamp (on the right) is emitting light with 1.3 mW of power and a phone on the left which
emits light with about 1 uW of power. The brightness of the phone is about 1000 times lower
than the brightness of the lamp. Even though the lamp is behind the phone and slightly out of
focus, it is possible to see the impact of the strong light on the integration times of the affected

pixels (representing the lamp) which reach the maximum of possible conditional resets (8) and

Figure 3-7 - Light with ~430uW of power, 5 different exponent values appear,
detail levels for each exponent also appear and dominant over the noise
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on the pixels showing the phone where the light from the phone can generate only one
conditional reset (above the existing two generated by the leakage) (Figure 3-8).

For comparison, the same scene was captured using a DSLR camera with manual settings
(Figure 3-9). The image on the left was integrated 1/50 sec whereas the image on the right was
integrated 1/2000 second. This difference represents a ratio of ~6 EV which is exactly the
number of stops our sensor is able to generate.

Unfortunately, the leakage current is strong enough to saturate the detail levels of the low
light objects completely but, the details of the bright objects are still possible to detect due to the

low impact of the dark current on short integration times.

Figure 3-8. - low light object on the left (~1uW), Strong light on the right (1.3mW),
and mantissa is lacking presenting details of the low light object
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Figure 3-9 - The same scene captured with different EV setup.
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In this chapter, we presented a complete hardware system including WDR sensor,
interface board to activate the sensor and HDL driver to take control over all the processes in the
system. The presented a WDR system that updates the integration time directly during the scene
acquisition process and thus has a significant advantage compared to multiple capture systems or
logarithm sensors for the following reasons.

e Multiple capture systems require multiple frame buffers, i.e. memory to store a few exposures
before generating WDR data. Also, they are prone to generate image lag due to a relatively bigger
time difference between exposures.

e Logarithmic sensors are prone to lose contrast in bright areas due to logarithmic response whereas
in our case the WDR data is always linear.

Possible modifications are required to improve the visual performance of the sensor, and
especially to increase the dynamic range into the low end.

e Multiple access pixel has to be redesigned as the existing configuration inserts a destructive level
of noise into the pixel and reduces its performance in low light conditions.

¢ Internal ADC must be integrated with the image sensor to read the analog signal internally.

e The drain terminal of the reset transistor has to be connected to the highest positive voltage
instead of being implemented a logic gate to eliminate a leakage current into the photodiode.

e Pinned photodiode must be considered as a replacement for an existing solution.

Possible improvements to the pipeline are:

¢ Inserting a decision module based on a numeric value stored in the memory buffer at the end of
FIFO will allow streaming a single bit to all reset logic circuitries which will equalize the
propagation delay of all reset circuits and reduce the interface with the buffers from 38 bits to 15.

e With pinned photodiode, a row parallel scanning technique must be implemented to reduce the
decoupling noise on the non-accessed pixels.

In the next chapters, we will discuss a possible solution for visual WDR data rendering on LDR

devices.
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Chapter 4 TONE MAPPING
Once we obtain the WDR data either by a WDR sensor or by any other technique, the
next step will be presenting this data on an LDR display. As described in section 1.2, the
brightness intensities of the WDR data can significantly exceed the dynamic range of the
displays; therefore, a to present WDR on any display device a special compression is required
which is called Tone Mapping (TM) or Tone Operator (TMO). Without compression, we will
have to select a brightness region to display, and this will cause to either underexposed, either

overexposed objects to appear while presenting a selected range from WDR data a display.

Figure 4-1: Manually picked brightness intensities from WDR data

Many TMOs been developed for the last few decades and have different visual and RT
performance (as described in section 1.2). The goal of our team was to create a TMO which will
take advantage of the mantissa-exponent output data format (from the presented image sensor)
for tone mapping efficiency and quality purposes. The TMO has to have improved visual
performance compared to previously designed by our group solutions [47], [48] and be able to be
easily implemented on a hardware platform which considers low footprint, low power

consumption, and real-time performance.
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In this chapter, we first present the TM algorithm developed by Dr. Alain Horé (not
published resource) operating on a mantissa-exponent format along with its visual performance
comparisons to related work and later we present its hardware implementation (part of this thesis
research work) with synthesis results and comparisons to the model developed in MATLAB.
4.1. Tone-mapping algorithm for mantissa-exponent format

The proposed by Dr. Alain Horé algorithm for tone mapping assumes that the output
intensity of each pixel x (p) is described as follows:

Equation 4-1 x(p) = m(p) * 2e(P)

Where m(p) is the mantissa part which varies between 0 and 1 with a precision of 12 bits, and
e(p) (the exponents’ part) which varies between 0 and 8. The proposed tone mapping operator
for this data type has three main components: a base-2 logarithm (Equation 4-3), linear scaling
(Equation 4-4), and contrast enhancement (Equation 4-5). We note: equation 4-3 is derived using
the decomposition of the natural logarithm by using a second order Taylor approximation as

present on Equation 4-2.

A _ o (_1)n+1 n
Equation 4-2 logeX = Xy 14— — (x—1)", xe[0,1)
_1 m@)-1?
Equation 4-3 f(p) = log, x(p) = me) o2 2 — + err(p)
Equation 4-4 h(p) = d,, g, * LB~ Lmin

fmax = fmin
Equation 4-5 y(P) =12+ h(p) — h = L, pp(p)|
The first step is a global operator applied to all the pixels’ intensities to compress their
dynamic range based on a logarithmic curve. The next linear scaling step is performed to match

the output values of the logarithm operator to the LDR values of the rendering devices (screens,
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printers, TVs, etc.) for which the maximal pixel intensity value is given by d,,,,,. The last
contrast enhancement step is required to reduce the blur generated by the global compression
performed with the log operator, thus making the output images sharper. This contrast
enhancement step, called sharp masking, uses a low-pass filter (a Gaussian filter in our
experiments) denoted as [, which aims at emphasizing the high frequencies of an image by
subtracting low frequency component from the signal. On the Figure 4-2 and Figure 4-3, we can
compare the visual performance the presented TMO with comparisons to related works [31],
[34], [49], [50] in terms of low light object enhancement, artifacts, and overall naturality

preservation of the scene.

