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Abstract 

In this work, we present a wide dynamic range (WDR) vision system that is able to 

capture bright and low light objects in a single frame without being over or underexposed. The 

data is captured and streamed in real time (RT) mode from the sensor to a monitor at 60 fps or a 

PC. 

 

The presented system includes: 

 1) WDR complementary metal-oxide-silicon (CMOS) image sensor design which is able to 

update the integration time of each individual pixel depending on the ambient light and provide 

output in a mantissa-exponent format (floating point) [1], [2].  

2) Interface hardware designs including PCBs and HDL drivers required to activate the sensor 

and all the peripheral components. 

3) A tone mapping algorithm based on a mantissa/exponent representation along with its 

hardware implementation that allows us to render WDR data on a conventional low dynamic 

range (LDR) devices[3].  
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Preface 

Throughout human existence, we can observe a constant process of creation of art which 

has one of its expressions as drawings of familiar or imaginary objects. As the civilization moved 

forward, the drawings transferred from caves to stones, from stones to trees or leather, and later 

to newly invented materials such as rags and papers. Where the final creation stands behind a 

digital way of data capturing and presentation such as TVs, smartphones, printers, or virtual 

reality systems. Along with the presenting devices development process, art creation tools also 

improved and significantly changed. In the beginning, humans used brushes, sticks or stones, 

with different types of pigmentations that could be found in nature for colors to create a painting 

and any type of art. The rise of the sciences; especially chemistry, brought us to the invention of 

photography about two hundred years ago, where humanity no longer had the need to spend time 

or to use complicated tools to depict their visual perception of objects. And finally, the latest 

achievement is standing behind capturing of scenes on a digital camera and its direct presentation 

on any types of image rendering devices [Figure I].  

Figure I: Example of human art development from the oldest on the left to the latest on the 

right; Lascaux Cave Paintings about 17,000 years old; Papyrus, paint 1050 B.C. Book of 

the Dead for the Singer of Amun; 18th-century style artist Kasia Wozniak – R; Digital 

Photo. 
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For the last 25-30 years, capturing and rendering digital devices were significantly 

improved in main parameters such as resolution, frame rate, color depth, and physical 

dimensions. The developed improvements have allowed a realistic representation of the 

environment in most cases. Digital image sensors can feature more than 250 Million pixels, or 

with less resolution, can feature high frame rates with more than 25k frames per second [4]. The 

dimensions of the sensors are also very impressive, with a size of less than a quarter of 1 mm2, 

allows them to be deployed in many applications where size is a critical consideration [5].  

Current rendering devices can also feature high pixel per inch (PPI) density, with 

resolutions of more than 8k, and frame rates of 240fps or above, which all together allows 

visualizing image data in a very realistic manner. Regardless of all the presented features, 

dynamic range (depth) of the scene (or the image data), is a limiting factor in allowing cameras 

to “see” perfectly, and to rendering devices to visualize image data in a completely realistic 

manner. 

The dynamic range represents the ratio between the darkest and the brightest intensities 

in the scene and is usually measured in dB where the value is given by (). In capturing devices 

such as digital CMOS image sensors, the dynamic range is mainly dependent on the photodiode 

capacity and the noise floor of the signal. Precise dynamic range considerations for CMOS 

image sensors will be discussed in the next section. 

(Equation I)  𝒅𝒚𝒏𝒂𝒎𝒊𝒄 𝒓𝒂𝒏𝒈𝒆 =  𝟐𝟎 × 𝒍𝒐𝒈
𝟏𝟎

(𝒃𝒓𝒊𝒈𝒉𝒕𝒆𝒔𝒕 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚

𝒅𝒂𝒓𝒌𝒆𝒔𝒕 𝒊𝒏𝒕𝒆𝒔𝒊𝒕𝒚
)   

 

To present the image data (that was either captured or created), we will need to use a 

possible rendering device such as a monitor, projector, printer, etc. In most of the cases current 

solutions will work well; however, if the depth of the data exceeds the rendering capabilities of 
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these devices (Due to high or low light levels in the presented scene), they will either truncate the 

data or in the worst case they will not render the signal at all. Current state-of-the-art rendering 

devices such as TVs or monitors have different abilities in presenting high contrast data which is 

usually dependent on the technology they are based on. Manufacturers claim the dynamic 

contrast is 1:1,000,000 and the static contrast can reach 1:100,000 with a peak luminance of 

600cd/m2 on state-of-the-art OLED displays; however, the measured contrast ratio in a dark 

room remains at around 1:350 if compared to a real-life illuminance scale [6]. This rendering 

limitation means, if we want to present data with a higher depth on existing devices, we will 

need to compress the depth dimension of this data, this compression is called tone mapping, 

which will be discussed in the next section. 

 

In this thesis, we present two possible solutions for: 

1) Capturing scenes with wide dynamic range (WDR) of brightness values 

2) WDR data rendering for low dynamic range devices.   
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 : INTRODUCTION 

This thesis will discuss two different problems, and thus the introduction is divided into two 

main parts. Part one will discuss the WDR capture, and part two will discuss the WDR data 

display.  

 WDR Capture 

Before CMOS image sensors became popular, and before the Charged Coupled Device 

(CCD) was invented, there were MOS sensors. With varying levels of success of capturing light 

NMOS, PMOS, or BJT image technologies were implemented; however, these sensors suffered 

from high fixed pattern noise (FPN) which limited their applications. When CCD technology 

was firstly introduced for light sensing applications during the late 1960s [7], [8] with improved 

sensitivity and fewer process variations, many companies started to design image sensors based 

on a CCD concept, this was the beginning of digital photography. Image sensors based on the 

CCD concept continued to provide improved image quality, resolution, and frame rate until the 

active pixel sensor was developed in 1985 by Tsutomu Nakamura [9]. and more broadly defined 

by Eric Fossum in 1993 [10]. 

Even though image sensors based on CMOS technology were less sensitive, they had a few 

advantages over CCD technology which made them so broadly successful. The advantage of 

image sensors based on CMOS technology was the possibility of integrating well-defined 

components on the same chip such as ADC, memory, and amplifiers, with the sensing matrix 

(pixels). This made the design process faster, less complicated, and reduced some noise related 

to external readout of analog signals. More than that, CCD sensors require different voltage 

levels compared to other on-board components, requiring additional peripheral design, and they 

were significantly more power “hungry” which made them unsuitable for low power applications 
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[11]. These disadvantages made CCD technology a very small niche, and today they are found 

only in applications where very high sensitivity is required above any other consideration, e.g., 

astronomy or microscopes[12]. 

For the last 25 years, CMOS image sensors have improved significantly in features such as 

sensitivity, resolution, frame rate, and dynamic range. Although current features are sufficient for 

most applications, the Dynamic Range ability is limited and requires either automatic or manual 

calibration of Exposure Value (EV) and gain to select the required brightness level during the 

capturing process as presented in Figure 1-1 - Same scene captured with different EV values.. 

To understand the challenge of extending the dynamic range let’s consider the following; an 

image sensor is an array of photodiodes which convert incident light into a photocurrent iph. 

Since the change in photocurrent is linearly related to light intensity, a photocurrent is a good 

measure for the intensity of the captured light. The resulting photocurrent is usually very low and 

difficult to measure, so it is accumulated into a charge which is later linearly translated into a 

voltage, and finally, the voltage is digitized and read out. 

Eliminating the dark current additive noise, which can be very destructive, noise can be 

expressed as a sum of four independent components[13]: 

1) FPN gain and offset due to process variation and device mismatches. 

Figure 1-1 - Same scene captured with different EV values. 
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2) Readout circuit noise (including quantization noise) with zero mean and average power of 

σ2
Readout. 

3) Reset (kTC) noise. 

4) Integrated shot noise, which has zero mean and average power 
𝑖𝑝ℎ ∗ 𝑡𝑖𝑛𝑡

𝑞𝑒
2⁄  where 𝑞 is the 

electron charge. The output charge equation can be expressed as in Equation 1-2. Where 

𝑄(𝑡𝑖𝑛𝑡) ≤ 𝑄𝑚𝑎𝑥 and the saturation charge is referred to the well capacity.  

Equation 1-1 -   𝑸(𝒕𝒊𝒏𝒕) =  
𝟏

𝒒
(𝒊𝒑𝒉𝒕𝒊𝒏𝒕 + 𝑸𝑭𝑷𝑵 + 𝑸𝑹𝒆𝒂𝒅𝒐𝒖𝒕 + 𝑸𝒌𝑻𝑪 + 𝑸𝑺𝒉𝒐𝒕) 

Assuming the correlated-double-sampling (CDS), is performed, we can eliminate 𝑄𝑅𝐸𝑆𝐸𝑇  

and the offset part 𝑄𝐹𝑃𝑁. And if we assume that Fixed Pattern Noise (FPN) is negligible 

compared to shot noise, Signal to Noise Ratio (SNR) is given by Equation 1-2 

Equation 1-2 -   𝑺𝑵𝑹(𝒊𝒑𝒉) =
(𝒊𝒑𝒉𝒕𝒊𝒏𝒕)𝟐

𝒒𝒊𝒑𝒉𝒕𝒊𝒏𝒕+𝒒𝟐𝝈𝟐        𝒇𝒐𝒓      𝒊𝒑𝒉 ≤
𝒒𝑸 𝒎𝒂𝒙

𝒕𝒊𝒏𝒕
  

Note that SNR increases with 𝑖𝑝ℎ, first at 20𝑑𝐵
𝑑𝑒𝑐𝑎𝑑𝑒 ⁄  when readout noise variance 

dominates, and then at 10𝑑𝐵
𝑑𝑒𝑐𝑎𝑑𝑒⁄   when shot noise variance dominates. SNR also increases 

with 𝑡𝑖𝑛𝑡  . Thus, it is always preferred to keep the integration time as long as possible.   

Image sensor Dynamic Range is defined as a ratio of the largest unsaturated value to the 

smallest detectable value, typically defined as a standard deviation of the noise under dark 

current conditions. Assuming the above sensor model, 𝑖𝑚𝑎𝑥 =  
𝑞𝑄𝑠𝑎𝑡

𝑡𝑖𝑛𝑡
⁄   and 𝑖𝑚𝑖𝑛 =

𝑞𝜎𝑟𝑒𝑎𝑑
𝑡𝑖𝑛𝑡

⁄  the dynamic range is given by Equation 1-3 

Equation 1-3    𝐃𝐑 =  
𝐢𝐦𝐚𝐱

𝐢𝐦𝐢𝐧
=  

𝐐𝐦𝐚𝐱

𝝈𝐫𝐞𝐚𝐝
 

Extending the dynamic range at the high end requires increasing  𝑖𝑚𝑎𝑥 in one of the 

following ways: Varying integration time: The integration time is adapted to pixel photocurrent 
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providing long integration times for pixels with small photocurrents and short integration times 

for pixels with high photocurrents. Examples of such techniques are - well-capacity adjusting 

[14]–[16], multiple-reset [2], [17], [18], logarithmic sensors variations [19] or other HDR 

schemes which are not related to the parameter modifications of the DR equation such as 

integration of multiple captures [20], [21].  

 

Extending DR at the low end requires reducing 𝑖𝑚𝑖𝑛, which can be achieved by, reducing 

𝜎𝑅𝑒𝑎𝑑𝑜𝑢𝑡  [22], by increasing 𝑡𝑖𝑛𝑡, or when using multiple-resets a combination of image blur 

prevention and weighted averaging of the samples[20]. 

 

In this thesis, we present an architecture to extend the DR into the high end which is 

based on time and space trade-offs [1]. That implies an implementation of a multidimensional 

pipeline control logic integrated with the pixel array that allows achieving more than 120dB of 

linear dynamic range with up to 8 conditional resets and provides an output in mantissa-exponent 

format. Compared to a previously designed CMOS Image Sensor (CIS), which is based on the 

same concept but with only 3 integration times (2 conditional resets) [23], the presented design 

has an increased DR, requires less memory and has more quantization levels to represent the 

light, which increases the contrast and overall naturalness of the scene. In the presented sensor, 

the internal pipeline controls the integration time of every pixel separately and can update their 

integration time to the following partial values 
1

2
,

1

4
,

1

8
,

1

16
 

1

32
,

1

64
,

1

128
, and 

1

256
  of the global frame 

time based on the amount of light they receive. This implies that the sensor can conduct up to 8 

conditional resets to each pixel based on the ambient light. Knowing the number of resets 
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integrated with the sampled analog value of each pixel allows us to represent the captured WDR 

data directly in a mantissa-exponent structure  𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 where mantissa 

is the final sampled analog value of the pixel and the exponent is the number of resets the pixel 

occurred during the frame time. 