B Curand

Figure 4-2 : Visual comparisons the presented TMO with Drago,
Durand, Fattal and Mantiuk
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Figure 4-3 : Visual comparisons the presented TMO with Drago,
Durand, Fattal and Mantiuk

4.2. Hardware Implementation

In the proposed design, we use a real-time data flow to make the design fast and timed
(real time), for further possible integration with the image sensor. To reduce the pipeline delay
and the design footprint, we use common to the entire frame parameters, like minimum and
maximum intensities, computed during the processing of a previous frame on the current frame
and so on. If we use global parameters from the previous frame, we don’t need to store a full
frame in the memory for any parameter extractions, which enables us to save a lot of resources
and significantly shorten the pipeline. This is possible because these values don’t change
drastically between two subsequent frames. From 30 fps and above (TMO was tested at 60 and
120 fps), the difference of these parameters between two frames can be assumed to be small

enough to be simply set to 0 without affecting the quality of the images. The overview of our
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design is presented in Figure 4-4 and is described as follows: the mantissa and exponent values
of each pixel arrive at every clock cycle and feed the tone mapping algorithm into the block f(p).
This block has a defined constant latency of 3 clocks cycles. After 3 clocks, f(p) ends the
calculation of the first input and will then give successive outputs at each clock. The output of
f(p) goes to module h(p), which has a defined latency of 17 clocks. After the first output of h(p)
is generated, this module will give successive outputs at each clock. Each of the output of h (p) is
sent to the last module y (p), which has a latency of 2066 clocks. The reason for a big pipeline
delay is discussed in section - Pixels allocation module. Overall, we have a latency of 2088
clocks for getting the first tone mapped pixel, and then successive pixels are output at each clock.
We note that for simulations the bit-width for each input pixel is 24, where 16 bits are used for
the mantissa and 8 bits for the exponent. The bit-width of each output pixel of the tone mapped

image is an 8-bit integer value.

mant(p)_)
exp(p) _

f(p) > h(p) —= y(p)
Y
Min & Max

Figure 4-4 — Block diagram of the
TMO

4.2.1 Log Computation module
The purpose of this module is to compute Equation 4-3. This process normally requires
complicated arithmetic operations, which are described below, but we introduce a simplified

method for the execution of this module.
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Discarding signed operations

As mentioned earlier, m(p) varies from 0 to 1. Thus, on subtracting 1 from m(p), we get
a negative result, which means that we need to perform signed operations. Also, when

performing the power of 2 operations for two signed inputs, bigger multiplier must be used for

(m(p) -

computing the result. Also, when subtracting . V” from (m(p) — 1), the absolute value of

the minuend is bigger than the subtrahend, and thus we get another signed operation. All these
calculations require wider buses, more computational effort and more time to be executed. This
complexity is not suitable for our goal. Consequently, we want to avoid this complexity by using
unsigned operations in order to realize a small and efficient design. Indeed, it is easier to operate
with unsigned values during development, verification and maintenance processes. Thus, using a

few arithmetical operations, we rewrite Equation 4-3 and get the following equation:

2
Equation 4-6 f(p) = log, x(p) = (Zm(p) - @) (1+43-2)+e@) +err
Where the constant err = — g It is easy to notice that we get fewer signed operations and the
(m®)*

value of 2m(p) — is always positive.

2

Division by a constant

Dividing by log.(2) is an expensive operation and requires of using a hardware divider.
Thus, instead of division by a constant, we perform multiplication by approximating the value of

1/log (2) as shown in Equation 4-7 with approximation error of O(3)

1

Equation 4-7 s @

— 1_1 . = -
_1+E_R+0(3)’ 03)= 5.2¢e—3

Since the approximation is a sum of power of 2 elements, bit selection (shift operation) with

summing operator can be preferred over a division. Using this technique, we get the result of the
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division in only 1 clock. The architecture of the division module is represented in Figure 4-5
between latency 1 and 2. With the optimization described, the latency for computing Equation

4-6 is only 3 clocks@100Mhz. Equation 4-6

latency O latency 1 latency 2
>>§ 2
a >>
mantissa_| | >>1 -I_ » L 4
<<1 f(p)
i [ S +-
>>4
exponent e Pr T
—» + > —&

const |
Figure 4-5 - Block f (p): pipeline data flow

4.2.2 Linear Scaling Module

This module, h (p) block, scales the outputs from the f (p) block to an 8-bit representation
(here, we assume that the maximal intensity of the display is dmax=255. This module has 3 inputs,
the minimum and maximum values of brightness calculated and saved from the previous frame,
and the pixel intensity of the current frame. Based on this information, a linear scaling is
performed according to Equation 4-4. In this block, we use a built-in pipeline DSP divider to
estimate the result in real-time. In order to compute more accurate results of h(p), we first
perform a lossless 8-bit left shift on the input data of the block (this approximates the
multiplication by dmax, and then we perform the division. This reduces the division error
generated by the divider. The digital divider outputs the quotient and the remainder without a

fractional part. Therefore, on performing the multiplication before division, the quotient
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maintains more precision, as opposed to performing multiplication after division. Overall, the

proposed design for the linear scaling module as shown in Figure 4-6.