The presented technique allows us to embed nine integration times into in a single shot 

acquisition time with corresponding incremental of the Dynamic Range by 20 ∗ 𝑙𝑜𝑔10(28) =

 48𝑑𝐵. The number of resets is a function of the sensing matrix dimensions, and for a bigger 

sensor (4096 rows), the number of resets will increase to 12 with a corresponding increment of 

the dynamic range of another 24𝑑𝐵.  

 WDR Display 

Compared to low dynamic range sensors, WDR sensors allows us to capture more levels 

of the existing light intensities per pixel; this lets us see more details, have higher contrast, and 

obtain high range data without losing information regardless of their illumination levels in the 

scene. Captured WDR data may have more than 1000 times larger range than the presenting 

capabilities of conventional visual devices. These LDR have limited range, or brightness values 

they can render per single pixel and depending on the technology (Plasma/ LED/ OLED/ LCD, 

etc.), the maximum range is usually varying from 1:256 to up to 1:1024 of discrete values, i.e., 8-

10 bit of brightness levels whereas the WDR data has 20-bits or more. The limitation of existing 

display devices led to the development of the image processing application area called tone 

mapping. Tone mapping or tone mapping operator (TMO) is a technique used in image 

processing and computer graphics to map one set of brightness intensities to another to 

approximate the appearance of high-dynamic-range images in a medium that has a more 

limited dynamic range[24]. Tone mapping is a compression performed on HDR data to meet the 
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LDR visualization standards of 8-10 bits by preserving the overall image naturalness and 

structure.  

Many TMOs have been developed by the academic or industrial groups for the last two 

decades. Even though all of them has the same purpose, they all feature different capabilities and 

work in different ways. Some of them are highly efficient and can be implemented on hardware 

platforms such as a GPU or FPGA for real-time applications [25]–[29], and some of them are 

less efficient [30] but give better visual results.  Usually, the faster algorithms are based only on 

a global operator (single equation applied to all the pixels in the picture) [31]–[33], whereas 

more complex tone mapping have both, global and local operators (local operator is more 

complex operator which is based on a spatial intensities and thus requires more memory and 

computational effort to generate value) [34]–[37]. The latest achievements in TMOs are based on 

neural network computing techniques[38]–[40].    

To compress the data generated by the newly developed image sensor a special TMO is 

required. The output from the sensor has a mantissa-exponent data structure where the mantissa 

represents the detail level, and the exponent represent the scaling factor of the mantissa’s values. 

To perform a tone mapping process on this data, we could transform the data into a standard 

binary representation as is usually performed[41][42]; however, this was avoided due to the 

additional logic implementation required making it an expensive operation in an ASIC. Thus, we 

present here a new tone mapping algorithm that can process the image data in the specified 

format.  The designed TMO takes advantage of the input data structure for compression 

proposes; this ensures lower computational effort, small footprint and possible integration with 

the image sensor on the same chip. Integration of the TMO with the image sensor will reduce, 

the interface with the image sensor, the driver complexity, and the complexity of the entire 
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system in general. These features make the sensor suitable for medical, low power, and low 

dimension WDR imaging applications. We note that for WDR inputs that do not satisfy our 

mantissa/exponent representation, a conversion module may be used for formatting the pixel 

intensities into the appropriate representation [Figure 5-9]. 

 In the following sections, we will present the sensor design, the interface between the 

sensor and the FPGA, the hardware driver to control the system and to stream WDR output, and 

the tone mapping algorithm with its hardware implementation. 

 

 : M-E SENSOR  

The image sensor presented in this section was designed using the Cadence Virtuoso 

software combined with an AMS 350-nm CMOS opto-process technology. Selected tools and 

technology were provided by Canadian Microelectronics Corporation (CMC) Microsystems and 

were the most suitable for light capturing application and for prototyping compared to other 

provided technologies. We note that for improved image quality and lower SNR features a 

special opto-process is required which should include pinned photodiode device, designed for 

CIS analog components (charge amplifiers, capacitors) column ADCs, CFA, smaller gate size, 

etc. A presented CIS has a completely new design which allows access in parallel to up to 9 

pixels at the same time for resetting proposes to generate WDR output. Modules for this CIS 

(FIFO buffers, Multiplexers) were designed for possible integration of the presented pipeline 

with previously designed solutions by our group [43]–[45].   

The following chapter is organized as follows: at the beginning, we present a precise 

explanation of the designed blocks along with their operation and necessity to the design, and 
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after we finish to present each of the modules, we explain how all these modules work together 

and generate WDR output. 

The presented CIS is designed to perform up to 8 conditional resets for each pixel during 

the integration time to avoid their saturation at the end of the frame time. To implement this logic 

and to establish parallel access and conditional resets to 8 pixels a few necessary components 

were designed and integrated together: 9-bit Row Decoder, Single bit ADC (latched comparator), 

parallel 256 to 8 bits multiplexer, parallel 9-bit Reset Logic unit, parallel 9 to 256 bits 

multiplexer, Row Driver, multiple access low noise pixel and readout chain. The complete 

design is presented in the block diagram in Figure 2-1. In the following subsections, we will 

describe each of the components and its importance for the presented sensor. And at the end, we 

will describe the control/data-flow and WDR output generation process.  

Figure 2-1 – Sensor components. Blue arrows symbolize the control 

lines. Yellow arrows symbolize the data flow 
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 9-bit Row Decoder 

In a standard row decoder one signal can be selected (activated) each time, and the 

address of the selected signal is provided as a binary input to the decoder. This allows random 

access to each row in the image sensor. In our design, there is parallel access to 9 rows 

simultaneously, and regular decoder couldn’t provide the necessary functionality. There was an 

optional solution to use 9 row decoders in parallel; however, integrating 9 parallel decoders will 

require 9 addressing busses, will consume a lot of power and a lot of chip space (row decoder is 

a relatively big component). Since in our design, there is no random access to the rows, a 

different solution for row decoding, based on an array of flip-flops only was designed. A 

presented solution also allowed to reduce control logic complexity to only two signals (only reset 

and clock signals required), make the design smaller and reduce the total power consumption of 

the sensor. Here we explain the operation and design consideration of this module. 

 

 

Figure 2-2 - Row decoder internal design 
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The number of generated by this module signals and the physical distances between them 

is strongly dependent on the number of rows in the pixel matrix. In the designed sensor the 

number of rows is 256 and thus, following time and space logic, the intervals between the 

accessed pixels and the intervals between the control lines are the following: 128, 64, 32, 16, 8, 

4, 2, 1, and another 1 (in terms of rows). 

The distances between the nine activated control signals are always fixed, and there is no 

option of random access (i.e., randomly switching from row to row). 

The nine active control lines are moving in a circular direction and activating a different 

set of 9 rows in the image sensor, where each next selection of 9 rows is triggered by the clock 

signal.  

The decoder (Figure 2-2)  was implemented using flip-flops instead of using a common 

for row decoders combinational logic design flow for a few reasons: There is no random access, 

it has a much smaller footprint, only two control lines (reset and clock), and it consumes much 

less power.  

The module works in the following way: 

1) The “running” logical 1 signal (called Pivot) represents the start of the frame integration 

time. 

2) This signal is “moving” in a circular direction from the first to the last (255th) flip-flop 

and then repeat its cycle. 

3) Every time this signal crosses its halfway (flip-flop #127), it sends a logical “1” to the 

first flip-flop in the next circular buffer (called Pivot - 0.5). 

 

This connection creates an effect of running in a circular direction two signals with a phase of 

exact half frame time from each other. We note: The logic behind the buffer names is in the 

delay between them and the Pivot signal. 
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The next circular buffer is called “Pivot - 0.75” (Pivot -1/2-1/4), and the delay from Pivot 

will be exactly 0.75 frame time. This buffer receives logical “1” from Pivot – 0.5 buffer from its 

64th flip-flop.  We continue to connect all the following circular buffers in the same way and thus 

create all the explained above 9 signals/delays. 

 Latched Comparator  

 

Figure 2-3 - Latched comparator, transistor level design 

 

The purpose of this unit (Figure 2-3) is to compare two analog values (inP and inN) and 

return the result in digital form (terminal a and b, are outputs), in other words, this module works 

as a single bit Analog to Digital Converter (ADC). This module is also synchronized so we can 

use its output without inserting another latch. This is important for pipeline integrity and will be 

explained later in the sensor operation section.  

The reset logic, memory, and control circuits are digital circuitries whereas the pixel 

matrix, the amplifiers, and the rest of the circuitries are based on analog concepts; therefore, this 
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type of comparator plays a significant role as a separator in the presented mixed analog & digital 

design and a few peripherals which were added to the original comparator to improve its 

functionality. Here we will discuss the principles of these improvements.  

Analog inputs were buffered with PMOS based common-drain (source follower) 

amplifiers (pre-amplifiers) for the following reasons. To avoid injections of switching noise back 

into the pixel matrix. The latch and the input clock signal are injecting a significant amount of 

charge back to the analog parts which are then reflected to the sensing matrix (using an amplifier 

before this module will suppress this noise). To match the analog values of the read line (from 

pixel array) to the required by the comparator input values (the inputs of the latched comparators 

must be above one volt, whereas the voltage over the read line is varying between 0 and 1V). 

The PMOS based source follower increases the input analog value that fits the analog swing of 

the comparator.  

Digital outputs were buffered with inverters to equalize load capacitance on the output 

terminals. Different load capacitance connected to the output terminals will have a direct impact 

timing of the latch circuit and affect the cooperation abilities of the comparator.  

 Parallel 256 to 8 bits Multiplexer 

In every clock cycle, up to eight pixels are being checked in parallel for possible 

conditional reset. To meet the constraint of parallel access, an 8-bit multiplexer has been 

designed (Figure 2-4).  This module delivers 8 of 256 possible results from the latched 

comparators, to the corresponding reset logic circuitries. The multiplexer inputs are presented on 

the right side and called cmpIn0-cmpIn255 (output from the comparators) whereas the outputs of 

the multiplexer (left side) are called res1-res8 (connected to the reset logic inputs). The select 

signals of the multiplexer (𝑇𝐿1 − 𝑇𝐿8) and  (𝑇𝐿1𝑛 − 𝑇𝐿8𝑛) are generated by the explained 
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above 9-Bit Row-Decoder module and define the exact encoded combination to deliver 8 signals 

from the inputs to the outputs of the multiplexer. The multiplexer was designed using 

transmission gates instead of digital logic cells (Figure 2-5) mainly for integrating of current 

design with active column sensing, SAR and AR solutions presented by our research team earlier 

which requires of delivering an analog signal to the reset logic circuits.  

 

Figure 2-4 - 256 to 8 Parallel Multiplexer 

 

A similar to a presented multiplexing module, another module was designed to deliver 

eight results from the reset logic module back to the selected eight pixels and called 

demultiplexer (Figure 2-6). This module has 10 inputs (resConf0-9): eight of them deliver the 

conditional reset data, one to deliver the global reset signal, and the last to deliver logical “0” to 

the 245 non-selected MOS gates (common to TTL logic design considerations). This multiplexer 

has 256 outputs (resetToPixel0-resetToPixel255) that activate the corresponded reset “lines” in 



 

14 

the pixel array. The select lines of the multiplexer (𝑇𝐿0 − 𝑇𝐿9) and (𝑇𝐿0 − 𝑇𝐿9)′ are controlled 

by the same 9-Bit Row-Decoder module and define the exact encoded combination to enable 

delivery of the reset signals back to the pixel array.  

 

Figure 2-5 - Single cell of the 256:8 multiplexer 

 

 

Figure 2-6 - 10:256 multiplexing module 
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 9-bit Reset Logic Module 

 

Figure 2-7 - Reset Logic Module 

 

This module (Figure 2-7) generates all the necessary reset signals to the pixel array. 

Every clock cycle, this module receives information from the comparators (res1-res8) and the 

memory (a0in - g2in) about eight of the nine selected pixels and makes the decision to generate a 

conditional reset or not. Along with generating conditional reset signals (resConf1-resConf8), 

this module also generates a hard-reset signal (resConf0), hard reset signal indicates a frame 

starting point for one of the nine selected pixels in the presented rolling shutter sensor.   
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Reset logic module consists of nine different combinational logic circuitries for each of 

the resets (8 conditional and 1 hard-reset). To generate a hard-reset signal (start for the frame 

time), no conditions are required, and thus this circuit receives only one input bit which is the 

shared between all the reset circuits synchronization signal clkReset ( 

Table 2-1 case # 0). The first conditional reset circuit ( 

Table 2-1 case # 1), receives two bits, one is the result of the latch comparator and the 

second is the synchronization signal (clkReset). Depending on the result of the comparator, the 

reset logic will either generate a conditional reset or not.  Regardless of the generated signal, we 

store the result into a FIFO buffer (a0out) until the next time this pixel is being checked (FIFO 

buffers and their structure is the next explained component).  