L
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Figure 4-6 - Block h (p) -
pipeline data flow

4.2.3 Contrast Enhancement Implementation

The result from the previous block (linear scaling) enables us to highlight some details in
tone mapped images, but they may also contain some noticeable blur. To tackle this issue, a
contrast enhancement filter Equation 4-5 is applied. This module comprises of the hardware
implementation of the contrast enhancement filter (Figure 4-8) and the hardware implementation

of the block needed to allocate the required pixels from the input stream (Figure 4-7).
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O = >
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Figure 4-7 - Allocation of a 5x5 matrix of pixels by

using 4 FIFOs

48



Pixels allocation module

Since the pixels are read out line by line, it is required to store a few lines of the image to
implement the 2D filter and to access the vertically located pixels at the same time. The number
of stored lines equals the smallest dimension of the 2D filter minus one. In our case the filter is
symmetric, and its dimension is 5 by5 pixels, and consequently, the number of stored rows is 4.
This storage is implemented by 4 FIFO shift registers. With this method, at each clock, we
allocate the appropriate window of pixels for performing convolution. The delay generated by

this module depends on the image and the filter size, and it is given by Equation 4-8

Equation 4-8 Pipeline Delay = FIFOsize * lmte; SizeJ * [mw; sm]

In our case, the delay is equal to 1024+ EJ * E] = 2051 clocks. We note that filter size is
the smallest dimension of the 2D filter used and FIFO size is the number of pixels in a row/line

of the image. The implementation presented on Figure 4-7.

Contrast enhancement module

This part presents the hardware implementation of Equation 4-5. We perform high-pass
filtering (HPF) by subtracting the result of the convolution of the allocated window with a low
pass Gaussian filter, from the same allocated window (given by the previous block). The high-
pass filtered image (with high-frequency content) is added to the original image, which increases
the overall contrast. An absolute value operator is applied to ensure that the positive values are
always obtained during the contrast enhancement step.

The block diagram of the filter module is presented in Figure 4-8. On the first step, we

perform convolution by multiplying all the 25 selected fragments based on the filter coefficients.
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The multiplications are performed by using shift and add operations, which is an efficient
strategy in terms of power consumption and hardware resources. All the products obtained after
multiplications are summed up, and the result is divided by 256 by using an 8-bit logical right
shift operator (256 is the denominator of the filter used). On the second step, an absolute
operation is performed to eliminate the negative values after the filtering process. The
implementation of the absolute operation was done by using one comparator, two adders

(performing two subtractions) and one multiplexer.
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Figure 4-8 - Implementation of the contrast
enhancement filtering

4.3. Simulation and Synthesis Results
4.3.1 Simulation results

To determine the quality of the presented hardware implementation, we compare it with a
software implementation in MATLAB by using subjective and objective evaluations. In Figure
4-9, we show four tone mapped images obtained with hardware design and with the MATLAB
implementation. As we can notice, the tone mapped images look very similar and quite
indistinguishable, which indicates that the hardware implementation is reliable. To confirm that

objectively, we have used two well-known image quality measures: the peak signal-to-noise ratio
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(PSNR) and the structural similarity image index (SSIM) [51], [52]. In general, high values of
the PSNR (in theory, the PSNR varies from 0 to infinity) give an indication that two images
might be very similar. The two images can be deemed similar when the SSIM value, which
varies from 0 to 1, is close to 1. In Table 4-1, we compare the PSNR and SSIM results between
the MATLAB implementation and the hardware implementation. As we can notice, we have
high values of the PSNR and the SSIM. The average PSNR is 55.87 dB, and the average SSIM is
0.9996. These values confirm that the images obtained are similar. We note that in general, with
PSNR above 30 dB the difference between images will not be noticeable, and our results are
quite satisfying when compared to other hardware TM implementations [27], [41], [53] with

PSNR of 30, 40 and, 55 dB accordingly.

T™Ql PSNR ssim

Q S N
Hercules cave 0.9674 0.9288 0.8969 54.63 0.9998
Lausanne 0.9348 0.9581 0.6342 54.47 0.9998
MtTamWest 0.8467 0.8411 0.3099 53.91 0.9996
Needle 0.6197 0.3945 0.0291 56.72 0.9995

Table 4-1- PSNR and SSIM results

4.3.2 Synthesis results

Our design was synthesized on Altera Cyclone 111 FPGA. The power consumption was
provided by a development tool estimation and is 149.5 mW, where part of the power is
consumed as static power by the chip peripheral and is dissipated as the 1/O thermal power. In
fact, the dynamic power of our design (that also has been estimated by the simulation tool) is

only 19.84 mW.
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FIFO shift registers have been implemented using embedded memory. The exact amount
of memory used is FIFOjength X FIFOwidth X number of FIFOs. In our case, we have 32.7 Kbits. In
general, we have a very small and efficient design. Compared to other on-chip/GPU image
processing designs [31], [54] with 177mW and 18W respectively and especially to other TM
FPGA designs [25], [55] with 37W and 22W respectively, our implementation can be a good
competitor mainly because of the speed, hardware-efficiency, quality, and the total pipeline
delay. Table 4-2 summarizes the power consumption and the hardware resources of our design
where the static consumption can be significantly reduced by choosing smaller FPGA or

integrating the design with the CIS.

Total power
Chip level used Consumption 149.5 mW
Total logic elements 4020 Core dynamic Power 19.84 mW
Total registers 3031 Core static power 99.18 mW
Total memory used 33 kB I/O power 30.5 mW

Table 4-2 - Hardware resources summary
4.4. Tone mapping algorithm results conclusion
In this part, we have presented a tone mapping algorithm that can process WDR images
based on a mantissa-exponent representation. The algorithm has been efficiently implemented in
FPGA. Indeed, we have obtained low power consumption, high processing speed, and small
footprint. Also, we have been able to obtain similar tone mapped images between the hardware
implementation and a software implementation of our algorithm, which was also confirmed

objectively by using the PSNR and the SSIM. Based on the reliability of our hardware
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implementation and the good performance obtained, we have good confidence that we can
embed our algorithm and an imager on the same chip.
In the next part, we describe the designed real-time testing system for a TMOs with a

mantissa-exponent data input format.
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Figure 4-9 - Tone mapped images. Software implementation with Matlab (Left), Hardware
implementation (Right).
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Chapter 5 : TONE MAPPING TESTING PLATFORM
In this part, we present a platform to perform visual and performance tests for algorithms
based on mantissa-exponent (floating point) representation in a real-time mode. Standard WDR
sensors provide the brightness values in fixed-point format (RAW) which is usually a direct
output from the ADC whereas the M-E sensor streams the data in floating-point representation
and special TMO is required to process this output (see 4.1). The simulation system is based on a
standard WDR sensor but gives the ability to test variable TM algorithms suitable for direct

integration with sensors with M-E output.

Figure 5-1 - Hardware system overview: WDR Image
sensor on the left, development FPGA board in the middle
and DVI PHY on the left

5.1. FPGA Platform for M-E algorithms

To capture with data and present the results of the TM algorithms in real time mode, we
need a peripheral system which manages and provide all necessary peripheral signals to the
camera and display modules along with the TM algorithm and preprocessing steps. These
features Cyclone 111 Altera FPGA with WDR Aptina image sensor (MT9MO034) and Terasic
extension board with DVI PHY as represented in Figure 5-1. The WDR sensor is manually
configured to provide the maximum dynamic range of 120dB. Data flow in this system is the

following: Generated WDR video data streamed from the sensor to the FPGA, The data is
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preprocessed to meet the requirements of the tone-mapping algorithm, and the data is
compressed by the tested tone mapping algorithm and streamed out to DVI.

Here we explain the hardware design of all the pre-processing steps made on the input
data to meet the constraints of the based on a mantissa-exponent tone mapping algorithm. The
steps are including the decompression of the data arrived from the image sensor, reconstructing a
full-color image from incomplete color samples (CFA to RGB), extracting the brightness

intensities (RGB to YUV), and converting the data into floating point format (Figure 5-2).

becomposer | CFAtORGE ' RGB to YUV ':"“““‘ Tone
I Converter Converter xponent Mapping
Generator

Figure 5-2 - Pre-processing steps to stream WDR data to tested TMO

5.1.1 Decomposer
The image sensor is programmed to provide 120dB of dynamic range, and this requires
an allocation of 20-bits per pixel. However, the data is compressed and streamed out via 12-bit

bus, and thus a hardware decompression module is required to retrieve the data.

Decompressed linear
cutput

Digital output
code

i
ADC maxesde |

Figure 5-3 - Signal response to light intensity
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Figure 5-3 and Figure 5-4 show possible DR & compressions as a function of the ratio of T1/T2
and T2/T3. Based on the data sheet, the compression works as follows: the brightness values
from 0 to 2048 are not compressed and represented as is in the output register (let’s call it range
1). The brightness values from 2048 to 2”16 (65535) are compressed linearly into the range

between 2049 and 3040 (let’s call it range 2). And the last range of brightness values start from

T1/12 T2/13
Exposure Ratio Exposure Ratio PouT,,,
R1; poutt Pout2 = (P2 - P1)/ R2 = (Pmax - P2)/
ROx3082[3:2] P1 =P1 P2 (R1* 4)+ Poutl ROx3082[5:4] Pmax (R1°R2°4) + Pout2
| ax 21 2048 214 2944 ax 216 3712
8x 217 3840
16x 218 3904
8x e 2048 215 3008 4x 217 3776
8x 21 3904
16x 2 3968
16% 2K 2048 2% 3040 ax 218 3808
8x 218 3936
16x 2% 4000

Figure 5-4 - List of possible DR and compressions
65536 to 2720 (1M), are also compressed linearly but represented in the output register as
discrete values between 3041 and 4000 (let’s call it range 3). Once we know the compression, we
can define the decompression piecewise equations -
Equation 5-1
p; pe[0,2"]

Equation 5-1 out(p) =3 (p —2048) 64 +211; p e (211,219
(p — 3040) = 1024 + 216; p € (216,229]

57



The pipeline of the decompression module is presented in Figure 5-5. The overall decompressing
process latency is 2 clocks. On the first clock, we perform a comparison of the input value with
P1 and P2 were the result of the comparators is bonded and used to select the value to subtract
from inP. And on the second clock cycle, we are selecting the multiplicand and the added values
to the result from the previous cycle depending on the same bonded values from the comparators.
Finally, the result after the summation represents WDR data in 20-bits per pixel.

5.1.2 CFA to RGB Converter

latency 1 latency 2
g]lp ¢mpl
ianPEmPZ inPr.sub l add
i 0 er outp
Ly =<thy| |PLhy
P24, | ssiofy )| P34
Inp i

Figure 5-5 - Decomposer module, pipeline view

I II
ITI I\

Figure 5-6 — CFA (on the left) and its 4 patterns
(on the right)

The data from the color sensor arrives in CFA format, and demosaicing is required to

reconstruct the colors from the samples output.
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The transformation is not linear and is based on the regional location of the selection on the
Bayer RGBG matrix. Every single phase, we know only one color, whereas the other two colors
are calculated based on the neighborhood pixels. In total, we have 4 different cases (Figure 5-6)
in the CFA matrix, and during the color estimation process, only one color is known whereas the
other two must be estimated. I.e., the first case (I). The central pixel is green; and so, the green
value is known, but blue and red values must be calculated based on the adjacent blue and red
pixels accordingly, the same logic is applied for the rest of the three CFA patterns, but different

colors must be reconstructed.

In Pixel latency 1 latency 2 latency 3

Selected Pixels

1280 size FIFO -

- »

MI—HIIII-~ |

%9

Figure 5-7 - Matrix allocation module (left), Bayer cases calculation (right)

Y
TR TR

The implemented module consists of 2 main modules as presented in Figure 5-7. The first
module is ‘3x3 Matrix Extractor’ allocates 3 by 3 matrix of adjacent pixels from a continuous
pixel video stream. This module requires 2 FIFO shift registers. The delay generated by this
module can be calculated by Equation 5-2. In our case, the FIFO size equals 1280 elements, and
the filter size equals 3. Thus the overall delay generated by this module equals 1282 clocks. The
second module is the ‘Color Extractor’ module which selects the appropriate mash based on the

location and performs the conversion of the current 3 x 3 CFA matrix into RGB channels.