The second conditional reset circuit ( 

Table 2-1 case# 2) oversees resetting the pixels on the second time and will generate a 

conditional reset signal only if the pixel crossed the threshold value and was reset previously. 

Therefore, this circuit has three inputs, one bit from the comparator (about current status), one bit 

from the FIFO (information about previous conditional reset) and the third bit is the sync. signal. 

Here again, we store the decision into the next FIFO buffer until the next cond. (reset, access 

phase (#3)). To store the decision of the second conditional reset logic, we will need two bits, 

and thus the interface with the memory has two bits (b1out and b0out) 

Next conditional reset circuitries #3-#8 features the same logic. The difference between 

them is a different bit selection from the corresponding FIFO buffers. The bit selection varies 

from 1 to 3 bits depending on the reset circuit/case. e.g., at reset case #6. we need to check if the 
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pixel received 5 conditional resets. If this is the case (5th FIFO stores binary value of ‘101’), we 

can check only two bits (the first and the third one) if they store logical ‘1’.   

The reset module is a set of combinational logic circuitries and to synchronize them to 

generate a reset at the same time, we use a shared between all the conditional reset circuitries a 

synchronization signal, and we call it clkReset. 

 

 

Table 2-1 – Internal reset circuits for reset #0, #1, #2 and #8 

 

Reset circuit # Schematic View Truth Table 

Hard reset 

Reset #0 

 

clkReset out 

0 1 

1 0 
 

Conditional 

reset #1 

 

Res1 clkReset Tg1N 

0 0 1 

0 1 0 

1 0 0 

1 1 0 
 

Conditional 

reset #2 

 

Res2 EB0_1 clkReset Tg2N 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 
 

Conditional 

reset #8 

 

Res8 EB7_0 EB7_1 EB7_0 clkReset Tg8N 

0 1 1 1 0 1 

0 X X X 1 0 

1 X X X 0 0 

1 X X X 1 0 
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 Row Driver  

Figure 2-8 - Row Controller Module 

The row driver module (Figure 2-8) allows reading the analog value of the selected pixel 

in the selected row by activating the Column Select line and the required for reading purposes in 

row level circuits (current sink, source follower amplifier, and comparator). Combined signals 

from the Row Decoder (TL0n-TL8n) and from the FIFO buffers will allow access to a pixel in 

this row. Signals from the Row Decoder are activated only if there might be a need in a 

conditional reset (based on time and space tradeoffs) and the signals from the FIFO shift 

registers will be activated only if the requested for access pixel had a conditional reset on its 

previous access phase (this data is stored in FIFO buffers). In total, we have 256 Row Controllers 

in our sensor, one for each row and the output of each one of them is latched to avoid glitch 

effects (Figure 2-9). 
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The purpose of this module is to reduce the overall power consumption of the sensor and 

to reduce the amount of noise injected to all the pixels in the accessed row.  

The power consumption is being reduced since this module is turning on only up to 9 

readout circuities from 256 possible options, and only doing so if there is a need of a conditional 

reset (each readout circuitry includes: a comparator, source follower amplifier, and current-sink).  

The noise is reduced since the “read line” will be activated only if the pixel had a 

conditional reset on its previous access phase; otherwise, the access line will stay untouched. 

Thus, if there is no need for a conditional reset, the number of reading accesses can be reduced 

from nine to one. Reducing the number of accesses will reduce the noise injected to all the pixels 

in the accessed row when the ‘read’ line is activated or deactivated. 

 

 

Figure 2-9 - 256 Row controllers as a sequential module (chip level view) 

 

 

Latch based 

on a D-type 

flip-flop  
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 Pixel design 

 

A standard 3T pixel configuration was chosen as a source to design a pixel that allows a 

single pixel selection in the array as a combination of a row and column decoders. A 3T pixel 

with a regular photodiode was used due to lacking a pinned photodiode in an AMS35 Opto-

process. Opto-process (C35B4O1): 3.3/5V provided by CMC is similar to the basic AMS35 

process, but with a high-efficiency photodiode and anti-reflective coating for imaging and 

optoelectronic detection applications. But, to take advantage of the CMOS process for low noise 

imaging applications, technology with pinned photodiode must be selected.  

To allow access to a single pixel from the pixel array a 3T pixel was modified as follows: 

The reset transistor’s configuration was changed to perform as an AND gate. This 

configuration allows us to reset a single photodiode in the array when both signals from the 

column and reset logic arrives (are logically high). 

A diode-connected transistor was added between the photodiode and reset transistor to 

decouple switching noise. This noise is reflected on the photodiode when one of the terminals on 

the reset transistor is being activated, that happens only when pixels in the same row or column 

Figure 2-10 - Pixel Architecture (Schematics on the left and layout 

on the right) 
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are being accessed. The diode-connected transistor is activated only when there is reset access to 

the transistor otherwise this transistor is off, and its drain terminal is reflected as capacitance load 

that absorbs the charge injected from the reset transistor terminals. 

Read access transistor as AND logic configuration was added to allow read access from a 

single pixel when a signal from the row and column decoder appear. 

 In total, the pixel features 5 transistors, with a size of 10.4um×10.4um and 34% fill factor 

(Figure 2-10). 

We note – the pixel is very sensitive to access and reset noise since it features a regular instead 

of a pinned photodiode, using a pinned photodiode will enable us to eliminate a major amount of 

noise and will significantly increase the dynamic range of the sensor into the low end.  

 Readout Chain 

 

Figure 2-11 - Readout chain with 3 multiplexers and amplifiers 

The readout sequence from the sensor is the following: We select a row and scan all the 

pixels in this row. Once the row scan is complete, we select the next row and repeat the pixel by 

the pixel scanning process. We repeat this logic for all the rows in the sensor until we finish 
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scanning the entire sensing matrix. We repeat the frame scanning process in a continuous data 

streaming mode, and thus we ensure fixed frame time and fixed frame per second (fps) rate.  

An Analog multiplexer module was designed to establish a fast and continuous scanning 

process from all the sources (rows). The multiplexer is based on transmission gates and 

amplifiers and allows us to read data from 256 different sources (rows) through a single analog 

output (Figure 2-11).  

The multiplexer features three amplification stages. The first stage is based on an op-amp 

amplifier in a sample and hold (S&H) configuration ( 

Figure 2-12). The output terminal of each of the S&H amplifiers is multiplexed through a 

16:1 analog multiplexer to the second amplification stage. In total 16 multiplexers are required to 

deliver the outputs from 256 S&H amplifiers to the second amplification stage. Outputs of the 

second amplification stage are multiplexed through a 16:1 analog multiplexer to a third and the 

final unity gain amplifier which pushes the analog signal outside the sensor to the ADC. 

In total, we have 256 op-amp amplifiers for the first phase, 16 amplifiers for the second and one 

for the final amplification phase.                                 

 

Figure 2-12 - First stage amplifier in S&H configuration 
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Figure 2-13 - general architecture of the 2nd and 3rd amplification stages 

 

We use 3 stages of amplification to decrease the delay of the analog signal on its way out 

from the sensor. The delay is caused by the different current driving abilities of the 

internal/transistor level amplifiers to the required current driver to charge the capacitance of the 

chip level pad. 

In the described readout chain only the first amplifiers have S&H peripheral networks 

whereas the rest amplification stages (second and third) are connected in a negative feedback 

configuration with a bandwidth required to deliver the signal in one clock time.  

We note: 

1) In case of faster design constraints or more complex design, all three amplification 

stages can be turned into S&H configuration. 

2) To ensure a higher frame rate and lower read noise, an internal ADC must be used 

instead of streaming the analog value outside the sensor for sampling. 
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3) The reading sequence is synchronized with the Pivot signal, and the pixels are being 

read and then reset during the same access time window. 

 Sensor Operation 

To understand the pipeline and the general data flow in the sensor let’s consider the 

sequence of the events which are related to a single pixel and later extend and explain how the 

same control logic applies to the entire pixel matrix and successfully generates WDR data in 

mantissa-exponent format.  

Let us consider a pixel located on the top left corner of the sensor and has the following 

coordinates <0,0> (where the first digit represents the rows and the second the columns). After a 

global pipeline reset, the pivot control signal (from the row decoder), and the column decoder 

signal are set to select the row and column number 0 (<0,0>). I.e., the values from row decoder 

and column decoder select a single pixel from the matrix. The pivot control signal enables the 

connection between the row #0 and hard reset circuitry (reset #0) via the 9-bit demultiplexer, and 

the column decoder defines a certain pixel in the selected row that will be connected to the reset 

logic circuitry. Once access is established, the analog value of the pixel is sampled via the 

readout chain for further ADC steps (the readout process will be explained later). Within the 

same access window, the pixel is reset by a signal that arrives from the reset #0 circuitry (hard 

reset), this moment indicates a beginning of the new frame time for this pixel. The column 

decoder moves to the next column and selects the next pixel for readout and reset purposes. This 

process is repeated for all the pixels in this row (row # 0), once the first row is completed, the 

row decoder (Pivot) selects the next row (row #1), and column decoder repeats its cycle from 

column #0 to the last column. A combination of the row and column decoders enables us to scan 
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and reset the entire matrix in a continuous mode. I.e., the described operation is the exact 

operation of a sensor in a rolling shutter mode with a single exposure setup. 

To enable the WDR capture, the pipeline must be extended. In parallel with the 

previously described process, the pipeline performs access to up to another eight pixels for 

possible updating of the integration times and performing conditional resets (reset # 1-8). Here 

we explain the signal sequence to generate the first conditional reset.  

As explained in section 9-bit Row Decoder, the Pivot signal and Pivot-1/2 (P-1/2) signal 

has a delay of an exact half frame time. The delayed control signal (P-1/2) is sent to row driver, 

8-bits, and 9-bits multiplexers, these modules function to: activate the read circuitry in the 

selected row, deliver the comparator result to the conditional reset logic circuitry # 1, and deliver 

the reset logic result back to the pixel accordingly. Analog value of the selected pixel is being 

compared with vTh (half of the possible voltage swing over the read line). If this analog value 

crossed vTh means the pixel will be overexposed by the end of the frame time and must be reset 

to prevent saturation and data loss (perform a cond. reset # 1). If the analog value from the pixel 

did not cross the vTh, means the pixel will not be overexposed, and there is no need to restart the 

light accumulation process (Figure 2-14). Regardless of the decision of the comparator, the 

pipeline stores the decision in the memory for further access.  

The selection of the Row Decoder will stay until the Column Decoder finishes scanning all 

the pixels in the row. Once the Column Decoder finished its cycle, Row decoder will select the 

next set of rows.  

We continue to check the pixels at different stages of their integration times up to another 7 

times for possible conditional reset to prevent their overexposure state by the end of their frame 

time (Figure 2-15). 
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Parallel access to up to 9 pixels is done in the following way: As discussed in section (9-

bit Row Decoder), the generated control signals have delays of 1 2⁄ , 1 4⁄ , 1 8⁄ , … 1 256⁄  of the 

frame time from the Pivot signals. All the generated delayed signals (after Pivot) have the same 

purpose, they all activate the required read circuitries (via row driver), and they control the 

parallel 8 and 9-bit multiplexers that delivers data from comparators to the reset logic circuitries 

and back to pixels. I.e., in the same way as the P-1/2 signal allows the pipeline to sample pixels 

at the middle of their integration time and connects them to the correspondent reset circuit #1, P-

1/2-1/4 control signal allows us to sample pixels that reached ¾ of their integration time and 

establish connection with the corresponding reset circuit (reset #2). The rest of the generated 

control signals has a similar function, e.g., P-1/2-1/4-1/8 signal allows us to sample pixels that 

reached 7/8 of the integration and so on where the latest delayed signal with a name: P-1/2-1/4-

1/8-1/16-1/32-1/64-1/128-1/256 is connecting pixels at 255/256 of their integration time to the 

last reset logic circuit and back (reset #8). In general, we can select up to 9 different pixels at the 

same time for possible updating of their integration times.  

Figure 2-14 – Light blue line represents low light – no conditional reset. Dark blue line 

represents higher light intensity, conditional reset will be applied. 
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Inherent parts of the sensor are the memory buffers. The memory is required to store the 

number of conditional resets for each pixel. The total number of resets is being accumulated in 

the memory buffers and represents the final exponent value in the discussed mantissa-exponent 

data structure. Besides the reset accumulator purpose, the memory plays a significant role during 

the conditional reset #2-8 decision stages. To generate the second and above conditional resets 

(#2-#8), two conditions must be met. The photodiode in the pixel must be more than 50% 

discharged (crossed vTh value) which we know from the latched comparator module. The pixel 

received a conditional reset signal on its previous access phase which we know from the memory 

buffers. We are using the data from these two sources (memory + comparators) in order to 

prevent unnecessary conditional resets. E.g., If reset #4 is the last conditional reset the pixel 

Figure 2-15 : Control signals and the selected pixels for conditional reset. 

Presented on a 16x16 example matrix 
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received (Figure 2-16), and there was no reset signal on the next reset phase #5 due to the 

voltage over the photodiode didn’t cross the vTh value. There might be a case when the talked 

about analog value will cross the vTh at the ascending conditional resets #6-8 access phases. If 

the reset logic circuits rely only on comparators’ output to generate reset signals, they will 

generate reset signals when the pixel will not be overexposed by the end of the fame time, and no 

conditional resets should be applied and completely ruin the sensor data output values.  

More than that, the row driver module is using the memory data as well to decide to 

allow read access to the pixel or not. So not only unnecessary reset signals will not be generated, 

but even the access to the pixel will not be granted if there is no need in resets, so the pixel will 

be left untouched until the end of the frame time without being reset and accessed.  

Finally, here we explained the exact purpose of the reset data (from the memory buffers) 

being delivered to the conditional reset circuitries #2-8 and to row driver modules.  

It is important to discuss the dimensions of the memory buffers and their type. We are 

taking advantage of storing the exponent values only and the rolling shutter mode to design a 

sensor which takes much less memory compared to storing a quantized value (after ADC) in the 

Figure 2-16 - 4th reset is the last one the pixel received, at reset #5 the pixel didn’t 

cross the vTh value and thus at reset #6-#8 stages the pixel must stay untouched 
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same rolling shutter mode or global shutter sensors. In global shutter sensors, to generate the 

exponent part for this representation, we will need a memory buffer with similar dimensions to 

the sensing matrix whereas in rolling shutter mode we are taking advantage of the fixed intervals 

between the accessed pixels (based on the theory of time-space trade-offs [46]) and the fact that 

we need only a few bits (1-4) to store the exponent values only for comparisons and for final data 

representation instead of the storing the values after ADC (12 or more bits per pixel)[23] 

significantly reduce the amount of embedded memory. E.g., the total number of pixels the 

pipeline will scan between the conditional reset #1 and #2 will always be fixed and equal to the 

¼ of the sensing matrix. I.e., to store the generated data at reset #1 stage and until the data is 

required on reset #2, we can use FIFO shift register with fixed dimensions of the ¼ frame 

(Figure 2-17). Besides the length, first FIFO will have only one-bit in width to store the decision 

of the conditional reset logic.  The second and the third FIFOs will have 2-bit in widths (that will 

allow them to store binary values of “10” and “11”) with correspondent lengths of 1/8 and 1/16 

parts of the frame and so on. The final FIFO needs to carry up to 4 bits (to store binary value of 8 

“1000”) , and its length will be 1/256 of the frame sensor size. A complete FIFO structure is 

presented in Figure 2-17. 

In this work, the sensor size is 256×360 (0.09MP), and the required amount of memory is 

56.7Kbit. For a 1024 x 1280 (1.3MP) sensor, the required memory will be ~1.06Mbit. 

Regardless of the rolling/global shutter types of operations, the presented mantissa-exponent data 

representation significantly reduces the embedded memory compared to other multiple-reset 

WDR sensors/systems as discussed in the Introduction section. This allows for the 

miniaturization and integration into systems where size and costs are key factors, E.g., in 

biomedical or security applications.  
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Figure 2-17 - Integrated altogether FIFO buffers with their sizing visualization according 

to the reset data they carry 

 

In the following part, we will present the designed hardware testing system to 

communicate with the sensor and stream all the necessary digital signals to establish a real-time 

WDR video stream to a PC or monitor via a DVI interface.    

 

 : M-E SENSOR TESTING SYSTEM 

To establish a video stream from the sensor to a screen or a PC, a set of analog and digital 

signals must be provided and captured to and from the sensor respectively. All the digital signals 

such as clocks, data to the sensor, ADC, memory, and streaming the data to a DVI or a PC are 

handled by the HDL driver synthesized on Xilinx FPGA ML605 development platform. The 

interface between the FPGA development platform and the sensor was established by a custom 

designed PCB. In this chapter will present the design of the testing system and the achieved 

results.  
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 Interface Board: 

A printed circuit board (PCB) was designed (Figure 3-1) to set up a complete interface 

between the presented sensor and the FPGA with the following peripherals: 

1) 6 Configurable low dropout regulators (LDO) – to provide the required analog voltages to 

the internal modules in the sensor such as amplifiers, comparators, etc.  

2) Pin grid array (PGA) socket to connect the sensor physically and electrically with the 

designed board. 

3) 12-bit ADC with a sampling rate of 60Msps  

4) Differential driver to create a differential signal from a single analog output from the 

sensor. The differential signal provided to ADC increases its SNR abilities. 

5) Level shifters – to match digital IO sensor voltages with the values required by the FPGA. 

Figure 3-1 - Modular representation of the designed PCB 
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6) DC-DC chain– to provide voltages to all components from a single 12V input. The chain 

supplies the board with 4 different voltages: 5V for the ADC, 3.3V analog & digital for 

the sensor, level shifters and ADC, and 1.8V for level shifters. 

A complete schematics and PCB layout are presented in 7.1: Appendix: PCB Schematics 

 

 

 HDL Controller 

To provide a complete operation of the sensor, a set of digital signals like synchronized 

clocks and direct interface with memory buffers must be provided. Along with the signals 

required by the sensor, the controller handles the onboard ADC, embed and controls the frame 

buffer, and streams the picture to digital video interface (DVI) or a PC.  

The sensor HDL driver includes the following main modules: FIFO buffers, frame buffer, 

clock generator, DVI controller, UART controller, and PLL.  

            
      

        

        

        

        

        

        

        

       

         

         

         

         

         

         

         

            

              

         

         

        

        

         

               

          

               

     

          

             

         

      

       

          

       

      

   

      

                    

Figure 3-2 - HDL sensor driver in modular view 
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The FIFO buffers purpose is to store the exponent (number of resets) values generated by 

the sensor and to stream these values back (size and number required FIFO buffers are explained 

in the previous - Sensor Operation section.). Only the values from the final buffer (Hout) are later 

combined with the values received from ADC and represents the final value of the pixel’s light 

intensity in a mantissa-exponent format where the mantissa is the output from the ADC, and the 

exponent is the output from the last FIFO buffer. The combined value is stored in a full duplex 

frame buffer. A frame buffer is designed to allow read and write simultaneously from different 2-

dimensional locations and with different frequencies, so the data populates the buffer with the 

frequency it arrives from the sensor independent of the read with a frequency is as required by 

the DVI or UART interface. The data from the frame buffer is then redirected either to the 

monitor via DVI or to a PC via UART. DVI and UART controllers both feature the required by 

the interface physical layers (PHY) to meet the communication standards on the receiving side. 

Another essential module is the clock generator. This module provides 7 different clocks to the 

sensor, ADC, DVI chip, and to some of the internal modules. The code is presented in HDL 

Driver Top-Level Source Code and the internal modules can be provided by request  

 M-E sensor Results 

The proposed image sensor design was plugged into a designated PGA socket on the 

designed PCB, and the entire system was activated by a Xilinx ML 605 FPGA development kit, 

the designed HDL driver took control over the sensor and the required peripherals to capture and 

stream the data to a monitor or a PC. To capture the image data from the FPGA via UART 

interface (COM port), a dedicated software was designed on a C# programming language using a 

Visual Studio (VS) software development tool (Figure 3-3). The presented software is able to 

reconstruct the image data from the input stream based on the synchronization signals from the 
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FPGA. Bottom two pictures are showing not synchronized data, and the top pair are showing 

synchronized exponent and the mantissa data on two separate images. 

To measure the sensor response to the light and the dynamic range the following 

experiment was set up (Figure 3-4). A controllable 200W light source was set up 1m from the 

designed sensor and from the light power meter (PM100usb). In this experiment, we can control 

the light intensity, see the output of the sensor and measure the received by the sensor light 

intensity by measuring its power. 

Figure 3-3 : PC software to capture and synchronize the image 

data stream from FPGA 
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Since the rendering devices aren’t able to present WDR data, the output from the image 

sensor is presented separately on two different images. The first image (Figure 3-6) shows the 

mantissa which is the output of the ADC and represents a detail level for each of the exponents. 

The second image (on the right) shows the exponent values – where the darker pixels represent 

the lower exponent values and the brightest the higher exponent values. The separation allows 

seeing the conditional reset performances along with the detail levels represented by the 

mantissa. We can see the successful generation of conditional resets and general performance of 

the designed pipeline. Even though the sensor shows a successful generation conditional resets 

based as a function of the received light intensity, it is lacking to detect objects in low light due 

to high noise levels and significant leakage current (Figure 3-6). The Mantissa shows all the 

details captured from the second exposure mostly when the exponent equal to 2 in most of its 

regions. More than that, the leakage current is strong enough to generate the first and the second 

conditional resets automatically when the light intensity is about 2uW (room light), and this has a 

direct impact on the dynamic range of the sensor. Considering we have only 6 of the 8 

conditional resets instead of 8 and the data from the ADC has 10 valid bits, the total achieved 

Figure 3-4 : Experiment setup 
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dynamic range of the sensor can be estimated as following (Equation I), with total resulting 

dynamic range of 96 dB (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑎𝑛𝑔𝑒 = 20 log10(210 ∗ 26) = 96𝑑𝐵). 

Stronger light with 50uW of power (Figure 3-5) causes more conditional resets. Each 

brightness region in the exponent image represents a different exponent value where the gradient 

values in the mantissa image represent the detail levels. Here again, low light objects are 

Figure 3-5 - Power of ~50 uW, Exponent has 3 values, mantissa shows the details 

for higher exponent values 

Figure 3-6 - lowest possible detection, ~ 2uW of light intensity generate first 

conditional reset (Mantissa on the left, Exponent on the right) 

Mantissa Exponent 
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impossible to detect due to the high dark current, but for the third exponent region, we can see 

brightness gradient in the mantissa image. 

For a stronger light with 430 uW of power (Figure 3-7), we can observe a higher number 

of generated conditional resets by the pipeline. Up to 5 conditional resets are generated and 

appear on the exponent image (higher number of conditional resets represent higher exponent 

value) and accordingly for each of the exponent, we can observe the gradient level represented 

by the mantissa.  

Finally, for the DR measurement and comparison with single exposure DSLR camera, we 

set up two light emitting objects with different light intensity as presented in Figure 3-9Figure 

3-8. A lamp (on the right) is emitting light with 1.3 mW of power and a phone on the left which 

emits light with about 1 uW of power. The brightness of the phone is about 1000 times lower 

than the brightness of the lamp. Even though the lamp is behind the phone and slightly out of 

focus, it is possible to see the impact of the strong light on the integration times of the affected 

pixels (representing the lamp) which reach the maximum of possible conditional resets (8) and 

Figure 3-7 - Light with ~430uW of power, 5 different exponent values appear, 

detail levels for each exponent also appear and dominant over the noise 



 

38 

on the pixels showing the phone where the light from the phone can generate only one 

conditional reset (above the existing two generated by the leakage) (Figure 3-8).  

For comparison, the same scene was captured using a DSLR camera with manual settings 

(Figure 3-9). The image on the left was integrated 1/50 sec whereas the image on the right was 

integrated 1/2000 second. This difference represents a ratio of ~6 EV which is exactly the 

number of stops our sensor is able to generate.  

Unfortunately, the leakage current is strong enough to saturate the detail levels of the low 

light objects completely but, the details of the bright objects are still possible to detect due to the 

low impact of the dark current on short integration times.  