Equation 5-2 delay = FIFO_size * lf ilte;‘SizeJ + [f ilte;‘Size]
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This module works in continuous mode, and every clock generates 3 colors (red, green
and blue). The calculation of all the cases is done in parallel and depending on the location of the
incoming pixels in the image steam a required case is selected for each of the color channels. The
transformation from CFA to RGB representation can be done using any of the possible masks

with different interpolation types and sizes [56].

5.1.3 RGB to YUV Converter

Y [ 0.299 0.587 0.114 R
U|=|-014713 —0.28886  0.436 ][G
V] 0.615  —0.51499 —0.10001 | | B
R [1 0 1.13983 Y’
G| =11 -0.39465 —0.58060 [U]
B |1 2.03211 0 Vv

Figure 5-8 - Transformation matrices between YUV and RGB color spaces
The next step is to extract the luma (Brightness) channel from the RGB representation.

The luma is one of the channels in Y UV color space where Y represent the luma, and the UV is
a chrominance constituent of the image. The YUV color space is defined as a linear coordinate
transformation from an RGB color space (Figure 5-8). To calculate the Y™ we need to multiply
the red channel by 0.299, green channel by 0.587, blue channel by 0.144 and sum the results.
The calculation above can be done using 3 DSP multipliers and adders. But there is a more
efficient way to estimate the required value, and we present this technique in our design. Let’s
consider for example the multiplication of the red channel by 0.299. We can rewrite the value of
0.299 using a sum of a power of two numbers with acceptable precision as presented in Equation
5-3. This approximation gives us a 0.2% error of the original value. However, the error can be

reduced by using more and smaller than 10 bits of precision.

Equation 5-3 0.299 ~ 7+ +—+——+——= 0.2998046875

1
4 64 512 1024
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. R R R R R
Equation 5-4 0.299%« R =~ (.2998. .x R_Z-I_ E'Fa‘i‘m‘i‘m

- G G G G G
Equation 5-5 0.587 * G~0.5869..*G—E+ E+6_4+E+m

. B B B B
Equation 5-6 0.114 * B~ 0.1142. .« B = E+ 3_2+6_4+ﬁ

Now, we can rewrite the multiplication as presented in Equation 5-4. It is easy to follow,
the required value of 0.299xR is a sum divided by 2(right shifted) values of R, which are very
easy to be implemented on hardware platforms. The same approximation is made to the result of
0.587*G and 0.114*B, as presented in Equation 5-5 and Equation 5-6. For faster design and area
efficiency, the shifting operations are performed using bit selection and concatenation operator
instead of using a shift register. Also, since the adding sequence will not affect the result, the size
of each addend was considered during the pair selection for each adder. I.e., as we have different
size addends during the summation, the similar sized ones were selected to be a pair. For
example, R/1024 with G/1024 became a pair since their bit width result will be smaller than the
result of G/1024 with, i.e. G/128 which has a different size. The overall block latency is 4 clocks,
as we use 2 input adders with 1 clock latency and 14 addends, we need [log,14] clocks to
calculate the value of Y". The other parts of the Y UV color matrix (U and V) are not calculated
since there is no use in these channels.

5.2. Mantissa-Exponent Generator

The final step is to create mantissa-exponent (M-E) representation from fixed point 20bit
integer (

Equation 5-7). The integer values varying from 1 to 1M into 16 bits M-E representation,
where its first 12 bits represent mantissa values varying from 0.5 to 1, and the remaining 4 bits
are allocated to represent the exponent which can vary from 0 to 15. In our case, the maximum

exponent is set to 10 since we already covered the sensor dynamic range and there is no need to
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make the design more complicated. We note the full scale of the representation gives us the
ability to represent up to 20 x log;,(2%% x 21¢) = 162 dB of dynamic range.

Equation 5-7 luminance = mantissa » 2¢*ponnent

The conversion is working as follows. The M-E representation must have a one-to-one
correspondence with the integer representation, and thus the mantissa’ values must vary between
0.5 and .999 (the precision is based on the number of bits predefined to represent the mantissa)
and the exponent values must be strictly based on the range of the luminance values. 1.e., if the

luminance value is between 2° and 21° — 1, the exponent value can be only 10.

- —— W

Exporent 8 — =
lum= = 3 e—15d
lurms= = 2 e— ] 4
. lurms = ] s— 2
lum= < | =l 11d
lum < €2 == | 0gd
lum < <32 —— 09

- —

- [ ] —

luminance | Priority
Encoder
T 32x5

Figure 5-9 - Floating point generator

CZmopnes

Hardware implementation of this module is made in the following way; on the first stage,
we define the range of the luminance using priority encoder. This scale the luminance range
based on the MSB and represents the value of the exponent. On the next clock cycle, the
exponent value is used to control the multiplexer which selects the shifted value of the luminance
to be forwarded to form the final value of the mantissa. The block is designed to generate
mantissa-exponent representation within two clock cycles. This module can support in a
maximum of 20 bits mantissa with the same 4 bits of the exponent for better precision and

without affecting the calculation timing of 8.3ns per clock.
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5.3. Results

Indeed, the design was successfully synthesized on Altera Cyclone 3 FPGA and created
the required data representation from the input data video stream. Synthesis results are presented
in Table 5-1. Further, the data was sent to the designed TMO for compression and after that
streamed out to an 8-bit LCD monitor (Figure 5-11 and Figure 5-10). The overall testing
frequency was set to 108MHz (provided by the FPGA and measured by scope) which allowed to

stream video with 1.25MP (1280x960) resolution in a continuous real-time mode at 60fps.

Module Pipeline Memory Logic Registers | Pins | Generated
depth [Cycles] | allotted[kB] | elements Error [PSNR]

Camera Driver | - 4.096 450 272 47 -

Decompressor | 2 0.08 91 54 38 None

CFA to RGB 1255 55 433 399 86 120.4

RGB to YUV 4 - 286 240 126 | 90.3

M/E 2 - 202 60 46 56.18

Generator

Total 1263 63.272 1462 1025 - -

Table 5-1 - testing system synthesis results

nr
-
|

Figure 5-10 - Two different exposures of wide dynamic range scene captured with DSLR camera
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Figure 5-11 - Tone mapped WDR scene
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Chapter 6 : CONCLUSIONS

In this thesis, two different parts of the WDR imaging platform has been presented. The
first part presents a sensor for capturing WDR scenes whereas the second part presents a
hardware implementation of an algorithm to display this data. For both parts, hardware platforms
were developed to test and analyze visual and real-time performance.
6.1. WDR Sensor

The presented sensor, with 96 dB (see: M-E sensor Results) of dynamic range, was
successfully designed and manufactured (Appendix: Mantissa — Exponent Sensor Die). The
concept of the integration time multiplexing based on a time and space tradeoffs with up to 8
conditional resets to capture WDR scenes was integrated with the light acquisition process using
a multi-dimensional pipeline technique and successfully generates an output directly in a
mantissa-exponent format (without converting it into a fixed-point representation). Regardless to
the achieved dynamic range, the out format allows us to stream a significantly larger range of
values using the same number of bits and enables the embedding of the sensor output directly
with floating point arithmetic modules for TMOs. Low amount of embedded memory to capture
WDR scenes was achieved combined with minimized interface makes this sensor suitable for
medical and low dimensions WDR imaging applications.

The developed supporting system based on a Xilinx development kit along with the
designed interface board has a wide digital interface with the tested sensor and features 12-bit
ADC with multiple analog references voltages which allows testing sensors that will be

developed in the future and to stream the data via DVI or UART for analyses or presentations.
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6.1.1 Further work

To reduce the leakage current and to increase the performance in low light conditions a
new variation of pixel design, based on a pinned photodiode, must be developed and components
such as ADC and FIFOs that are implemented on a peripheral system to reduce ASIC

prototyping costs must be integrated with the sensor.

6.2. Tone mapping

The suggested hardware implementation for the proposed TMO compress WDR data and
provide output in a real-time mode. The design generates images similar to a 64-bit software
implementation tone mapped by MATLAB, which was also confirmed objectively by using the
PSNR and the SSIM. We have obtained low power consumption, high processing speed and a
small footprint which allows integrating this design with the image sensor.

A dedicated system was designed to perform visual and performance tests on this type of
TMOs in real-time mode. This testing system emulates an output from an image sensor with 120
dB of dynamic range in a half precision floating point format and allows us to test many
hardware-implemented floating-point representation tone mapping algorithms.

Additional to the achieved quality and small footprint, this algorithm is based on a global
operator (logarithmic) which is prone to lose contrast in bright regions and therefore, required a
contrast enhancement module. More complex TMOs, based on a local or a combination of local
and global operators must be considered as an optional solution to provide better image quality

after the compression.
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6.3. Summary

In this work, we presented solutions for capturing and rendering imaging/video system
based on a mantissa-exponent representation. The designed image sensor is unique in its way of
working as it needs a minimal amount of memory to generate a WDR output. It, also, has a linear
response function and the output format is in floating-point representation. The sensor has some
limitations in low light conditions, as was discovered during empirical tests, and requires
improvements, as described earlier.
After a successful capture, the data can be compressed by the suggested TMO and presented on

an LDR device.
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7.1.

Chapter 7 : APPENDIX

PCB Schematics
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7.2. HDL Driver Top-Level Source Code

module top(
/I clk input
input wire clk200Mn, clk200Mp,

/I user control

input wire pbN,pbE,pbW,pbC,pbsS,
output wire [7:0] led,

input wire [7:0] sw,

// to on FPGA dvi Chip

output resetDvVIN, //IDVI reset
output SPC, I/ISPC

output SPD, //SPD

output XCLK108Mp, /IDVI clk
output XCLK108Mn, /IDVI clk
output lv, //harizontal sync
output fv, /Ivertical sync
output de, //data enable

output [11:0] Dout, //data

/I my board interface
input [11:0] adc,
output rn,

output resetMainClIKk,
output resetCircuitCIk,
output clkRow,

output clkAmps,
output toTimeGenCIk,
output mainCIk,
output clkADC,
output resetSecClIKk,

input aOout,

output a0ln,

input bOout, blout,
output b0In, blln,

input cOout, clout,
output cOlIn, clin,

input dOout, dlout, d2out,
output dOIn, d1In, d2In,
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input eOout, elout, e2oult,

output e0ln, elln, e2in,

input fOout, flout, f2out,

output fOIn, f1In, f2In,

input gOout, glout, g2out,
output g0OIn, g1In, g2In,

input hOout, hlout, h2out, h3out,

I UART
input vartRXx,
output uartTX,

/ltemp debug
output somePinOut
// end temp debug

);

T internal signals /T
wire reset, resetN;

wire clk135M; /I fregs from PLL
wire clk108Mp, clk108Mn;

wire XCLK216Mp, XCLK216Mn;
wire clk23p04M;

wire [11:0] timeX, timeY;

reg [7:0] toDvi;

wire [15:0] frameBuffOut;

wire [3:0] exp;

wire [7:0] CompressionDoult;

wire [3:0] debug;

wire Active;

wire [7:0] uarBuffOut;

wire [23:0] colorsTest;

wire iicCIK;

T assignments AT

//board interface
assign rn = resetN;
assign reset = IresetN;

assign led[0] = debug[3];//exp[0]; //
assign led[1] = debug[2];//exp[1]; /I
assign led[2] = debug[1];//exp[2]; /I
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assign led[3] = debug[O];//exp[2]; /I

assign led[4] = h3out; //h3out;//sw[1];//exp[3]; Il
assign led[5] = h2out; // bOIn; //

assign led[6] = hlout;// bOout; Il

assign led[7] = hOout;// sw[7];