 

Figure 3-8. - low light object on the left (~1uW), Strong light on the right (1.3mW), 

and mantissa is lacking presenting details of the low light object 
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Figure 3-9 - The same scene captured with different EV setup. 
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In this chapter, we presented a complete hardware system including WDR sensor, 

interface board to activate the sensor and HDL driver to take control over all the processes in the 

system. The presented a WDR system that updates the integration time directly during the scene 

acquisition process and thus has a significant advantage compared to multiple capture systems or 

logarithm sensors for the following reasons.  

• Multiple capture systems require multiple frame buffers, i.e. memory to store a few exposures 

before generating WDR data. Also, they are prone to generate image lag due to a relatively bigger 

time difference between exposures. 

• Logarithmic sensors are prone to lose contrast in bright areas due to logarithmic response whereas 

in our case the WDR data is always linear.  

 

Possible modifications are required to improve the visual performance of the sensor, and 

especially to increase the dynamic range into the low end.  

• Multiple access pixel has to be redesigned as the existing configuration inserts a destructive level 

of noise into the pixel and reduces its performance in low light conditions.  

• Internal ADC must be integrated with the image sensor to read the analog signal internally.  

• The drain terminal of the reset transistor has to be connected to the highest positive voltage 

instead of being implemented a logic gate to eliminate a leakage current into the photodiode. 

• Pinned photodiode must be considered as a replacement for an existing solution. 

 

Possible improvements to the pipeline are: 

• Inserting a decision module based on a numeric value stored in the memory buffer at the end of 

FIFO will allow streaming a single bit to all reset logic circuitries which will equalize the 

propagation delay of all reset circuits and reduce the interface with the buffers from 38 bits to 15.  

• With pinned photodiode, a row parallel scanning technique must be implemented to reduce the 

decoupling noise on the non-accessed pixels.  

 

In the next chapters, we will discuss a possible solution for visual WDR data rendering on LDR 

devices.  
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 TONE MAPPING 

Once we obtain the WDR data either by a WDR sensor or by any other technique, the 

next step will be presenting this data on an LDR display. As described in section 1.2, the 

brightness intensities of the WDR data can significantly exceed the dynamic range of the 

displays; therefore, a to present WDR on any display device a special compression is required 

which is called Tone Mapping (TM) or Tone Operator (TMO). Without compression, we will 

have to select a brightness region to display, and this will cause to either underexposed, either 

overexposed objects to appear while presenting a selected range from WDR data a display.   

 

Many TMOs been developed for the last few decades and have different visual and RT 

performance (as described in section 1.2). The goal of our team was to create a TMO which will 

take advantage of the mantissa-exponent output data format (from the presented image sensor) 

for tone mapping efficiency and quality purposes. The TMO has to have improved visual 

performance compared to previously designed by our group solutions [47], [48] and be able to be 

easily implemented on a hardware platform which considers low footprint, low power 

consumption, and real-time performance.  

 

 

Figure 4-1: Manually picked brightness intensities from WDR data 
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In this chapter, we first present the TM algorithm developed by Dr. Alain Horé (not 

published resource) operating on a mantissa-exponent format along with its visual performance 

comparisons to related work and later we present its hardware implementation (part of this thesis 

research work) with synthesis results and comparisons to the model developed in MATLAB. 

 Tone-mapping algorithm for mantissa-exponent format 

The proposed by Dr. Alain Horé algorithm for tone mapping assumes that the output 

intensity of each pixel x (p) is described as follows: 

Equation 4-1     𝒙(𝒑) = 𝒎(𝒑) ∗ 𝟐𝒆(𝒑) 

Where 𝑚(𝑝) is the mantissa part which varies between 0 and 1 with a precision of 12 bits, and 

𝑒(𝑝) (the exponents’ part) which varies between 0 and 8. The proposed tone mapping operator 

for this data type has three main components: a base-2 logarithm (Equation 4-3), linear scaling 

(Equation 4-4), and contrast enhancement (Equation 4-5). We note: equation 4-3 is derived using 

the decomposition of the natural logarithm by using a second order Taylor approximation as 

present on Equation 4-2. 

Equation 4-2     𝒍𝒐𝒈𝒆 𝒙 =  ∑
(−𝟏)

𝒏+𝟏

𝒏
∞
𝒏=𝟏 (𝒙 − 𝟏)

𝒏
, 𝒙 ∊ [𝟎, 𝟏) 

Equation 4-3     𝒇(𝒑) = 𝒍𝒐𝒈𝟐 𝒙(𝒑) =
𝒎(𝒑)−𝟏− 

(𝒎(𝒑)−𝟏)𝟐

𝟐

𝒍𝒐𝒈𝒆 𝟐
+ 𝒆𝒓𝒓(𝒑) 

Equation 4-4    𝒉(𝒑) = 𝒅𝒎𝒂𝒙 ∗
𝒇(𝒑) − 𝒇𝒎𝒊𝒏

𝒇𝒎𝒂𝒙 − 𝒇𝒎𝒊𝒏
 

Equation 4-5    𝒚(𝒑) = |𝟐 ∗ 𝒉(𝒑) − 𝒉 ∗ 𝒍𝑳𝑷𝑭(𝒑)| 

The first step is a global operator applied to all the pixels’ intensities to compress their 

dynamic range based on a logarithmic curve. The next linear scaling step is performed to match 

the output values of the logarithm operator to the LDR values of the rendering devices (screens, 



 

43 

printers, TVs, etc.) for which the maximal pixel intensity value is given by 𝑑𝑚𝑎𝑥. The last 

contrast enhancement step is required to reduce the blur generated by the global compression 

performed with the log operator, thus making the output images sharper. This contrast 

enhancement step, called sharp masking, uses a low-pass filter (a Gaussian filter in our 

experiments) denoted as 𝑙𝐿𝑃𝐹 , which aims at emphasizing the high frequencies of an image by 

subtracting low frequency component from the signal. On the Figure 4-2 and Figure 4-3, we can 

compare the visual performance the presented TMO with comparisons to related works [31], 

[34], [49], [50] in terms of low light object enhancement, artifacts, and overall naturality 

preservation of the scene.  

 

 

Figure 4-2 : Visual comparisons the presented TMO with Drago, 

Durand, Fattal and Mantiuk 
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 Hardware Implementation 

In the proposed design, we use a real-time data flow to make the design fast and timed 

(real time), for further possible integration with the image sensor. To reduce the pipeline delay 

and the design footprint, we use common to the entire frame parameters, like minimum and 

maximum intensities, computed during the processing of a previous frame on the current frame 

and so on. If we use global parameters from the previous frame, we don’t need to store a full 

frame in the memory for any parameter extractions, which enables us to save a lot of resources 

and significantly shorten the pipeline. This is possible because these values don’t change 

drastically between two subsequent frames. From 30 fps and above (TMO was tested at 60 and 

120 fps), the difference of these parameters between two frames can be assumed to be small 

enough to be simply set to 0 without affecting the quality of the images. The overview of our 

Figure 4-3 : Visual comparisons the presented TMO with Drago, 

Durand, Fattal and Mantiuk 
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design is presented in Figure 4-4 and is described as follows: the mantissa and exponent values 

of each pixel arrive at every clock cycle and feed the tone mapping algorithm into the block f(p). 

This block has a defined constant latency of 3 clocks cycles. After 3 clocks, f(p) ends the 

calculation of the first input and will then give successive outputs at each clock. The output of 

f(p) goes to module h(p), which has a defined latency of 17 clocks. After the first output of h(p) 

is generated, this module will give successive outputs at each clock. Each of the output of h (p) is 

sent to the last module y (p), which has a latency of 2066 clocks. The reason for a big pipeline 

delay is discussed in section - Pixels allocation module. Overall, we have a latency of 2088 

clocks for getting the first tone mapped pixel, and then successive pixels are output at each clock. 

We note that for simulations the bit-width for each input pixel is 24, where 16 bits are used for 

the mantissa and 8 bits for the exponent. The bit-width of each output pixel of the tone mapped 

image is an 8-bit integer value. 

 

4.2.1 Log Computation module 

The purpose of this module is to compute Equation 4-3. This process normally requires 

complicated arithmetic operations, which are described below, but we introduce a simplified 

method for the execution of this module. 

         

            
       

      

          

         

Figure 4-4 – Block diagram of the 

TMO 
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Discarding signed operations  

As mentioned earlier, 𝑚(𝑝) varies from 0 to 1. Thus, on subtracting 1 from 𝑚(𝑝), we get 

a negative result, which means that we need to perform signed operations. Also, when 

performing the power of 2 operations for two signed inputs, bigger multiplier must be used for 

computing the result. Also, when subtracting 
(m(p) − 1)2

2
 from (𝑚(𝑝)  −  1), the absolute value of 

the minuend is bigger than the subtrahend, and thus we get another signed operation. All these 

calculations require wider buses, more computational effort and more time to be executed. This 

complexity is not suitable for our goal. Consequently, we want to avoid this complexity by using 

unsigned operations in order to realize a small and efficient design. Indeed, it is easier to operate 

with unsigned values during development, verification and maintenance processes. Thus, using a 

few arithmetical operations, we rewrite Equation 4-3 and get the following equation: 

Equation 4-6 𝒇(𝒑) = 𝒍𝒐𝒈𝟐 𝒙(𝒑) = (𝟐𝒎(𝒑) −
(𝒎(𝒑))

𝟐

𝟐
) (𝟏 +

𝟏

𝟐
−

𝟏

𝟏𝟔
) + 𝒆(𝒑) + 𝒆𝒓𝒓 

Where the constant 𝑒𝑟𝑟 =  − 
69

32
. It is easy to notice that we get fewer signed operations and the 

value of 2𝑚(𝑝) −
(𝑚(𝑝))

2

2
 is always positive. 

 

Division by a constant 

Dividing by loge(2) is an expensive operation and requires of using a hardware divider. 

Thus, instead of division by a constant, we perform multiplication by approximating the value of 

1/log (2) as shown in Equation 4-7 with approximation error of O(3) 

Equation 4-7   
𝟏

𝒍𝒐𝒈 (𝟐)
= 𝟏 + 𝟏

𝟐
− 𝟏

𝟏𝟔
+ 𝑶(𝟑);  𝑶(𝟑) =  𝟓. 𝟐𝒆 − 𝟑 

Since the approximation is a sum of power of 2 elements, bit selection (shift operation) with 

summing operator can be preferred over a division. Using this technique, we get the result of the 
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division in only 1 clock. The architecture of the division module is represented in Figure 4-5 

between latency 1 and 2. With the optimization described, the latency for computing Equation 

4-6 is only 3 clocks@100Mhz. Equation 4-6 

 

 

Figure 4-5 - Block f (p): pipeline data flow 

 

4.2.2 Linear Scaling Module 

This module, h (p) block, scales the outputs from the f (p) block to an 8-bit representation 

(here, we assume that the maximal intensity of the display is dmax=255. This module has 3 inputs, 

the minimum and maximum values of brightness calculated and saved from the previous frame, 

and the pixel intensity of the current frame. Based on this information, a linear scaling is 

performed according to Equation 4-4. In this block, we use a built-in pipeline DSP divider to 

estimate the result in real-time. In order to compute more accurate results of h(p), we first 

perform a lossless 8-bit left shift on the input data of the block (this approximates the 

multiplication by dmax, and then we perform the division. This reduces the division error 

generated by the divider. The digital divider outputs the quotient and the remainder without a 

fractional part. Therefore, on performing the multiplication before division, the quotient 
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maintains more precision, as opposed to performing multiplication after division. Overall, the 

proposed design for the linear scaling module as shown in Figure 4-6.     

 

4.2.3 Contrast Enhancement Implementation 

The result from the previous block (linear scaling) enables us to highlight some details in 

tone mapped images, but they may also contain some noticeable blur. To tackle this issue, a 

contrast enhancement filter Equation 4-5 is applied. This module comprises of the hardware 

implementation of the contrast enhancement filter (Figure 4-8) and the hardware implementation 

of the block needed to allocate the required pixels from the input stream (Figure 4-7). 

       

        

         

       

   

     
       

Figure 4-6 - Block h (p) - 

pipeline data flow 

              

               

        

Figure 4-7 - Allocation of a 5x5 matrix of pixels by 

using 4 FIFOs 
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Pixels allocation module 

Since the pixels are read out line by line, it is required to store a few lines of the image to 

implement the 2D filter and to access the vertically located pixels at the same time. The number 

of stored lines equals the smallest dimension of the 2D filter minus one. In our case the filter is 

symmetric, and its dimension is 5 by5 pixels, and consequently, the number of stored rows is 4. 

This storage is implemented by 4 FIFO shift registers. With this method, at each clock, we 

allocate the appropriate window of pixels for performing convolution. The delay generated by 

this module depends on the image and the filter size, and it is given by Equation 4-8 

Equation 4-8  𝑷𝒊𝒑𝒆𝒍𝒊𝒏𝒆 𝑫𝒆𝒍𝒂𝒚 =  𝑭𝑰𝑭𝑶𝒔𝒊𝒛𝒆 ∗ ⌊
𝑭𝒊𝒍𝒕𝒆𝒓 𝒔𝒊𝒛𝒆

𝟐
⌋ ∗ ⌈

𝑭𝒊𝒍𝒕𝒆𝒓 𝒔𝒊𝒛𝒆

𝟐
⌉ 

In our case, the delay is equal to 1024∗ ⌊
5

2
⌋ ∗ ⌈

5

2
⌉ =  2051 𝑐𝑙𝑜𝑐𝑘𝑠. We note that filter size is 

the smallest dimension of the 2D filter used and FIFO size is the number of pixels in a row/line 

of the image. The implementation presented on Figure 4-7.  

   

Contrast enhancement module 

This part presents the hardware implementation of Equation 4-5. We perform high-pass 

filtering (HPF) by subtracting the result of the convolution of the allocated window with a low 

pass Gaussian filter, from the same allocated window (given by the previous block). The high-

pass filtered image (with high-frequency content) is added to the original image, which increases 

the overall contrast. An absolute value operator is applied to ensure that the positive values are 

always obtained during the contrast enhancement step. 

The block diagram of the filter module is presented in Figure 4-8. On the first step, we 

perform convolution by multiplying all the 25 selected fragments based on the filter coefficients. 
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The multiplications are performed by using shift and add operations, which is an efficient 

strategy in terms of power consumption and hardware resources. All the products obtained after 

multiplications are summed up, and the result is divided by 256 by using an 8-bit logical right 

shift operator (256 is the denominator of the filter used). On the second step, an absolute 

operation is performed to eliminate the negative values after the filtering process. The 

implementation of the absolute operation was done by using one comparator, two adders 

(performing two subtractions) and one multiplexer.  

 

 

 

 Simulation and Synthesis Results   

4.3.1 Simulation results 

To determine the quality of the presented hardware implementation, we compare it with a 

software implementation in MATLAB by using subjective and objective evaluations. In Figure 

4-9, we show four tone mapped images obtained with hardware design and with the MATLAB 

implementation. As we can notice, the tone mapped images look very similar and quite 

indistinguishable, which indicates that the hardware implementation is reliable. To confirm that 

objectively, we have used two well-known image quality measures: the peak signal-to-noise ratio 

   
   

   
    

      
   

   
       

   

   
 

   

   
 

   

   
 

   

   
 

   

   
 

           

      
   

   
       

   
   

   
    

   

              

             

            

    

   
   

   

   

   

Figure 4-8 - Implementation of the contrast 

enhancement filtering 



 

51 

(PSNR) and the structural similarity image index (SSIM) [51], [52]. In general, high values of 

the PSNR (in theory, the PSNR varies from 0 to infinity) give an indication that two images 

might be very similar. The two images can be deemed similar when the SSIM value, which 

varies from 0 to 1, is close to 1. In Table 4-1, we compare the PSNR and SSIM results between 

the MATLAB implementation and the hardware implementation. As we can notice, we have 

high values of the PSNR and the SSIM. The average PSNR is 55.87 dB, and the average SSIM is 

0.9996. These values confirm that the images obtained are similar. We note that in general, with 

PSNR above 30 dB the difference between images will not be noticeable, and our results are 

quite satisfying when compared to other hardware TM implementations [27], [41], [53] with 

PSNR of 30, 40 and, 55 dB accordingly. 

 
Table 4-1- PSNR and SSIM results 

 

4.3.2 Synthesis results 

Our design was synthesized on Altera Cyclone III FPGA. The power consumption was 

provided by a development tool estimation and is 149.5 mW, where part of the power is 

consumed as static power by the chip peripheral and is dissipated as the I/O thermal power. In 

fact, the dynamic power of our design (that also has been estimated by the simulation tool) is 

only 19.84 mW.  
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FIFO shift registers have been implemented using embedded memory. The exact amount 

of memory used is FIFOlength x FIFOwidth x number of FIFOs. In our case, we have 32.7 Kbits. In 

general, we have a very small and efficient design. Compared to other on-chip/GPU image 

processing designs [31], [54] with 177mW and 18W respectively and especially to other TM 

FPGA designs [25], [55] with 37W and 22W respectively, our implementation can be a good 

competitor mainly because of the speed, hardware-efficiency, quality, and the total pipeline 

delay. Table 4-2 summarizes the power consumption and the hardware resources of our design 

where the static consumption can be significantly reduced by choosing smaller FPGA or 

integrating the design with the CIS. 

 

Table 4-2 - Hardware resources summary 

 Tone mapping algorithm results conclusion  

In this part, we have presented a tone mapping algorithm that can process WDR images 

based on a mantissa-exponent representation. The algorithm has been efficiently implemented in 

FPGA. Indeed, we have obtained low power consumption, high processing speed, and small 

footprint. Also, we have been able to obtain similar tone mapped images between the hardware 

implementation and a software implementation of our algorithm, which was also confirmed 

objectively by using the PSNR and the SSIM. Based on the reliability of our hardware 
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implementation and the good performance obtained, we have good confidence that we can 

embed our algorithm and an imager on the same chip.  

In the next part, we describe the designed real-time testing system for a TMOs with a 

mantissa-exponent data input format. 
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Figure 4-9 - Tone mapped images. Software implementation with Matlab (Left), Hardware 

implementation (Right). 
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 : TONE MAPPING TESTING PLATFORM 

In this part, we present a platform to perform visual and performance tests for algorithms 

based on mantissa-exponent (floating point) representation in a real-time mode. Standard WDR 

sensors provide the brightness values in fixed-point format (RAW) which is usually a direct 

output from the ADC whereas the M-E sensor streams the data in floating-point representation 

and special TMO is required to process this output (see 4.1). The simulation system is based on a 

standard WDR sensor but gives the ability to test variable TM algorithms suitable for direct 

integration with sensors with M-E output. 

 FPGA Platform for M-E algorithms 

To capture with data and present the results of the TM algorithms in real time mode, we 

need a peripheral system which manages and provide all necessary peripheral signals to the 

camera and display modules along with the TM algorithm and preprocessing steps. These 

features Cyclone III Altera FPGA with WDR Aptina image sensor (MT9M034) and Terasic 

extension board with DVI PHY as represented in Figure 5-1. The WDR sensor is manually 

configured to provide the maximum dynamic range of 120dB. Data flow in this system is the 

following: Generated WDR video data streamed from the sensor to the FPGA, The data is 

Figure 5-1 - Hardware system overview: WDR Image 

sensor on the left, development FPGA board in the middle 

and DVI PHY on the left 
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preprocessed to meet the requirements of the tone-mapping algorithm, and the data is 

compressed by the tested tone mapping algorithm and streamed out to DVI.  

Here we explain the hardware design of all the pre-processing steps made on the input 

data to meet the constraints of the based on a mantissa-exponent tone mapping algorithm. The 

steps are including the decompression of the data arrived from the image sensor, reconstructing a 

full-color image from incomplete color samples (CFA to RGB), extracting the brightness 

intensities (RGB to YUV), and converting the data into floating point format (Figure 5-2). 

 

5.1.1 Decomposer 

The image sensor is programmed to provide 120dB of dynamic range, and this requires 

an allocation of 20-bits per pixel. However, the data is compressed and streamed out via 12-bit 

bus, and thus a hardware decompression module is required to retrieve the data. 

Figure 5-2 - Pre-processing steps to stream WDR data to tested TMO 

Figure 5-3 - Signal response to light intensity 
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Figure 5-3 and Figure 5-4 show possible DR & compressions as a function of the ratio of T1/T2 

and T2/T3. Based on the data sheet, the compression works as follows: the brightness values 

from 0 to 2048 are not compressed and represented as is in the output register (let’s call it range 

1). The brightness values from 2048 to 2^16 (65535) are compressed linearly into the range 

between 2049 and 3040 (let’s call it range 2). And the last range of brightness values start from 

65536 to 2^20 (1M), are also compressed linearly but represented in the output register as 

discrete values between 3041 and 4000 (let’s call it range 3). Once we know the compression, we 

can define the decompression piecewise equations -  

Equation 5-1 

Equation 5-1  𝒐𝒖𝒕(𝒑) = {

𝒑;                                           𝒑 ∊ [𝟎, 𝟐𝟏𝟏]

(𝒑 − 𝟐𝟎𝟒𝟖) ∗ 𝟔𝟒     + 𝟐𝟏𝟏;  𝒑 ∊ (𝟐𝟏𝟏, 𝟐𝟏𝟔] 

(𝒑 − 𝟑𝟎𝟒𝟎) ∗ 𝟏𝟎𝟐𝟒 + 𝟐𝟏𝟔;  𝒑 ∊ (𝟐𝟏𝟔, 𝟐𝟐𝟎] 

 

Figure 5-4 - List of possible DR and compressions 
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The pipeline of the decompression module is presented in Figure 5-5. The overall decompressing 

process latency is 2 clocks. On the first clock, we perform a comparison of the input value with 

P1 and P2 were the result of the comparators is bonded and used to select the value to subtract 

from inP. And on the second clock cycle, we are selecting the multiplicand and the added values 

to the result from the previous cycle depending on the same bonded values from the comparators. 

Finally, the result after the summation represents WDR data in 20-bits per pixel. 

5.1.2 CFA to RGB Converter 

The data from the color sensor arrives in CFA format, and demosaicing is required to 

reconstruct the colors from the samples output.  

Figure 5-5 - Decomposer module, pipeline view 

Figure 5-6 – CFA (on the left) and its 4 patterns 

(on the right) 
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The transformation is not linear and is based on the regional location of the selection on the 

Bayer RGBG matrix. Every single phase, we know only one color, whereas the other two colors 

are calculated based on the neighborhood pixels. In total, we have 4 different cases (Figure 5-6) 

in the CFA matrix, and during the color estimation process, only one color is known whereas the 

other two must be estimated. I.e., the first case (I). The central pixel is green; and so, the green 

value is known, but blue and red values must be calculated based on the adjacent blue and red 

pixels accordingly, the same logic is applied for the rest of the three CFA patterns, but different 

colors must be reconstructed.  

 

The implemented module consists of 2 main modules as presented in Figure 5-7. The first 

module is ‘3×3 Matrix Extractor’ allocates 3 by 3 matrix of adjacent pixels from a continuous 

pixel video stream. This module requires 2 FIFO shift registers. The delay generated by this 

module can be calculated by Equation 5-2. In our case, the FIFO size equals 1280 elements, and 

the filter size equals 3. Thus the overall delay generated by this module equals 1282 clocks. The 

second module is the ‘Color Extractor’ module which selects the appropriate mash based on the 

location and performs the conversion of the current 3 × 3 CFA matrix into RGB channels.  

Equation 5-2      𝒅𝒆𝒍𝒂𝒚 = 𝑭𝑰𝑭𝑶_𝒔𝒊𝒛𝒆 ∗ ⌊
𝒇𝒊𝒍𝒕𝒆𝒓_𝒔𝒊𝒛𝒆

𝟐
⌋ +  ⌈

𝒇𝒊𝒍𝒕𝒆𝒓_𝒔𝒊𝒛𝒆

𝟐
⌉ 

Figure 5-7 - Matrix allocation module (left), Bayer cases calculation (right) 
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This module works in continuous mode, and every clock generates 3 colors (red, green 

and blue). The calculation of all the cases is done in parallel and depending on the location of the 

incoming pixels in the image steam a required case is selected for each of the color channels. The 

transformation from CFA to RGB representation can be done using any of the possible masks 

with different interpolation types and sizes [56].  

 

5.1.3 RGB to YUV Converter  

The next step is to extract the luma (Brightness) channel from the RGB representation. 

The luma is one of the channels in Y`UV color space where Y represent the luma, and the UV is 

a chrominance constituent of the image. The YUV color space is defined as a linear coordinate 

transformation from an RGB color space (Figure 5-8). To calculate the Y` we need to multiply 

the red channel by 0.299, green channel by 0.587, blue channel by 0.144 and sum the results. 