Inc

assign XCLK108Mp = XCLK216Mp;//clk108Mp;
assigh XCLK108Mn = XCLK216Mn; //clk108Mn;
assign XCLK216Mn = IXCLK216Mp;

wire [15:0] tDO,tD1;

assign tDO[15:12] = exp;
assign tDO[7:0] = adc[11:4];
assign tDO[11:8] = adc[3:0];

/lassign tD1[15:12] = debug;
/lassign tD1[11:0] = 12'b0;

T instances TN
uartFifoTest uartFifoTestInst(
.reset(reset),
.writeClk(resetSecCIK),
.readCIk(Active),
//.dataln(sw[1]?tD0:tD1), // 4b-EXP,12b-ADC
.dataln({exp,adc[3:0],adc[11:4]}), // 4b-EXP,12b-ADC
.dataOut(uarBuffOut),
.readActive(readActive),
WrEn(wrEn)

);

TopUART TopUART _uut (
.clk200Mp(clk23p04M), // 112.5M
.reset(reset),

.TxData(uarBuffOut),

/. TxData({debug,4'b0000}),
Active(Active),
.TxDone(TxDone),
.TX(uartTx)

/lassign uartTx = 1'b0;

75



// temp debug
assign somePinOut = 1'b1;
/[ endTempShit

expBuffers expBuffersinst(
.reset(reset),
.debug(debug),
.ClkW(resetSecClIk),
.CIkR(resetSecClIk),

/] 272x64 = 17408, 1 bit
.aStart(aOout),

.aEnd(a0ln),

11 272x32 = 8704 2 bits
.bStart({blout,bOout}),
.bEnd({b1In,b0In}),

11 272x16 = 4352 2 bits
.cStart({clout,cOout}),
.CEnd({c1In,c0In}),

/1 272x8 = 2176 3 bits
.dStart({d2out,d1out,dOout}),
.dEnd({d2In,d1In,d0In}),
11272x4 =1088 3 bits
.eStart({e2out,elout,eOout}),
.eEnd({e2In,elln,e0lIn}),

Il 272*2 = 3 bits
fStart({f2out,flout,fOout}),
fEnd({f2In,f1In,f0In}),

llg =272*1 = 3 bits
.gStart({g2out,glout,gOout}),
.gEnd({g2In,g1In,g0In}),
Il'h=272*1 =4 bits
.hStart({h3out,h2out,hlout,hOout}),
.hEnd(exp)

);

imageBuffer imageBufferInst(
writeClk(iicClk),
.readClIk(clk108Mp),
.reset(reset),
.sw(sw[0]),
timeX(timeX),
timeY (timeY),
.adcln(adc),
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/l.adcIn({colorsTest[7:0],4'b0}),
.expln(exp),
.dataOut(frameBuffOut) I

12Ctop 12Ctoplnst(
Il Inputs
.Din({toDvi,toDvi,toDvi}),
/[.Din(colorsTest),
XCLK108Mp(clk108Mp),
XCLK108Mn(clk108Mn),
XCLK216Mp(XCLK216Mp),
XCLK216Mn(XCLK216Mn),
.reset(reset),

I/ Outputs
.Dout(Dout),
.resetDviN(resetDvViN),
.done(),
Iv(lv),
fv(fv),
.de(de),

X (timeX),
LY (timeY),
.SPC(SPC),
.SPD(SPD)

sensorClocks sensorClockslnst(
.CIk(XCLK216Mp), //clk108Mp
.reset(reset || sw[2]),

.resetMainClk(resetMainCIKk), /1 1/128
.resetCircuitClk(resetCircuitCIk), /1 1/128
.clkRow(clkRow), /1 1/128
.clkAmps(clkAmps), /1 1/128
toTimeGenClk(toTimeGenClIk), /1 111281272
.mainClk(mainCIK), /1 /128
.CIkADC(clkADC), /1 /128
.resetSecClk(resetSecCIk), /1 £/128
dicClk(iicCIK),

.debug(debug)
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pl1108M plI108Minst (// Clock in ports
.CLK_IN1_P(clk200Mp), // IN
.CLK_IN1_N(clk200Mn), // IN
/I Clock out ports
.CLK_OUT1(clk23p04M), // OUT 23.04M
.CLK_OUT2(XCLK216Mp), // OUT 216M
/[ Status and control signals
.RESET(pbN),// IN

.LOCKED(resetN)

);

/I clock patch!

clockPatch clockPatchinst(
.clk216Mp(XCLK216Mp),
.reset(reset),
.clk108Mp(clk108Mp),
.clk108Mn(clk108Mn)

);

endmodule
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7.3. TMO & Test System Source Code TOP LEVEL
“include "C:\\Univ\\Research\\VVerilog\\chip_def.sv"

module CamToDvi(

// = —=======
/I PORT declarations

// = —=======
clkin_50,

cpu_resetn,

T O buttons & leds /T

/I all deep switches

deepSw,

inputSelectBtn,

resiBtn,

ledOut,

TN vl BOARD - Pin Declare /TN
DVI_TX_CTL,

DVI_TX_DKEN,

DVI_TX D,

DVI_TX_DDCSCL,
DVI_TX_DDCSDA,

DVI_TX_CLK,
DVI_TX_DE,
DVI_TX_VS,
DVI_TX_HS,

DVI_TX_HTPLG,
DVI_TX_ISEL,
DVI_TX_MSEN,
DVI_TX_SCL,
DVI_TX_SDA,

DVI_HSMC_SCL,
DVI_HSMC_SDA,

TX_PD N,

(N HSMcC connect to AHA - Aptina Head-Board Adaptor
CK_FPGA_MCLK,
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CK_IMG_IN_PIXCLK,
DEMO2_12C_SCL,
DEMO2_I2C_SDA,
IMG_DIN,
IMG_IN_FV,
IMG_IN_LV,
SENSOR_RST,
SHUTTER

);

// = =————===—=
/I PORT definition

// = =————===—=
/I Global clock & reset

input clkin_50;

input cpu_resetn;

i bvi TX BOARD Pin Declare

Il ports names came from AHA demao. explanatiopns came from portB_Dvi_demo

output [ 3: 1] DVI_TX CTL,; // 3'h0
output DVI_TX DKEN; // 1'h0
output [23: 0] DVI_TX_D;

inout DVI_TX_DDCSCL,; /I nothing
inout DVI_TX_DDCSDA,; /l nothing
output DVI_TX CLK; /I

output DVI_TX_DE; Il
output DVI_TX_VS; Il
output DVI_TX_HS; Il
output DVI_TX HTPLG; /I 1'h1-
output DVI_TX_ISEL; /I 1'h0-
output DVI_TX_MSEN; // 1'h0
output DVI_TX_SCL; //1'hl-

inout DVI_TX_SDA; //1hl-

output DVI_HSMC_SCL; // 1'h0
inout DVI_HSMC_SDA; /I nothing
output TX_PD_N; /Il 1'h1-
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M HSMC connect to AHA - Aptina Head-Board Adaptor /11111111

output CK_FPGA_MCLK;

input CK_IMG_IN_PIXCLK; //
output DEMO2_12C_SCL;

inout DEMO2_I12C_SDA;

input [11: 0] IMG_DIN;
input IMG_IN_FV;

input IMG_IN_LV;

output SENSOR_RST;
output SHUTTER;

I User controls buttons and leds /T
input [7:0] deepSw;

input inputSelectBtn;

input resIBtn;

output [7:0] ledOut;

i DVI_TX not needed pins closing /111111111
assign DVI_TX ISEL =1h0;

assign DVI_TX SCL  =1'b1;

assign DVI_TX HTPLG =1D1;

assign DVI_TX SDA =1'b1;

assign TX PD_N =1b1;

assign DVI_TX _CTL[3:1] =30 ;

assign DVI_TX DKEN =10;

assign DVI_TX MSEN =10;

assign DVI_HSMC_SCL =100 ;

i AHA not needed pins closing /11T
assigh SHUTTER = 1'b0;

i Assignments /111111111
assign DVI_TX_CLK = CK_IMG_IN_PIXCLK;
assigh CK_FPGA_ MCLK = clkin_50;

i Instantiations /11111111
decomposer decomposerINST(
piXIn(IMG_DIN),
CIk(CK_IMG_IN_PIXCLK),
.reset(~reslBtn),
.pixOut(pixFromDecomposer),

VIN(IMG_IN_LV),
fVIN(IMG_IN_FV),
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.IvOut(lvFromDecomposer),
.fvOut(fvFromDecomposer)

);

BayerToRGB BayerToRGBInst(
.reset(resIBtn),
.pixIn(pixFromDecomposer),
Ivin(lvFromDecomposer),
fvin(fvFromDecomposer),
CIk(CK_IMG_IN_PIXCLK),
.rOut(rFromBayer2RGB),
.gOut(gFromBayer2RGB),
.bOut(bFromBayer2RGB),
IvOut(lvFromBayer2RGB),
.fvOut(fvFromBayer2RGB)

);

RGBtoYUV RGBtoYUVinst(
CIK(CK_IMG_IN_PIXCLK),
.reset(~reslBtn),
Ivin(lvFromBayer2RGB),
fvin(fvFromBayer2RGB),
.IvOut(lvFromRGBtoYUV),
fvOut(fvFromRGBtoYUV),
.r(rFromBayer2RGB),
.g(gFromBayer2RGB),
.b(bFromBayer2RGB),
Y(yFromRGBtoYUV),

u(),

V()

);

mantExpGen mantExpGenINST(
InPix(yFromRGBtoYUV),
ClIk(CK_IMG_IN_PIXCLK),
.mant(mant),

.exp(exp),
.reset(resIBtn),

Ivin(lvFromRGBtoYUV),

fvin(fvFromRGBtoYUV),
.IvOut(IlvFromMantExpGen),
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fvOut(fvFromMantExpGen)
);

toneMap toneMapINST(
.reset(resIBtn),
.mant({mant,4'b0}),
.exp(exp),
.clk(CK_IMG_IN_PIXCLK),
JdogQut(), // working well
.maxOut(),

.minOut(),

.quotient(),
resultOut(testLine),

Ivin(lvFromMantExpGen),
fvin(fvFromMantExpGen),

fvOut(fvFromToneMap),
IvOut(lvFromToneMap),

);

wire [23:0]testLine;

wire [23:0]testLinel;

wire [9:0] resultOut;

wire fvFromToneMap,IlvFromToneMap;

wire [19:0] pixFromDecomposer;
wire IvFromDecomposer,fvFromDecomposer;

wire [19:0] rFromBayer2RGB,gFromBayer2RGB,bFromBayer2RGB;
wire IvFromBayer2RGB,fvFromBayer2RGB;

wire [19:0] yFromRGBtoYUV,uFromRGBtoYUV,vFromRGBtoYUV;
wire IVFromRGBtoYUV,fvFromRGBtoYUV;

wire [11:0] mant;

wire [6:0] exp;
wire fvFromMantExpGen,lvFromMantExpGen;

camDriverV2 camDriverV2INST(
.reset(~reslBtn),
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.clk(clkin_50),
Scl(DEMO2_12C_SCL),
.sda(DEMO2_I2C_SDA),
.camHardReset(SENSOR_RST)
).

endmodule
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7.4. Mantissa — Exponent Sensor Die

Reset Logic

Column Driver

Control Logie:

Decoders, Pixel matrix
Multiplexers, (256x272)
Row drivers,

Comparators
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