The calculation above can be done using 3 DSP multipliers and adders. But there is a more 

efficient way to estimate the required value, and we present this technique in our design. Let’s 

consider for example the multiplication of the red channel by 0.299. We can rewrite the value of 

0.299 using a sum of a power of two numbers with acceptable precision as presented in Equation 

5-3. This approximation gives us a 0.2% error of the original value. However, the error can be 

reduced by using more and smaller than 10 bits of precision. 

Equation 5-3  𝟎. 𝟐𝟗𝟗 ≈
𝟏

𝟒
+

𝟏

𝟑𝟐
+

𝟏

𝟔𝟒
+

𝟏

𝟓𝟏𝟐
+

𝟏

𝟏𝟎𝟐𝟒
=  𝟎. 𝟐𝟗𝟗𝟖𝟎𝟒𝟔𝟖𝟕𝟓    

Figure 5-8 - Transformation matrices between YUV and RGB color spaces 
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Equation 5-4  𝟎. 𝟐𝟗𝟗 ∗  𝑹 ≈ 𝟎. 𝟐𝟗𝟗𝟖. .∗  𝑹 =
𝑹

𝟒
+  

𝑹

𝟑𝟐
+

𝑹

𝟔𝟒
+

𝑹

𝟓𝟏𝟐
+

𝑹

𝟏𝟎𝟐𝟒
    

Equation 5-5  𝟎. 𝟓𝟖𝟕 ∗  𝑮 ≈ 𝟎. 𝟓𝟖𝟔𝟗. .∗ 𝑮 =
𝑮

𝟐
+ 

𝑮

𝟏𝟔
+

𝑮

𝟔𝟒
+

𝑮

𝟏𝟐𝟖
+

𝑮

𝟏𝟎𝟐𝟒
    

Equation 5-6  𝟎. 𝟏𝟏𝟒 ∗  𝑩 ≈ 𝟎. 𝟏𝟏𝟒𝟐. .∗ 𝑩 =
𝑩

𝟏𝟔
+  

𝑩

𝟑𝟐
+

𝑩

𝟔𝟒
+

𝑩

𝟐𝟓𝟔
    

Now, we can rewrite the multiplication as presented in Equation 5-4. It is easy to follow, 

the required value of 0.299×R is a sum divided by 2(right shifted) values of R, which are very 

easy to be implemented on hardware platforms. The same approximation is made to the result of 

0.587*G and 0.114*B, as presented in Equation 5-5 and Equation 5-6. For faster design and area 

efficiency, the shifting operations are performed using bit selection and concatenation operator 

instead of using a shift register. Also, since the adding sequence will not affect the result, the size 

of each addend was considered during the pair selection for each adder. I.e., as we have different 

size addends during the summation, the similar sized ones were selected to be a pair. For 

example, R/1024 with G/1024 became a pair since their bit width result will be smaller than the 

result of G/1024 with, i.e. G/128 which has a different size. The overall block latency is 4 clocks, 

as we use 2 input adders with 1 clock latency and 14 addends, we need ⌈𝑙𝑜𝑔214⌉ clocks to 

calculate the value of Y`. The other parts of the Y’UV color matrix (U and V) are not calculated 

since there is no use in these channels.  

 Mantissa-Exponent Generator 

The final step is to create mantissa-exponent (M-E) representation from fixed point 20bit 

integer ( 

Equation 5-7). The integer values varying from 1 to 1M into 16 bits M-E representation, 

where its first 12 bits represent mantissa values varying from 0.5 to 1, and the remaining 4 bits 

are allocated to represent the exponent which can vary from 0 to 15. In our case, the maximum 

exponent is set to 10 since we already covered the sensor dynamic range and there is no need to 
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make the design more complicated. We note the full scale of the representation gives us the 

ability to represent up to 20 × log10(212 × 216) =  162 dB  of dynamic range. 

Equation 5-7    𝒍𝒖𝒎𝒊𝒏𝒂𝒏𝒄𝒆 = 𝒎𝒂𝒏𝒕𝒊𝒔𝒔𝒂 ∗ 𝟐𝒆𝒙𝒑𝒐𝒏𝒏𝒆𝒏𝒕  

The conversion is working as follows. The M-E representation must have a one-to-one 

correspondence with the integer representation, and thus the mantissa’ values must vary between 

0.5 and .999 (the precision is based on the number of bits predefined to represent the mantissa) 

and the exponent values must be strictly based on the range of the luminance values. I.e., if the 

luminance value is between 29 and 210 − 1, the exponent value can be only 10.  

Hardware implementation of this module is made in the following way; on the first stage, 

we define the range of the luminance using priority encoder. This scale the luminance range 

based on the MSB and represents the value of the exponent. On the next clock cycle, the 

exponent value is used to control the multiplexer which selects the shifted value of the luminance 

to be forwarded to form the final value of the mantissa. The block is designed to generate 

mantissa-exponent representation within two clock cycles. This module can support in a 

maximum of 20 bits mantissa with the same 4 bits of the exponent for better precision and 

without affecting the calculation timing of 8.3ns per clock.  

Figure 5-9 - Floating point generator 
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 Results 

Indeed, the design was successfully synthesized on Altera Cyclone 3 FPGA and created 

the required data representation from the input data video stream. Synthesis results are presented 

in Table 5-1. Further, the data was sent to the designed TMO for compression and after that 

streamed out to an 8-bit LCD monitor (Figure 5-11 and Figure 5-10). The overall testing 

frequency was set to 108MHz (provided by the FPGA and measured by scope) which allowed to 

stream video with 1.25MP (1280×960) resolution in a continuous real-time mode at 60fps.  

Module Pipeline 
depth [Cycles] 

Memory 
allotted[kB] 

Logic 
elements 

Registers 
 

Pins Generated 
Error [PSNR] 

Camera Driver - 4.096 450 272 47 - 

Decompressor 2 0.08 91 54 38 None 

CFA to RGB 1255 55 433 399 86 120.4 

RGB to YUV 4 - 286 240 126 90.3 

M/E 
Generator 

2 - 202 60 46 56.18 

Total 1263 63.272 1462 1025 - - 

       
Table 5-1 - testing system synthesis results 

 

 

Figure 5-10 - Two different exposures of wide dynamic range scene captured with DSLR camera 
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Figure 5-11 - Tone mapped WDR scene 
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 : CONCLUSIONS 

In this thesis, two different parts of the WDR imaging platform has been presented. The 

first part presents a sensor for capturing WDR scenes whereas the second part presents a 

hardware implementation of an algorithm to display this data. For both parts, hardware platforms 

were developed to test and analyze visual and real-time performance.  

 WDR Sensor 

The presented sensor, with 96 dB (see: M-E sensor Results) of dynamic range, was 

successfully designed and manufactured (Appendix: Mantissa – Exponent Sensor Die). The 

concept of the integration time multiplexing based on a time and space tradeoffs with up to 8 

conditional resets to capture WDR scenes was integrated with the light acquisition process using 

a multi-dimensional pipeline technique and successfully generates an output directly in a 

mantissa-exponent format (without converting it into a fixed-point representation). Regardless to 

the achieved dynamic range, the out format allows us to stream a significantly larger range of 

values using the same number of bits and enables the embedding of the sensor output directly 

with floating point arithmetic modules for TMOs. Low amount of embedded memory to capture 

WDR scenes was achieved combined with minimized interface makes this sensor suitable for 

medical and low dimensions WDR imaging applications.  

The developed supporting system based on a Xilinx development kit along with the 

designed interface board has a wide digital interface with the tested sensor and features 12-bit 

ADC with multiple analog references voltages which allows testing sensors that will be 

developed in the future and to stream the data via DVI or UART for analyses or presentations. 
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6.1.1 Further work 

To reduce the leakage current and to increase the performance in low light conditions a 

new variation of pixel design, based on a pinned photodiode, must be developed and components 

such as ADC and FIFOs that are implemented on a peripheral system to reduce ASIC 

prototyping costs must be integrated with the sensor.  

 

 Tone mapping  

The suggested hardware implementation for the proposed TMO compress WDR data and 

provide output in a real-time mode. The design generates images similar to a 64-bit software 

implementation tone mapped by MATLAB, which was also confirmed objectively by using the 

PSNR and the SSIM. We have obtained low power consumption, high processing speed and a 

small footprint which allows integrating this design with the image sensor.  

A dedicated system was designed to perform visual and performance tests on this type of 

TMOs in real-time mode. This testing system emulates an output from an image sensor with 120 

dB of dynamic range in a half precision floating point format and allows us to test many 

hardware-implemented floating-point representation tone mapping algorithms.  

Additional to the achieved quality and small footprint, this algorithm is based on a global 

operator (logarithmic) which is prone to lose contrast in bright regions and therefore, required a 

contrast enhancement module. More complex TMOs, based on a local or a combination of local 

and global operators must be considered as an optional solution to provide better image quality 

after the compression. 
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 Summary 

In this work, we presented solutions for capturing and rendering imaging/video system 

based on a mantissa-exponent representation. The designed image sensor is unique in its way of 

working as it needs a minimal amount of memory to generate a WDR output. It, also, has a linear 

response function and the output format is in floating-point representation. The sensor has some 

limitations in low light conditions, as was discovered during empirical tests, and requires 

improvements, as described earlier.  

After a successful capture, the data can be compressed by the suggested TMO and presented on 

an LDR device.  
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 : APPENDIX 

 PCB Schematics 
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 HDL Driver Top-Level Source Code 

 

module top( 

// clk input 

input wire clk200Mn, clk200Mp, 

 

// user control 

input wire pbN,pbE,pbW,pbC,pbS, 

output wire [7:0] led, 

input wire [7:0] sw, 

 

 

// to on FPGA dvi Chip 

output resetDviN,    //DVI reset  

output SPC,     //SPC 

output SPD,     //SPD 

output XCLK108Mp,    //DVI clk 

output XCLK108Mn,    //DVI clk 

output lv,     //horizontal sync 

output fv,     //vertical sync 

output de,     //data enable 

output [11:0] Dout,  //data 

 

// my board interface 

input [11:0] adc,   

output rn,  

output resetMainClk, 

output resetCircuitClk, 

output clkRow, 

output clkAmps, 

output toTimeGenClk, 

output mainClk, 

output clkADC, 

output resetSecClk, 

 

 

input a0out, 

output a0In, 

input b0out, b1out,  

output b0In, b1In, 

input c0out, c1out, 

output c0In, c1In, 

input d0out, d1out, d2out, 

output d0In, d1In, d2In, 
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input e0out, e1out, e2out,  

output e0In, e1In, e2In, 

input f0out, f1out, f2out,  

output f0In, f1In, f2In, 

input g0out, g1out, g2out,  

output g0In, g1In, g2In, 

input h0out, h1out, h2out, h3out, 

 

// UART 

input uartRx, 

output uartTx, 

 

//temp debug 

output somePinOut 

// end temp debug 

 

);  

 

 

////////////////////////////////////// internal signals ////////////////////////////////////// 

wire reset, resetN; 

wire clk135M;  // freqs from PLL 

wire clk108Mp, clk108Mn; 

wire XCLK216Mp, XCLK216Mn; 

wire clk23p04M; 

wire [11:0] timeX, timeY; 

reg [7:0] toDvi; 

wire [15:0] frameBuffOut; 

wire [3:0] exp;      

wire [7:0] CompressionDout; 

wire [3:0] debug; 

wire Active; 

wire [7:0] uarBuffOut; 

wire [23:0] colorsTest; 

wire iicClk; 

 

////////////////////////////////////// assignments ////////////////////////////////////// 

 

//board interface 

assign rn = resetN;  

assign reset = !resetN; 

 

assign led[0] = debug[3];//exp[0]; //  

assign led[1] = debug[2];//exp[1]; //   

assign led[2] = debug[1];//exp[2]; //  
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assign led[3] = debug[0];//exp[2]; //  

assign led[4] = h3out; //h3out;//sw[1];//exp[3]; //  

assign led[5] = h2out; // b0In;  //  

assign led[6] = h1out;// b0out; // 

assign led[7] = h0out;// sw[7]; 

 

 

 

// IIC 

assign XCLK108Mp = XCLK216Mp;//clk108Mp; 

assign XCLK108Mn = XCLK216Mn; //clk108Mn; 

assign XCLK216Mn = !XCLK216Mp; 

 

 

wire [15:0] tD0,tD1; 

 

assign tD0[15:12] = exp; 

assign tD0[7:0] = adc[11:4]; 

assign tD0[11:8] = adc[3:0]; 

 

//assign tD1[15:12] = debug; 

//assign tD1[11:0] = 12'b0; 

 

////////////////////////////////////// instances ////////////////////////////////////// 

uartFifoTest uartFifoTestInst( 

 .reset(reset), 

 .writeClk(resetSecClk), 

 .readClk(Active), 

 //.dataIn(sw[1]?tD0:tD1), // 4b-EXP,12b-ADC 

 .dataIn({exp,adc[3:0],adc[11:4]}), // 4b-EXP,12b-ADC 

 .dataOut(uarBuffOut), 

 .readActive(readActive), 

 .wrEn(wrEn) 

); 

 

TopUART TopUART_uut ( 

 .clk200Mp(clk23p04M), // 112.5M 

 .reset(reset), 

 .TxData(uarBuffOut), 

 //.TxData({debug,4'b0000}),  

 .Active(Active),  

 .TxDone(TxDone),  

 .TX(uartTx) 

 //assign uartTx = 1'b0; 

); 
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// temp debug 

assign somePinOut = 1'b1;  

// endTempShit 

 

expBuffers expBuffersInst( 

 .reset(reset), 

 .debug(debug), 

 .clkW(resetSecClk),       

 .clkR(resetSecClk),       

 

 // 272x64 = 17408, 1 bit 

 .aStart(a0out), 

 .aEnd(a0In), 

 // 272x32 = 8704 2 bits 

 .bStart({b1out,b0out}), 

 .bEnd({b1In,b0In}),  

 // 272x16 = 4352 2 bits 

 .cStart({c1out,c0out}), 

 .cEnd({c1In,c0In}), 

 // 272x8 = 2176 3 bits 

 .dStart({d2out,d1out,d0out}), 

 .dEnd({d2In,d1In,d0In}), 

 //272x4 =1088 3 bits 

 .eStart({e2out,e1out,e0out}), 

 .eEnd({e2In,e1In,e0In}), 

 // 272*2 = 3 bits 

 .fStart({f2out,f1out,f0out}), 

 .fEnd({f2In,f1In,f0In}), 

 //g = 272*1  = 3 bits 

 .gStart({g2out,g1out,g0out}),  

 .gEnd({g2In,g1In,g0In}), 

 // h = 272*1  = 4 bits 

 .hStart({h3out,h2out,h1out,h0out}),  

 .hEnd(exp) 

 ); 

 

imageBuffer imageBufferInst( 

 .writeClk(iicClk),     

 .readClk(clk108Mp),       

 .reset(reset),         

 .sw(sw[0]),          

 .timeX(timeX),         

 .timeY(timeY),         

 .adcIn(adc),          
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 //.adcIn({colorsTest[7:0],4'b0}), 

 .expIn(exp), 

 .dataOut(frameBuffOut)     //   

); 

 

 

I2Ctop I2CtopInst( 

 // Inputs 

 .Din({toDvi,toDvi,toDvi}), 

 //.Din(colorsTest), 

 .XCLK108Mp(clk108Mp), 

 .XCLK108Mn(clk108Mn), 

 .XCLK216Mp(XCLK216Mp), 

 .XCLK216Mn(XCLK216Mn), 

 .reset(reset), 

  

 // Outputs 

 .Dout(Dout), 

 .resetDviN(resetDviN), 

 .done(), 

 .lv(lv), 

 .fv(fv), 

 .de(de), 

 .tX(timeX), 

 .tY(timeY), 

 .SPC(SPC), 

 .SPD(SPD)  

 

 ); 

  

  

sensorClocks sensorClocksInst( 

 .clk(XCLK216Mp), //clk108Mp    

 .reset(reset || sw[2]),      

 .resetMainClk(resetMainClk),   // f/128 

 .resetCircuitClk(resetCircuitClk),   // f/128 

 .clkRow(clkRow),      // f/128 

 .clkAmps(clkAmps),     // f/128 

 .toTimeGenClk(toTimeGenClk),    // f/128/272 

 .mainClk(mainClk),     // f/128 

 .clkADC(clkADC),     // f/128 

 .resetSecClk(resetSecClk),    // f/128 

 .iicClk(iicClk), 

 .debug(debug) 

); 
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pll108M pll108Minst (// Clock in ports 

 .CLK_IN1_P(clk200Mp),    // IN 

 .CLK_IN1_N(clk200Mn),    // IN 

 // Clock out ports 

 .CLK_OUT1(clk23p04M),     // OUT 23.04M 

 .CLK_OUT2(XCLK216Mp),     // OUT 216M 

 // Status and control signals 

 .RESET(pbN),// IN 

 .LOCKED(resetN) 

  );        

// clock patch! 

clockPatch clockPatchInst( 

 .clk216Mp(XCLK216Mp), 

 .reset(reset), 

 .clk108Mp(clk108Mp), 

 .clk108Mn(clk108Mn) 

); 

 

endmodule 
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 TMO & Test System Source Code TOP LEVEL 

`include "C:\\Univ\\Research\\Verilog\\chip_def.sv" 

 

module CamToDvi( 

//======================================================= 

//  PORT declarations 

//======================================================= 

clkin_50, 

cpu_resetn, 

 

////////////////////////////////// UI buttons & leds ////////////////////////////////// 

// all deep switches 

deepSw, 

inputSelectBtn, 

reslBtn, 

ledOut, 

/////////////////////////////// DVI BOARD - Pin Declare /////////////////////////////// 

DVI_TX_CTL, 

DVI_TX_DKEN, 

DVI_TX_D, 

 

DVI_TX_DDCSCL, 

DVI_TX_DDCSDA, 

 

DVI_TX_CLK, 

DVI_TX_DE, 

DVI_TX_VS, 

DVI_TX_HS, 

 

DVI_TX_HTPLG, 

DVI_TX_ISEL, 

DVI_TX_MSEN, 

DVI_TX_SCL, 

 

DVI_TX_SDA, 

 

DVI_HSMC_SCL, 

DVI_HSMC_SDA, 

 

TX_PD_N, 

 

 

////////////////////////////////// HSMC connect to AHA - Aptina Head-Board Adaptor  

CK_FPGA_MCLK, 
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CK_IMG_IN_PIXCLK, 

DEMO2_I2C_SCL, 

DEMO2_I2C_SDA, 

IMG_DIN, 

IMG_IN_FV, 

IMG_IN_LV, 

SENSOR_RST,   

SHUTTER 

 

); 

//======================================================= 

//  PORT definition 

//======================================================= 

// Global clock & reset 

input           clkin_50; 

input           cpu_resetn; 

 

////////////////////////////////// DVI TX BOARD Pin Declare 

 

// ports names came from AHA demo. explanatiopns came from portB_Dvi_demo 

output  [ 3: 1] DVI_TX_CTL; // 3'h0 

output          DVI_TX_DKEN; // 1'h0 

output  [23: 0] DVI_TX_D; 

 

inout           DVI_TX_DDCSCL; // nothing 

inout           DVI_TX_DDCSDA; // nothing 

 

output          DVI_TX_CLK;  // 

output          DVI_TX_DE;   // 

output          DVI_TX_VS;   // 

output          DVI_TX_HS;   // 

 

output          DVI_TX_HTPLG;  // 1'h1- 

output          DVI_TX_ISEL;  // 1'h0- 

output          DVI_TX_MSEN;  // 1'h0 

output          DVI_TX_SCL;    // 1'h1- 

 

inout           DVI_TX_SDA;  // 1'h1- 

 

output          DVI_HSMC_SCL;  // 1'h0 

inout           DVI_HSMC_SDA;  // nothing 

 

output          TX_PD_N;   //  1'h1- 
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//////////// HSMC connect to AHA - Aptina Head-Board Adaptor ////////// 

 

output          CK_FPGA_MCLK;  

input           CK_IMG_IN_PIXCLK; //  

output          DEMO2_I2C_SCL; 

inout           DEMO2_I2C_SDA; 

input     [11: 0] IMG_DIN; 

input           IMG_IN_FV; 

input           IMG_IN_LV; 

output          SENSOR_RST;   

output          SHUTTER; 

 

/////////////User controls buttons and leds ////////////////////////////////// 

input  [7:0] deepSw; 

input   inputSelectBtn;  

input   reslBtn; 

output [7:0]   ledOut; 

 

////////////   DVI_TX not needed pins closing   ////////////   

assign DVI_TX_ISEL     = 1'b0 ; 

assign DVI_TX_SCL      = 1'b1 ; 

assign DVI_TX_HTPLG    = 1'b1 ; 

assign DVI_TX_SDA      = 1'b1 ; 

assign TX_PD_N         = 1'b1 ;  

assign DVI_TX_CTL[3:1] = 3'b0 ; 

assign DVI_TX_DKEN     = 1'b0 ; 

assign DVI_TX_MSEN     = 1'b0 ; 

assign DVI_HSMC_SCL    = 1'b0 ; 

 

////////////  AHA not needed pins closing  ////////////   

assign SHUTTER = 1'b0; 

 

////////////  Assignments   //////////// 

assign DVI_TX_CLK = CK_IMG_IN_PIXCLK; 

assign CK_FPGA_MCLK = clkin_50; 

 

////////////  Instantiations   //////////// 

decomposer decomposerINST( 

.pixIn(IMG_DIN), 

.clk(CK_IMG_IN_PIXCLK), 

.reset(~reslBtn), 

.pixOut(pixFromDecomposer), 

 

.lvIn(IMG_IN_LV), 

.fvIn(IMG_IN_FV), 
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.lvOut(lvFromDecomposer), 

.fvOut(fvFromDecomposer) 

); 

 

 

 

BayerToRGB BayerToRGBInst( 

.reset(reslBtn), 

.pixIn(pixFromDecomposer), 

.lvIn(lvFromDecomposer), 

.fvIn(fvFromDecomposer), 

.clk(CK_IMG_IN_PIXCLK), 

.rOut(rFromBayer2RGB), 

.gOut(gFromBayer2RGB), 

.bOut(bFromBayer2RGB), 

.lvOut(lvFromBayer2RGB), 

.fvOut(fvFromBayer2RGB) 

);  

 

 

RGBtoYUV RGBtoYUVinst( 

.clk(CK_IMG_IN_PIXCLK), 

.reset(~reslBtn), 

.lvIn(lvFromBayer2RGB), 

.fvIn(fvFromBayer2RGB), 

.lvOut(lvFromRGBtoYUV), 

.fvOut(fvFromRGBtoYUV), 

.r(rFromBayer2RGB), 

.g(gFromBayer2RGB), 

.b(bFromBayer2RGB), 

.y(yFromRGBtoYUV), 

.u(), 

.v() 

); 

 

mantExpGen mantExpGenINST( 

.inPix(yFromRGBtoYUV), 

.clk(CK_IMG_IN_PIXCLK), 

.mant(mant), 

.exp(exp), 

.reset(reslBtn), 

 

.lvIn(lvFromRGBtoYUV), 

.fvIn(fvFromRGBtoYUV), 

.lvOut(lvFromMantExpGen), 
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.fvOut(fvFromMantExpGen) 

); 

 

toneMap toneMapINST( 

.reset(reslBtn), 

.mant({mant,4'b0}), 

.exp(exp), 

.clk(CK_IMG_IN_PIXCLK), 

.logOut(), // working well 

.maxOut(), 

.minOut(), 

.quotient(), 

.resultOut(testLine), 

 

.lvIn(lvFromMantExpGen), 

.fvIn(fvFromMantExpGen), 

 

.fvOut(fvFromToneMap), 

.lvOut(lvFromToneMap), 

); 

 

wire [23:0]testLine; 

wire [23:0]testLine1; 

wire [9:0] resultOut; 

wire fvFromToneMap,lvFromToneMap; 

 

wire [19:0] pixFromDecomposer; 

wire lvFromDecomposer,fvFromDecomposer; 

 

wire [19:0] rFromBayer2RGB,gFromBayer2RGB,bFromBayer2RGB; 

wire lvFromBayer2RGB,fvFromBayer2RGB; 

 

wire [19:0] yFromRGBtoYUV,uFromRGBtoYUV,vFromRGBtoYUV; 

wire lvFromRGBtoYUV,fvFromRGBtoYUV; 

 

wire [11:0] mant; 

wire [6:0] exp; 

wire fvFromMantExpGen,lvFromMantExpGen; 

 

   

 

 

 

camDriverV2 camDriverV2INST( 

.reset(~reslBtn), 
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.clk(clkin_50), 

.scl(DEMO2_I2C_SCL), 

.sda(DEMO2_I2C_SDA), 

.camHardReset(SENSOR_RST) 

); 

endmodule 
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 Mantissa – Exponent Sensor Die 
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